
Exploiting replication on dependent data allocation for ordered
queries over multiple broadcast channels

Jiun-Long Huang • Jen-He Huang

Published online: 19 December 2009

� Springer Science+Business Media, LLC 2009

Abstract Data broadcasting has been recognized as an

important means for information dissemination in mobile

computing environments. In some mobile applications, the

data items broadcast are dependent upon one another.

However, most prior studies on broadcasting dependent

data do not employ replication in broadcast program gen-

eration. In view of this, we explore in this paper the

problem of broadcasting dependent data in multiple

broadcast channels, and explicitly investigate the effect of

data replication. After analyzing the model of dependent

data broadcasting, we derive several theoretical properties

to formulate the average access time of broadcast pro-

grams. In light of the theoretical results, we develop an

algorithm to exploit replication on broadcast program

generation. Our experimental results show that the pro-

posed algorithm is able to generate broadcast programs of

very high quality. In addition, the results also show that

broadcast programs with replication is more robust than

those without replication in error-prone environments.

Keywords Data broadcast � Dependent data � Mobile

computing � Ordered queries

1 Introduction

To provide power conservation, high scalability and high

network bandwidth utilization services in mobile

environments, a data delivery architecture in which a ser-

ver continuously and repeatedly broadcasts data to a client

community through a single broadcast channel was pro-

posed in [1, 28]. Related research issues about broadcast-

based information systems have attracted a considerable

amount of studies, including (1) broadcast program gen-

eration [1, 48], (2) on-demand broadcast [2, 3, 4, 16, 21],

(3) data indexing [13, 28, 50] and (4) location-dependent

data broadcasting [32, 35, 52, 55, 56, 57]. As pointed out in

[43], one cannot simply merge multiple low-bandwidth

physical channels into one high-bandwidth physical chan-

nel. Consequently, a significant amount of research effort

has been elaborated on the development of index mecha-

nisms [6, 29, 39, 46], data allocation schemes [7, 8, 42, 43,

54] and dynamic data and channel allocation [25, 34] in

multiple broadcast channels. In addition, the bandwidth

allocation for multi-cell environments with frequency reuse

and interference considered was studied in [51].

However, most works mentioned above were under the

premise that each user requests only one data item at a time

and the requests for all data items are independent of one

another. That is, the access probability for a user to request

a data item in the i-th request is predetermined and is

independent of what have been requested in his/her first,

second,…, (i - 1)-th requests. However, in many real

applications [47], some data items are semantically related

and there exists dependency among the requests of these

data items. Broadcast program generation algorithms

assuming independent requests might not be able to

effectively optimize the performance of such broadcast

programs. A query corresponds to a set of semantically

related data items which are likely to be requested suc-

cessively by a user, and we use a set of queries (named a

query profile) to model the dependency of all data items.

Hence, if several data items are dependent upon one

J.-L. Huang (&) � J.-H. Huang

Department of Computer Science, National Chiao Tung

University, Hsinchu, Taiwan, ROC

e-mail: jlhuang@cs.nctu.edu.tw

J.-H. Huang

e-mail: jenho@cs.nctu.edu.tw

123

Wireless Netw (2010) 16:1817–1836

DOI 10.1007/s11276-009-0230-x

another (i.e., within the same query), they are likely to be

successively requested by users. According to the con-

straint of the retrieval sequence of the dependent data items

within the same query, queries of dependent data can be

categorized into the following two types:

Ordered queries: In an ordered query, the required data

items should be retrieved in a predetermined order.

Consider a Web page with some images as an example.

Once the user requests this Web page by a browser, the

browser will retrieve these images automatically in a

predetermined order after receiving this Web page [36].

Unordered queries: Similar to an ordered query, an

unordered query could be one issued by a mobile user

for requesting multiple data items simultaneously.

However, unlike in an ordered query, these requested

data items may be retrieved in any order. Consider a

broadcast system which disseminates the stock informa-

tion. A mobile user may submit a query like ‘‘Show me

the stock information of all the LCD companies.’’ As a

result, data items in these LCD companies are queried

together and displayed without being confined to a

specific order [31].

The system architecture of the data broadcast system

considered in this paper is shown in Fig. 1 [23, 26]. The

system periodically broadcasts data items according to a

predetermined broadcast program. In the beginning, with-

out knowing the broadcast program of the system, the

mobile device will listen on a broadcast channel to wait for

the appearance of the broadcast program. The broadcast

program contains some auxiliary information such as data

identifiers. The broadcast program is then kept in the

mobile device. When a user submits a query to his or her

mobile device, the mobile device will retrieve the first

required data item from one broadcast channel by referring

to the information in the broadcast program. The received

data item may possess dependency with other data items,

and the mobile device will retrieve those dependent data

items automatically.

According to the broadcast frequencies of all data items

in one broadcast cycle, broadcast programs can also be

divided into two categories: without replication and with

replication. A broadcast program is said to be without

replication if all data items are broadcast with equal fre-

quencies. Figure 2(a) shows an example broadcast program

without replication. A broadcast program without replica-

tion is also called a flat broadcast program1. On the other

hand, as shown in Fig. 2(b), a broadcast program with

replication2 corresponds to the case that the data items

appear with different frequencies. In most research studies

on independent data broadcasting [42, 43, 54], it has been

shown that broadcasting data items with higher access

frequencies more frequently can achieve the shorter aver-

age access time.

As a consequence, prior research studies on broadcast

program generation for dependent data can be categorized

by the following three properties: (1) the number of

broadcast channels (single [11, 47] or multiple channels

[23]), (2) the constraint of the sequence of the data items

(ordered [11, 23] or unordered [15] queries) and (3) the

employment of data replication (without replication or with

replication). A brief review and comparison of the prior

works on dependent data broadcasting are given in Sect.

2.1. Most prior studies on broadcast program generation for

dependent data employ flat broadcast programs (i.e.,

without replication). We argue that replication should be

used in broadcast program generation for dependent data

due to the following two advantages:

1. High performance:

It has been shown that, when the data items are

independent, broadcast programs with replication

usually outperform those without replication. How-

ever, prior studies on dependent data broadcasting do

not employing replication in broadcast programs. It

motivates us to exploit replication on broadcast

program generation in order to achieve better

performance.

2. Error resilience:

In broadcast programs without replication, each data

item appears exactly once in each broadcast cycle.

D10 D2 D6D4 D5

Broadcast Channels

 Q
uery Profile

Database

Scheduler

Server

D1 D3 D7D8 D9

PDANotebookMobile Device

Fig. 1 The architecture of a data broadcast system

D1 D4 D2

D6 D3 D5 D4(1)D3(1)D6(1) D1(3)D6(2)

D1(2)D2(1)D1(1) D5(1)D3(2)
(b)(a)

Fig. 2 Example broadcast programs. a Without replication. b With

replication

1 Di indicates the i-th data item.
2 Di(j) indicates the j-th replica of the i-th data item.

1818 Wireless Netw (2010) 16:1817–1836

123

Thus, broadcast programs without replication do not

perform well in error-prone environments. Consider

the broadcast program shown in Fig. 2(b). Suppose

that a network error occurs when a user is retrieving

data item D1. Since D1 appears only once in each

broadcast cycle, the user has to wait almost one full

broadcast cycle (two data items in this example) for

retrieving D1.

Consider the broadcast program shown in Fig. 2(b).

Suppose that a network error occurs when the user is

retrieving the first replica of D1 (i.e., D1(1)). Since there

are many replicas of D1 in the broadcast program, the

user only needs to wait one data item for retrieving the

second replica of D1 (i.e., D1(2)). Based on the above

observation, we argue that broadcast programs with

replication is more error-resilient than those without

replication. Thus, we employ replication in broadcast

program generation to ease performance degradation

caused by network errors.

In view of this, we explore in this paper the problem of

the broadcast program generation for ordered queries in

multiple broadcast channels. Note that the problem of

broadcasting dependent data in a multiple channel envi-

ronment is intrinsically difficult in that the factor of data

dependency and the efficient use of multiple channels,

though being dealt with separately before, are in fact

entangled, thus making it more complicated to provide an

effective solution to this problem. Note that several special

cases of the problem of broadcasting dependent data are

shown to be NP-hard [15, 36, 39]. To the best of our

knowledge, no prior work on dependent data broadcasting

over multi-channel environments employs replication in

broadcast programs. This characteristic distinguishes our

work from others.

In this paper, we first model the problem of broadcast

program generation for ordered queries in multiple chan-

nels with replication, and then formulate the average access

time of broadcast programs accordingly. Based on these

theoretical results, we devise algorithm BPGR (standing

for Broadcast Program Generation with Replication) to

employ data replication in broadcast program generation.

To measure the performance of algorithm BPGR, several

experiments are conducted. Our experimental results show

that algorithm BPGR is able to obtain broadcast programs

of higher quality than those algorithms without employing

data replication, showing that employing replication can

lead to more efficient use of network bandwidth. In addi-

tion, experimental results also show that in error-prone

environments, the performance degradation of the pro-

grams generated by algorithm BPGR is more slighter than

that of the programs generated by algorithms without

employing replication.

The rest of this paper is organized as follows. Section 2

presents the preliminaries of this study. Average access

time of broadcasting dependent data with ordered queries is

formulated in Sect. 3. We then develop in Sect. 4 algorithm

BPGR to exploit replication in broadcast program genera-

tion for the environments with multiple broadcast channels.

Performance evaluation on various parameters is con-

ducted in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Preliminaries

2.1 Related work

2.1.1 On-demand data broadcasting

To give readers more background knowledge about data

broadcast, in addition to push-based broadcast architecture

which is employed in this paper, pull-based broadcast

architecture, also known as on-demand broadcast archi-

tecture, is described in this subsection. Figure 3 shows an

example on-demand broadcasting system. In an on-demand

data broadcasting system [2, 4, 5], a server maintains a data

request queue and serves these requests according to the

employed scheduling algorithm. When requiring one data

item, a mobile client sends a data request to the server.

After receiving a data request, the server first checks

whether there exists another data request in the data request

queue with the same required data object. If yes, the new-

coming data request is merged into that data request. This

phenomenon is called request merge. Data requests with

the same requested data object can be safely merged since

one transmission of the data object in a broadcast channel

is able to serve all merged data requests. Therefore, the

higher the occurrence probability of request merge is, the

more efficient the system is. Otherwise, the new-coming

data request is inserted into the data request queue.

Mobile
Information System

Data Request
Queue

Data
Request

Data
Object

PDANotebookTablet PC

Fig. 3 An example on-demand broadcasting system

Wireless Netw (2010) 16:1817–1836 1819

123

A scheduling algorithm is used to prioritize all data

requests in the data request queue, and the server will serve

these data requests according to their priorities. To serve a

data request, the system retrieves the required data object

from the corresponding data server, and then broadcasts

this object to all its clients via a dedicated and shared

broadcast channel. As a result, the on-demand broadcast

system is more scalable and can obtain higher network

utilization than traditional client-server architecture.

Dykeman et al. pointed out in [19] that traditional FCFS

scheduling would produce long average access time for an

on-demand broadcast system when the access frequencies

of all data items were not uniformly distributed. They

proposed several scheduling algorithms and concluded that

LWF could provide the best performance among the pro-

posed algorithms. Aksoy et al. pointed out in [4] that

although being able to produce the shortest average access

time, LWF is not efficient when the number of data requests

is large. To address this problem, they proposed algorithm

R 9 W which is able to schedule the received data requests

efficiently by employing a pruning technique. In [2], Ach-

arya et al. addressed the broadcast scheduling problem in

the environments with variable-size data items. They

defined a new metric, stretch, as the ratio of the response

time of a request to its service time. Based on stretch, they

proposed a scheduling algorithm, called LTSF, to minimize

the stretch. Wu et al. [49] argued that algorithm LTSF is not

optimal in terms of overall stretch. In addition, algorithm

LTSF is not scalable in a large-scale environment. There-

fore, they proposed a scheduling algorithm to optimize the

system performance in terms of stretch. Moreover, the

proposed scheduling algorithm is more scalable than LTSF,

and hence, is suitable for practical use. In recent years,

several researches are focused on scheduling for dependent

data in on-demand broadcast environments [12, 14, 17, 44].

In addition to devising scheduling algorithms, several

studies consider the employment of data indexing in

on-demand data broadcasting environments [21, 24, 33].

Since the sizes of index items are much smaller than those

of data items, employing data indexing is able to greatly

reduce the average tuning time at the cost of a slight

increase in the average access time.

2.1.2 Broadcast program generation for unordered

queries

For unordered queries, the authors in [15] modelled the

dependency among data items as a set of hquery, access

probabilityi pairs, and proposed a greedy algorithm called

QEM to generate broadcast programs for unordered queries

in single channel environments. The authors in [30]

extended algorithm QEM by proposing several heuristics.

In addition, a data oriented broadcast program generation

algorithm is also proposed. The authors in [53] modelled

the data dependency as a dependency graph and trans-

formed this problem into a travelling salesman problem.

The authors in [18] presented a theoretical analysis of data

dependencies and proposed a polynomial algorithm to

generate broadcast programs in a single channel environ-

ment. The authors in [22] formulated the average access

time of broadcast programs on multiple channel environ-

ments, and then, proposed a genetic-based algorithm to

generate broadcast programs. Based on the theoretical

results derived in [22], the authors in [27] proposed a

heuristic algorithm to generate broadcast programs on

multiple channel environments. It is worth mentioning that

the prior studies on dependent data broadcasting for

unordered queries did not consider data replication.

2.1.3 Broadcast program generation for ordered queries

In [11], the problem of dependent data broadcasting for

ordered queries is transformed into an optimal linear

ordering problem and two heuristic algorithms are then

proposed to generate broadcast programs in a single-

channel environment. However, the queries are assumed to

be acyclic (i.e., the dependency graph must be a dag), and

such an assumption limits the applicability of the proposed

algorithms. The author in [36] first modelled data depen-

dencies as a dag and then modelled the problem of

dependent data broadcasting for ordered queries in a single

broadcast channel as a minimum circular arrangement

problem. A heuristic was proposed to generate broadcast

programs. The authors in [47] proposed a branch-and-

bound searching algorithm to search a broadcast program

in one broadcast channel. A randomized algorithm was

proposed in [9] to consider the dependency of two data

items in a single broadcast channel. The authors in [31]

first transformed the problem of dependent data broad-

casting for ordered queries into an optimal cycle ordering

problem, and then proposed a broadcast program genera-

tion algorithm in a single-channel environment. In [38], the

dependencies among data items are modelled as a dag and

broadcast program generation in a single broadcast channel

is modelled as a topological ordering problem. Two strat-

egies, called level-oriented strategy and greedy-oriented

strategy, are then proposed to generate broadcast programs.

With similar formulations as [38], the authors in [37]

proposed a level-based scheduling algorithm and several

heuristics to generation broadcast programs on multi-

channels. In [45], Shih et al. extended the problem mod-

eled in [38] to further consider the problem of fairness and

proposed two algorithms to solve such problem. In [23],

Huang et. al. derived several theoretical results of gener-

ating broadcast programs for ordered queries, and proposed

a genetic algorithm to generate broadcast programs

1820 Wireless Netw (2010) 16:1817–1836

123

accordingly. In [26], Hung et. al. proposed a two-phase

framework called MULS for dependent data broadcasting

for ordered queries. Note that all prior studies for multiple

broadcast channels did not employ data replication.

A comparison of our study and these related studies is

given in Table 1.

2.2 Problem description and formulation

We in this subsection formulate the problem of broad-

casting dependent data in multiple broadcast channels. For

better readability, a list of symbols used is shown in

Table 2. Same as in [25], it is assumed that the database D

contains |D| data items, D1, D2,…, D|D| and each data item

is read-only. An ordered query is defined as follows.

Definition 1 An ordered query Qi ¼ fDqið1Þ;Dqið2Þ; � � � ;
DqiðjQijÞg is an ordered, non-empty subset of all data items

where |Qi| represents the number of required data items in

Qi. Note that 1 B qi(j) B |D| for all 1 B j B |Qi|, and

qi(j) = k represents that the j-th required data item in Qi is

Dk.

A query profile, which is an aggregation of the access

behavior of all users, is defined as below.

Definition 2 A query profile Q consists of a set of

hQi, Pr(Qi)i pairs where |Q| represents the number of

queries in Q and Qi is the i-th query in Q. In addition,

Pr(Qi) is defined as

PrðQiÞ ¼
No. of Qi issued by users

No. of queries issued by users
;

where
XjQj

i¼1

PrðQiÞ ¼ 1:

For the sake of simplicity, we assume that the queries is

sorted by their access probabilities in descending order.

That is, Pr(Qi) C Pr(Qj) if i B j.

Example 1 Consider a database D containing six data

items, D1, D2,…, D6. Table 3 shows an example query

profile containing six queries on the database D. The query

Q3 = {D4, D6, D1} indicates that the mobile device will

retrieve D4, D6 and D1 sequentially while the user submits

Q3. Pr(Q3) = 20% shows that 20% of the queries sub-

mitted by users are Q3s.

Note that the capture of the query profile is a chal-

lenging problem since the data items are dependent upon

one another. Similar to [20], when an uplink channel is

provided, the mobile device can store hot queries of its

owner and send its query statistics to the server. When the

mobile device is about to connect to the server (e.g., to

register some mobile services), these statistics can be

transferred by piggybacks. Clearly, dependent on applica-

tions, different methods to capture the query profile of a

broadcast-based information system are considerable.

The bandwidth of each channel is divided into slots of

equal size s. A data item Di will occupy
jDij

s

l m
slots where

|Di| is the size of Di. Let r ¼ jDij
s

l m
and Di occupy slots Di

1,

Di
2,…, Di

r. If a mobile user requests Di, the system will

retrieve Di
1? Di

2? _ ? Di
r, sequentially. Therefore, a

Table 1 Comparison among our study and related studies

Study No. of channels Replication

Chehadel et al. [11] Single No

Si et al. [47] Single No

Noy et al. [9] Single No

Lee et al. [31] Single No

Liberatore [36] Single Yes

Liu et al. [38] Single No

Huang et al. [23] Multiple No

Lin et al. [37] Multiple No

Hung et al. [26] Multiple No

Our study Multiple Yes

Table 2 Description of symbols

Symbol Description

|D| Size of the original database

|D*| Size of the revised database

L* Length of the broadcast program w. replication

n Number of broadcast channels

Dj The j-th data item

Qi The i-th query

Pr(Qi) Access probability of the i-th query

DqiðjÞ The j-th required data item in Qi

Di(j) The j-th copy of data item Di

n(Di) Number of replicas of data item Di

s Size of each data item

B Channel bandwidth

Table 3 An example query profile

Query(Qi) Pr(Qi) (%)

Q1 = {D1, D2, D3} 30

Q2 = {D1, D3, D4} 20

Q3 = {D4, D6, D1} 20

Q4 = {D1, D2, D5} 10

Q5 = {D5, D3, D4, D6} 10

Q6 = {D6, D5, D2} 10

Wireless Netw (2010) 16:1817–1836 1821

123

query containing a multi-slot data item Di is expanded from

{…, Di, …} into {…, D1
i, D2

i, …, Dr
i, …}. For ease of

the presentation, each data item is assumed to be of equal

size s (i.e., |Di| = s for all i).

The problem of broadcast program generation with

replication can be divided into two subproblems: (1)

determining the number of replicas needed for each data

item and (2) determining the placement of these replicas

into the broadcast program. After determining the number

of replicas of each data item Di, the original database D is

revised according to the number of replicas of each data

item. The revised database, denoted as D*, can be defined

as

D� ¼
[jDj

i¼1

[nðDiÞ

j¼1

DiðjÞf g
 !

;

where n(Di) is the number of replicas of Di and Di(j)

indicates the j-th copy of data item Di. Accordingly, the

size of the revised database D* (denoted as |D*|) is as

follows

jD�j ¼
XjDj

i¼1

nðDiÞ ¼ n� L�;

where L* is the length of the broadcast program. Finally,

the broadcast program with replication can be stated as

follows.

Definition 3 A broadcast program P with replication is

the placement of all data items in D* into an n by L* array.

L* is specified by the system designers and should be larger

than or equal to
jDj
n

l m
: In addition, each data item Di will

appear n(Di) times in the broadcast program P.

To facilitate the following discussion, we have the

following definition.

Definition 4 Let position (Di(j)) be the position of Di(j).

The distance from the j1-th replica of Di_1 (denoted as

Di_1(j1)) to the j2-th replica of Di_2 (denoted as Di_2(j2)) is

defined as

Example 2 In the broadcast program shown in Fig. 2(b),

the positions of D2(1) and D6(2) are 2 and 4, respectively.

That is, position(D2(1)) = 2 and position(D6(2)) = 4.

Then, the distance from D2(1) to D6(2) is

distðD2ð1Þ;D6ð2ÞÞ ¼ positionðD6ð2ÞÞ � positionðD2ð1ÞÞ
� 1

¼ 4� 2� 1 ¼ 1;

while the distance from D6(2) to D2(1) is

distðD6ð2Þ;D2ð1ÞÞ ¼ L� � positionðD6ð2ÞÞ
þ positionðD2ð1ÞÞ � 1

¼ 5� 4þ 2� 1 ¼ 2:

h

Two metrics, access time and tuning time are introduced

in [28] to evaluate the performance of broadcast programs.

The access time is the time elapsed from the moment a

client issues a query to the point that all the relevant data

are read. The tuning time is the amount of time spent by the

client listening on the broadcast channels, which is a

measurement of power consumption. Here we take the

access time as the measurement for the quality of broadcast

programs. Denote the average access time of a query Qi as

TAccess(Qi) and the average access time of a query profile Q

as TAccess(Q). Then we have the following equation,

TAccessðQÞ ¼
XjQj

i¼1

TAccessðQiÞ � PrðQiÞ½ �: ð1Þ

With the above definitions, the problem of broadcast

program generation with replication is formulated as follows.

Definition 5 Given the number of broadcast channels, a

database D and a query profile Q, the problem of broadcast

program generation with replication is to determine a

broadcast program P with replication which minimizes the

average access time of the query profile Q.

3 Formulation of average access time

We extend our formulation approach in [22] to formulate

the average access time of a query profile on a broadcast

program with replication in this section to facilitate the

design of the proposed broadcast program generation

algorithm for dependent data. We first decompose the

access time in Sect. 3.1, and then derive the average access

time of broadcast programs with replication in Sect. 3.2.

distðDi1ðj1Þ;Di2ðj2Þ

¼ positionðDi2ðj2ÞÞ � positionðDi1ðj1ÞÞ � 1; if positionðDi1ðj1ÞÞ\positionðDi2ðj2ÞÞ;
L� � positionðDi1ðj1ÞÞ þ positionðDi2ðj2ÞÞ � 1; if positionðDi1ðj1ÞÞ� positionðDi2ðj2ÞÞ:

�

1822 Wireless Netw (2010) 16:1817–1836

123

3.1 Decomposition of access time

To facilitate the derivation of the average access time of

an arbitrary query Qi, we decompose the access time of

Qi into three parts: startup time, waiting time and

retrieval time. When a mobile user submits a query Qi,

the mobile device should wait until the system starts to

broadcast the first required data item of Qi (i.e., Dqið1Þ).
This time interval is called the startup time. The waiting

time is defined as the summation of the time intervals

between the moment that the mobile device completes

the retrieval of the data item DqiðjÞ and the moment that

mobile device starts to retrieve the next data item

Dqiðjþ1Þ: The retrieval time is the aggregated time while

the mobile device indeed reads data items from broad-

cast channels. It is noted that the retrieval time of a

query is proportional to the number of data items

required by the query.

Example 3 Consider the scenario shown in Fig. 4. The

corresponding broadcast program is shown in Fig. 2(b) and

a mobile user issues the query {D1, D2, D6} shown in

Table 3. In this example, the startup time, the waiting time

and the retrieval time are s1 ¼ 1� s
B; s3 þ s5 ¼ 2� s

B and

s2 þ s4 þ s6 ¼ 3� s
B; respectively. As a result, the access

time (i.e., the summation of startup time, waiting time and

retrieval time) of the query in this scenario is equal to

ð1þ 2þ 3Þ � s
B ¼ 6� s

B: h

3.2 Broadcast program with replication

According to the decomposition of access time mentioned

above, the average access time of the query Qi (denoted as

TAccess(Qi)) can be formulated as

TAccessðQiÞ ¼ TStartupðQiÞ þ TWaitðQiÞ þ TRetr:ðQiÞ;

where TStartup(Qi), TWait(Qi) and TRetr.(Qi) represent the

average startup, waiting and retrieval time of Qi,

respectively. Thus, Eq. (1) is rewritten as

TAccessðQÞ ¼ TStartupðQÞ þ TWaitðQÞ þ TRetr:ðQÞ; ð2Þ

where

TStartupðQÞ ¼
XjQj

i¼1

TStartupðQiÞ � PrðQiÞ; ð3Þ

TWaitðQÞ ¼
XjQj

i¼1

TWaitðQiÞ � PrðQiÞ; ð4Þ

TRetr:ðQÞ ¼
XjQj

i¼1

TRetr:ðQiÞ � PrðQiÞ: ð5Þ

Then, we will formulate the average startup, waiting and

retrieval time in the following subsections.

3.2.1 Derivation of average startup time

Suppose that the user submits Qi in the m-th broadcast cycle

and the time interval between the start time of the m-broadcast

cycle and the time that the user submits Qi is a uniform dis-

tribution over (0, L*). Let b be the number of replicas of the

first requested data item of Q1. That is, b ¼ nðDqið1ÞÞ: To

simplify the further derivation, we define a series aðjÞ; j ¼
1; 2; . . .; nðDqið1ÞÞ; to represent the sorted positions of all copies

of Dqið1Þ: Therefore, TStartup(Qi) can be formulated as follows.

Lemma 1 In a broadcast program with replication,

TStartup(Qi) can be formulated as

TStartupðQiÞ

¼ s

L� � B

�
Xb�1

i¼1

aðiþ 1Þ � aðiÞ½ �2

2
þ L� � aðbÞ þ að1Þ½ �2

2

()
:

With the result of Lemma 1, TStartup(Q) can be obtained by

Eq. (3).

Example 4 Consider the broadcast program shown in

Fig. 2(b) and a query Q1 = {D1, D2, D3}. As shown in

Table 1, the length of the broadcast program is five.

Moreover, we have b = 3 since there are three copies of

the first required data item in Q1 (i.e., D1(1), D1(2), and

D1(3)). In addition, since a(1) is the first broadcast data

item among all copies of D1, we have a(1) = 1. Similarly,

we also have a(2) = 3 and a(3) = 5. Then, TStartup(Q1) can

be determined as

TStartupðQ1Þ ¼
s

5� B

½3� 1�2

2
þ ½5� 3�2

2
þ ½5� 5þ 1�2

2

()

¼ 0:9� s

B
:

h

To facilitate the following derivation, pi(j) is

defined as the probability that the user retrieves the j-th

D4(1)D3(1)D6(1) D1(3)D6(2)

D1(2)D2(1)D1(1) D5(1)D2(2)

D4(1)D3(1)D6(1) D1(3)D6(2)

D1(2)D2(1)D1(1) D5(1)D2(2)

the (m+1)-st broadcast cycle the (m+2)-nd broadcast cycle

s1 s2 s3 s4 s5 s6

Time

A mobile user
issues a query

The mobile user
finishes the query

Fig. 4 An example scenario of a query

Wireless Netw (2010) 16:1817–1836 1823

123

copy of Dqið1Þ as the first required data item of Qi,

and TStartup(Qi(j)) is defined as the average startup time

as the user retrieves the j-th copy of Dqið1Þ as the first

required data item of Qi. Then, we have the following

lemma.

Lemma 2 In a broadcast program with replication, pi(j)

and TStartup(Qi(j)) can be formulated as follows:

piðjÞ ¼
L��aðbÞþ að1Þ

L� : if j ¼ 1;

aðjÞ� aðj�1Þ
L� : otherwise:

(

TStartupðQiðjÞÞ ¼
L��aðbÞþ að1Þ

2
� s

B : if j ¼ 1;

aðjÞ� aðj� 1Þ
2

� s
B : otherwise:

(

With Lemma 2, TStartup(Qi) can be formulated as

TStartupðQiÞ ¼
XnðDqi ð1ÞÞ

j¼1

piðjÞ � TStartupðQiðjÞÞ:

Finally, the following lemma can be obtained with the

above lemmas.

Lemma 3 The lower bound of TStartup(Qi) is L�

2b� s
B: In

addition, the lower bound occurs in the situation that all

copies of Dqið1Þ are placed in the broadcast program with

equal space L�

b : That is, aðjþ 1Þ � aðjÞ ¼ L�

b for

j = 1, 2, …, b - 1 and L� � aðbÞ þ að1Þ ¼ L�

b :

3.2.2 Formulation of average waiting time

Let TWait(Qi, j) be the waiting time of Qi under the con-

dition that the user retrieves the j-th copy of Dqið1Þ as the

first required data item of Qi. Thus, the average waiting

time of Qi can be formulated as below.

TWaitðQiÞ ¼
XnðDqi ð1ÞÞ

j¼1

piðjÞ � TWaitðQi; jÞ

In the above equation, TWait(Qi, j) is too difficult to be

obtained by simple mathematical equations. Thus, we

devise function CALTWait(i, j) to calculate TWait(Qi, j).

The behavior of function CALTWait(i, j) is as follows.

We first set pos1 to the position of the j-th replica of the

first required data item of Qi (i.e., Dqið1Þ) and set waiting

to 0. We then start from the position pos1 to find the

nearest (with the shortest distance from position pos1)

replica of Dqið2Þ: Suppose that the position of the nearest

Dqið2Þ replica is pos2. We add the distance from pos1 to

pos2 into waiting. Then, we set the value of pos1 to

pos2, and start from the position pos1 to find the nearest

(with the shortest distance from position pos1) replica of

Dqið3Þ: The above procedure is repeated until all data

items in Qi have been processed. Finally, TWait(Qi, j) is

equal to waiting� s
B: The algorithmic form of function

CALTWait(i, j) is as below.

Function CALTWait(i, j)

1: waiting/0

2: Let pos1 be the position of the j-th replica of Dqið1Þ

3: for k=1 to |Qi| - 1 do

4: Starting from the position pos1, find the nearest (with the

shortest distance from position pos1) replica of

Dqiðkþ1Þ

5: Let pos2 be the position of the found replica

6: if pos2 [pos1 then

7: waiting/waiting ? (pos2 - pos1 - 1)

8: else /*pos2 B pos1*/

9: waiting/waiting ? (L* - pos1 ? pos2 - 1)

10: pos1/pos2

11: return waiting� s
B

Finally, we use the following calculation to illustrate the

behavior of function CALTWait(i, j).

Example 5 Consider the broadcast program shown in

Fig. 2(b) and a query Q1 = {D1, D2, D3}. The steps to use

function CALTWait(i, j) to calculate TWait(Q1, 1) are as fol-

lows. The position of the first replica of D1 is 1. From

position 1, we try to find the nearest replica of D2. As

shown in Table 1, the first replica of D2 is of the shortest

distance. The distance from D1(1) to D2(1) is posi-

tion(D2(1)) - position(D1(1)) - 1 = 2 - 1 - 1 = 0. Then,

from position(D2(1)), we try to find the nearest replica of

D3 and the first replica of D3 is of the shortest distance. The

distance from D2(1) to D3(1) is L* - position(D2(1)) ?

position(D3(1)) - 1 = 5 - 2 ? 2 - 1 = 4. Finally, TWait

(Q1, 1) is determined as ð0þ 4Þ � s
B ¼ 4� s

B: h

3.2.3 Formulation of average retrieval time

Since retrieval time is the time that the mobile device

indeed retrieves data from broadcast channels, TRetr.(Qi) is

independent of the broadcast programs and can be deter-

mined as follows.

TRetr:ðQiÞ ¼ jQij �
s

B

According to the above formulations, we have the

following guidelines for designing broadcast program

generation algorithms.

1. To reduce average startup time, for each query Qi, the

replicas of Dqið1Þ should be placed with equal space.

1824 Wireless Netw (2010) 16:1817–1836

123

2. To reduce average waiting time, for each query Qi,

each replica of Dqiðjþ1Þ; j [1 should be placed in back

of one replica of DqiðjÞ:
3. Average retrieval time is determined by the query

profile and cannot be reduced by broadcast program

generation algorithms.

4. According to Eqs. (3, 4) and (5), when two queries

suggest conflict replica replacements, the placement

suggested by the query with higher access probability

is of higher priority than that suggested by the other

query.

4 Algorithm BPGR: broadcast program generation

with replication

In this section, we propose algorithm BPGR (standing for

Broadcast Program Generation with Replication) to

employ replication to solve the problem of dependent data

allocation for ordered queries based on the design guide-

lines mentioned in Sect. 3. Algorithm BPGR consists of the

following two phases: replica number determination phase

and data item allocation phase. Algorithm BPGR deter-

mines the replica number of each data item according to

the query profile in replica number determination phase,

and allocates the data items into the broadcast program in

data item allocation phase. The details of replica number

determination phase and data item allocation phase are

described in Sects. 4.1 and 4.2, respectively.

4.1 Replica number determination phase

According to the property shown in [48], the average

access time for data items of equal size will be minimized

if the copies of each data item are equally spaced and for

any two data items Di and Dj,

Freq

ðDiÞ
FreqðDjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
PrðDiÞ

SizeðDiÞ

q

ffiffiffiffiffiffiffiffiffiffiffiffi
PrðDjÞ

SizeðDjÞ

q ; ð6Þ

where Freq(Di) is the broadcast frequency of Di and Pr(Di)

is the access frequency of Di. This property is called

square-root property in [48].

Since each data item is of equal size, each query Qi can

be viewed as a data item with size |Qi|. Thus, the ratio of

broadcast frequencies of any two queries, Qi and Qj is

Freq

ðQiÞ
FreqðQjÞ ¼

ffiffiffiffiffiffiffiffiffiffi
PrðQiÞ
jQij

q

ffiffiffiffiffiffiffiffiffiffi
PrðQjÞ
jQjj

q ; where
XjQj

j¼1

FreqðQjÞ ¼ 1: ð7Þ

To facilitate the following discussion, we have the fol-

lowing definition.

Definition 6 A data item Di is said to be in a query Qj if

there exists an integer k so that the k-th broadcast data item

of Qj is Di (i..e, Dq jðkÞ ¼ Di). Thus, the broadcast weight of

data item Weight(Di) is defined as

WeightðDiÞ ¼
X

8Qj where Di is in Qj

FreqðQjÞ:

Let L* be the expected length of the broadcast program

with replication specified by the system designers. Since all

data items should be broadcast at least once, each data item

is first assigned one slot and there will be n 9 L* - |D|

slots left. Then, the remaining slots are assigned to all data

items according to broadcast weights. Therefore, the

number of slots assigned to Di (denoted as n(Di)) can be

calculated by the following equation:

nðDiÞ ¼
Weight

ðDiÞ
XjDj

j¼1

WeightðDjÞ � n� L� � jDjð Þ
$ %

þ 1:

ð8Þ

Since the floor function is used, some slots may be unas-

signed. Suppose that there are k unassigned slots where

k = n 9 L* -
P

i=1
|D| n(Di). These unassigned slots are

assigned to the top k weightiest data items.

The desired length of the resultant broadcast program

(i.e., L*) is an important user-specified parameter in algo-

rithm BPGR. However, it is a little bit difficult to specify a

proper value of L*. Thus, replication factor (denoted as rf),

which indicates the degree of replication, is used to aid

users to specify a proper value of L*. Replication factor is

defined as the ratio of the number of slots in the broadcast

program to the number of data items. Since each data item

should appear at least once in the broadcast program, rf

should be larger than or equal to one. It is clear that when rf

becomes larger than one, algorithm BPGR has more space

to perform replication. The resultant broadcast program is

flat when rf is set to one. After users specify the value of rf,

the value of L* can be determined by the following

equation.

L� ¼ maxfrf ; 1g � jDj
n

� �
ð9Þ

Finally, the algorithmic form the proposed replica number

determination algorithm is as below.

Procedure REPLICA-NUMBER-DETERMINATION

1: Calculate L* according to Eq. (9)

2: for each query Qj do

3: Calculate Freq(Qj)

4: for each data item Di do

5: Calculate Weight(Di)

Wireless Netw (2010) 16:1817–1836 1825

123

Table b continued

Procedure REPLICA-NUMBER-DETERMINATION

6: for each data item Di do

7: Calculate n(Di) according to Eq. (8)

8: k/n 9 L* -
P

i=1
|D| n(Di)

9: for each data item, say Di, in the top k weightiest data items do

10: n(Di)/n(Di) ? 1

4.2 Data item allocation phase

A replica is said to be allocated if its position in the

broadcast program has been determined. Let Alloc(Di) be

the number of allocated replicas of Di. For each data item

Di, all its replicas are initially unallocated. That is, Al-

loc(Di) = 0 for 1 B i B |D|. According to the design

guidelines in Sect. 3, queries with higher access probabil-

ities should be of higher priority in data item allocation.

Thus, in data item allocation phase, the queries are con-

sidered sequentially according to their access probabilities

in descending order, and only one query is considered in

each iteration.

When Qj is considered, the data items in Qj are also

considered sequentially. That is, the consideration order of

the data items of Qj is Dq jð1Þ ! Dq jð2Þ ! � � �!Dq jðjQjjÞ:
When Dq jð1Þ is considered, procedure LEADING-ITEM-ALLO-

CATION is invoked to allocate the replicas of Dq jð1Þ if there

are some unallocated replicas of Dq jð1Þ (i.e., Alloc

ðDq jð1ÞÞ\nðDq jð1ÞÞ). On the other hand, for each 1 \ i B

|Qj|, procedure SUCCESSIVE-ITEM-ALLOCATION is invoked to

allocate the replicas of Dq jðiÞ if AllocðDq jðiÞÞ\nðDq jðiÞÞ:
Procedure LEADING-ITEM-ALLOCATION is designed to reduce

average startup time of a query while procedure SUCCES-

SIVE-ITEM-ALLOCATION is designed to reduce average wait-

ing time of a query. Finally, for each position p, for

j = 1, 2, …n, the j-th replica assigned to position p is

placed to the p-th slot of the j-th broadcast channel. The

details of procedure LEADING-ITEM-ALLOCATION and proce-

dure SUCCESSIVE-ITEM-ALLOCATION are described in the

following subsections, while the algorithmic form of data

item allocation phase is as below.

Procedure DATA-ITEM-ALLOCATION

1: for each data item Di do

2: Alloc(Di)\,/\,0

3: for each query Qj do

4: if AllocðDq jð1ÞÞ\nðDq jð1ÞÞ then

5: Invoke Procedure LEADING-ITEM-ALLOCATION to allocate

Dq jð1Þ

Table c continued

Procedure DATA-ITEM-ALLOCATION

6: for i = 2 to |Qj| do

7: if AllocðDq jðiÞÞ\nðDq jðiÞÞ
8: Invoke Procedure SUCCESSIVE-ITEM-ALLOCATION to

allocate Dq jðiÞ

9: for p = 1 to |L*| do

10: for j = 1 to n do

11: Place the j-th replica assigned to position p into the p-th

slot of the j-th broadcast channel

4.2.1 Leading item allocation

Although there are nðDq jð1ÞÞ replicas of Dq jð1Þ; only a

portion of replicas will be assigned to Qj. According to

Eq. (3), the portion is determined as ratio of the contri-

bution of Qj on the weight of Dq jð1Þ (i.e., Freq
ðQjÞ

WeightðDq jð1ÞÞÞ: Let AssignNo be the number of replicas

of Dq jð1Þ assigned to Qj. That is, AssignNo ¼
Freq
ðQjÞWeightðDq jð1ÞÞ � nðDq jð1ÞÞ: In procedure LEADING-

ITEM-ALLOCATION, we have to determine the positions of

the AssignNo replicas of nðDq jð1ÞÞ. A position p is said

legal if the number of replicas allocated in position p is

smaller than the number of broadcast channels (i.e., n). It

means that if position p is not legal, we cannot allocate

any data item into position p.

According to whether some replicas of Dq jð1Þ have been

allocated, the behavior of procedure LEADING-ITEM-ALLO-

CATION can be divided into the following two cases.

Case 1: No replica of Dq jð1Þ has been allocated

The positions of the replicas of Dq jð1Þ only affect

average startup time of Qj. According to Lemma 3, the

replicas of Dq jð1Þ should be placed with equal space in

order to minimize average startup time. Thus, the best

interval between every two consecutive replicas of Dq jð1Þ
should be L�

AssignNo:

The proposed allocation method to allocate AssignNo

replicas of Dq jðiÞ is as below. We first find the smallest

legal position pos and allocate the first replica of Dq jðiÞ in

position pos. Then, we will try to allocate the next

replica in position posþ L�

AssignNo: Since position posþ
L�

AssignNo may be illegal, we will find a legal position

around posþ L�

AssignNo in a zig-zag manner. That is, the

order of searching a legal position is posþ L�

AssignNo!
posþ L�

AssignNoþ 1! posþ L�

AssignNo� 1! posþ L�

AssignNo

þ2! posþ L�

AssignNo � 2 � � � : Then, the replica is placed

in the first legal position we meet, and the value of pos is

updated to the legal position found. The above method is

applied repeatedly until all assigned replicas are

allocated.

1826 Wireless Netw (2010) 16:1817–1836

123

Case 2: Some replicas of Dq jð1Þ have been allocated

To minimize TStartup(Qj), the replicas of Dq jð1Þ should be

placed with equal space. Since AllocðDq jð1ÞÞ replicas

have been allocated, what we should do is inserting

AssignNo replicas into these allocated replicas so that the

spaces of the allocated replicas of Dqið1Þ are as equal as

possible.

The proposed allocation method is as follows. Only one

replica is allocated in each iteration. In each iteration, we

first calculate the lengths of the intervals of every two

consecutive allocated replicas of Dq jð1Þ: Let p be the

middle point of the longest interval. We then find a legal

position pos around p in a zig-zag manner, and place the

replica in position pos. The above method is applied

repeatedly until AssignNo replicas of Dq jð1Þ have been

allocated. The algorithmic form of procedure LEADING-

ITEM-ALLOCATION is as below.

Procedure LEADING-ITEM-ALLOCATION ðDq jð1ÞÞ

1: AssignNo FreqðQjÞ
WeightðD

q j ð1ÞÞ
� nðDq jð1ÞÞ

2: if AllocðDq jð1ÞÞ ¼ 0 then /*Case 1*/

3: pos / the smallest legal position

4: Place a replica of Dq jð1Þ in position pos

5: for k = 2 to AssignNo do

6: Find legal position p around posþ L�

AssignNo in a zig-zag

manner

7: pos /p

8: Place a replica of Dq jð1Þ in position pos

9: else/* Case 2*/

10 for k = 1 to AssignNo

11: Calculate the lengths of every two consecutive replicas of

Dq jð1Þ

12: Let p be the middle point of the longest interval

13: Find a legal position pos around p in a zig-zag manner

14: Place a replica of Dq jð1Þ in position pos

15: AllocðDq jð1ÞÞ AllocðDq jð1ÞÞ þ AssignNo

4.2.2 Successive item allocation

We now consider the allocations of the replicas of Dq jðiÞ for

i [1. Let AssignNo be the number of replicas of Dq jðiÞ
assigned to Qj and AssignNoPrev be the number of replicas

of Dq jði�1Þ assigned to Qj. According to the relationship of

AssignNo and AssignNoPrev, the behavior of procedure

SUCCESSIVE-ITEM-ALLOCATION can be divided into the fol-

lowing two cases.

Case 1: The number of assigned Dq jðiÞ replicas is

larger than or equal to that of assigned Dq jði�1Þ
replicas (i.e., AssignNo C AssignNoPrev)

According to the guidelines in Sect. 3, since the devices

will retrieve Dq jði�1Þ!Dq jðiÞ sequentially when the user

submits Qj, one replica of Dq jðiÞ should be placed in back

of a replica of Dq jði�1Þ in order to reduce average waiting

time of Qj. Since the number of assigned Dq jðiÞ replicas

is larger than or equal to the number of assigned Dq jði�1Þ
replicas (i.e., AssignNo C AssignNoPrev), we first place

one replica of Dq jðiÞ in back of each allocated replica of

Dq jði�1Þ and several replicas of Dq jðiÞ may remain

unallocated. We then use the method in Case 2 of

procedure LEADING-ITEM-ALLOCATION to place the

remaining Dq jðiÞ replicas to further reduce the average

startup time of Dq jðiÞ:
Case 2: The number of assigned Dq jðiÞ replicas is

smaller than that of assigned Dq jði�1Þ replicas (i.e.,

AssignNo \ AssignNoPrev)

Since the number of assigned Dq jðiÞ replicas is smaller

than the number of assigned Dq jði�1Þ replicas, we can

only place the assigned Dq jðiÞ replicas in back of a

portion of assigned Dq jði�1Þ replicas. We use the leading

space of each Dq jði�1Þ replica to determine the impor-

tance of the assigned Dq jðiÞ replicas. As shown in Fig. 5,

the leading space of a Dq jði�1Þ replica, say p, is defined as

the distance between p and the Dq jði�1Þ replica in front of

p. A Dq jði�1Þ replica with longer leading space indicates

that the Dq jði�1Þ replica is of higher likelihood to be

retrieved when a mobile device is reading all data items

of Qj. Thus, when placing the assigned Dq jðiÞ replicas, we

first calculate the leading space of the assigned Dq jði�1Þ
replicas, pick the AssignNoDq jði�1Þ replicas with longest

leading space, and place one Dq jðiÞ replica in back of

each picked Dq jði�1Þ replica. The algorithmic form of

procedure SUCCESSIVE-ITEM-ALLOCATION is as below.

Procedure SUCCESSIVE-ITEM-ALLOCATION ðDq jðiÞÞ

1: AssignNo FreqðQjÞ
WeightðD

q j ðiÞÞ
� nðDq jðiÞÞ

2: AssignNoPrev FreqðQjÞ
WeightðD

q j ði�1ÞÞ
� nðDq jði�1ÞÞ

3: if AssignNo C AssignNoPrev then /*Case 1*/

4: for each replica of Dq jði�1Þ; say r, which is assigned to Qj

5: Let p be the position of r

Dk(b-1)

Dk(b)

the m-th broadcast cycle

Dk(1)

The (m+1)-th
broadcast cycle

leading space of Dk(1)leading space of Dk(b)

Fig. 5 An illustration of leading space

Wireless Netw (2010) 16:1817–1836 1827

123

Table e continued

Procedure SUCCESSIVE-ITEM-ALLOCATION ðDq jðiÞÞ

6: Find the a legal position pos in the order

p ? 1\,?\,p ? 2\,?\,p ? 3 …
7: Place a replica of Dq jðiÞ in the first legal position we meet

8: for each unplaced assigned replica of Dq jðiÞ do

9: Calculate the lengths of every two consecutive replicas of

Dq jð1Þ

10: Let p be the middle point of the longest interval

11: Find a legal position pos around p in a zig-zag manner

12: Place a replica of Dq jð1Þ in position pos

13: else /*Case 2 */

14: Calculate the leading space of the replicas of Dq jði�1Þ which

are assigned to Qj

15: for k = 1 to AssignNo do

16: Let r the replica of Dq jði�1Þ with the largest leading space.

17: Let p be the position of r

18: Find the a legal position pos in the order p ? 1

?p ? 2?p ? 3 …
19: Place a replica of Dq jðiÞ in the first legal position we meet

20: Recalculate the leading space of all Dq jði�1Þ replicas

21: AllocðDq jðiÞÞ AllocðDq jðiÞÞ þ AssignNo

4.3 Time complexity

We analyze the worst case time complexity of algorithm

BPGR in this subsection. There are four loops in procedure

REPLICA-NUMBER-DETERMINATION. The time complexity of

the first loop is O(|Q|), while the time complexities of the

other three loops are O(|D|). Therefore, the time complexity

of the procedure REPLICA-NUMBER-DETERMINATION is

O(|Q| ? 3 9 |D|) = O(|Q| ? |D|). Let the average value of

AssignNo be AvgAssignNo. On average, the loops in pro-

cedure LEADING-ITEM-ALLOCATION will iterate AvgAssignNo

runs. In each iteration, procedure LEADING-ITEM-ALLOCA-

TION will find a legal position within an interval with

average length L�

AvgAssignNo in line 6. Thus, the time com-

plexity of procedure LEADING-ITEM-ALLOCATION is

OðAvgAssignNo � 1
2
� L�

AvgAssignNoÞ ¼ OðL�Þ: We can derive

the time complexity of procedure SUCCESSIVE-ITEM-ALLO-

CATION with similar analysis, and the complexity of pro-

cedure SUCCESSIVE-ITEM-ALLOCATION is also O(L*). Let the

average query length be AvgQLen. In procedure DATA-

ITEM-ALLOCATION, procedure LEADING-ITEM-ALLOCATION

will be invoked to allocate the leading item of each query

and procedure SUCCESSIVE-ITEM-ALLOCATION will be

invoked to allocate the rest required data items of the

query. Thus, the time complexity of procedure DATA-ITEM-

ALLOCATION is O(|D| ? |Q| 9 (O(L*) ? (AvgQLen - 1) 9

O(L*))) = O(|D| ? AvgQLen 9 |Q| 9 L*). Finally, the

time complexity of algorithm BPGR is O(|Q| ?

|D|) ? O(|D| ? AvgQLen 9 |Q| 9 L*) = O(|D| ? AvgQ

Len 9 |Q| 9 L*).

In practice, it is unnecessary for algorithm BPGR to

consider all queries in the query profile due to the reason

that the access frequencies of all queries are usually

skewed [10] (i.e., only several queries are of high access

probabilities and many queries are of very small access

probabilities). According to Eq. (1), optimizing broadcast

programs for queries with very small access probabilities

does not have significant contribution on minimizing

average access time. Thus, for the cases that the number of

queries is very large, the execution time of algorithm

BPGR is able to be controlled in an acceptable range by

ignoring the queries with small access probabilities. For

example, the users can ask algorithm BPGR to ignore the

queries whose access probabilities are smaller than a

threshold (e.g., 1
10;000

). Besides, users can select top-k

queries such that the summation of the access probabilities

of the k selected queries is larger than a threshold (e.g.,

80%), and ask algorithm BPGR to consider the selected

queries only.

4.4 Integration with index allocation

To the best of our knowledge, there is no study dealing

with data allocation and index allocation together in the

literature of dependent data broadcast. It is due to the

reason that in dependent data broadcast, considering data

allocation and index allocation together usually makes the

problem too difficult to be dealt with. Therefore, a two-

phase approach [6, 29], consisting of data allocation phase

and index allocation phase, is usually applied to simplify

the process of generating broadcast programs with index.

The responsibility of data allocation is to organize data

items (e.g., perform replication, place data items/repli-

cas…) into broadcast programs without index to minimize

average access time, while the responsibility of index

allocation is to generate broadcast programs with index by

inserting index items into broadcast programs without

index to reduce average tuning time at the cost of

increasing average access time.

The effect of index items is not considered in algorithm

BPGR and its competitors [23, 26] since all these algo-

rithms focus on data allocation, and the effect of index

items will be considered in the algorithm used in index

allocation phase. It is true that there is a trade-off between

average access time and average tuning time, and it is the

index allocation algorithm’s responsibility to strike a bal-

ance between them. We use (1, m) indexing [28] as an

example to demonstrate how to integrate algorithm BPGR

with an index allocation algorithm. In (1, m) indexing, all

index information is clustered into one index item, say I,

1828 Wireless Netw (2010) 16:1817–1836

123

and the size of the index item, denoted as |I|, is usually

smaller than the size of a data item [6]. A broadcast pro-

gram without index is first divided into m equal-size par-

titions and one replica of the index item I is inserted into

the front of each partition. Based on [28], the value of m is

suggested to be
ffiffiffiffiffiffiffiffi
L��s
jIj

q
to achieve a better balance between

average access time and average tuning time. If the sizes of

the index item and the data item are close, the index item

can be treated as a special data item. Thus, we can extend

each query fDqið1Þ;Dqið2Þ; . . .;DqiðjQijÞg to fI;Dqið1Þ;Dqið2Þ;
. . .;DqiðjQijÞg and apply algorithm BPGR to generate

broadcast programs with index.

5 Performance evaluation

5.1 The simulation model

For performance studies, we implemented algorithm BPGR

with JSIM3, and also a query profile generator based on the

approach mentioned in [40]. The probability of the query

Qi issued by users is assumed to be PrðQiÞ ¼
1
ið Þ

h

Pn

j¼1

1
jð Þ

h

where h is the parameter of the Zipf distribution. The

default value of h is set to 0.75 according to the analyses

of real Web traces [10]. Similar to [43], the number of

channels and data items are set to six and 2,000,

respectively. The channel bandwidth is set to 80 kb/s and

the data size is set to 8 kb [26]. By default, we consider

ideal broadcast channels by setting data error rate to

zero. In addition, the average query length and query

number are set to 10 and 100, respectively [26].

The simulation executes for 12 h. For better readabil-

ity, Table 4 shows the system parameters in our exper-

iments.

In addition to algorithm BPGR, algorithm MULS is also

implemented. As shown in [26], algorithm MULS is of the

best performance among all other broadcast program gen-

eration algorithms for ordered queries. The experimental

results are shown in the following subsections. We use

average access time as the performance metric of both

algorithms. The performance gain of algorithm BPGR is

defined as the reduction rate of algorithm BPGR over

algorithm MULS in average access time. Thus, perfor-

mance gain is formulated as

Since algorithm MULS contains several parameters to

adjust execution time, for comparison purpose, the execu-

tion time of algorithm MULS is controlled to be equal to

that of algorithm BPGR. Thus, only the execution time of

algorithm BPGR is drawn in the following figures.

5.2 Effect of channel number

Figure 6 shows the experimental results with the number of

broadcast channels varied. We observe from Fig. 6(a) that

the average access time of both algorithms decreases as the

number of channels increases. This agrees with the intui-

tion that increasing bandwidth will decrease the average

access time. However, the improvement in average access

time decreases as the number of broadcast channels

increases. As a result, the determination of the number of

broadcast channels has to strike a compromise between the

performance gain and the number of channels used. The

number of broadcast channels suggested by this experiment

is around four. In addition, algorithm BPGR leads to better

broadcast programs than algorithm MULS even when

algorithm MULS uses more broadcast channels. In this

experiment, the average access time of algorithm BPGR

with four broadcast channels is close to that of algorithm

MULS with eight channel channels. This result shows that

the higher bandwidth utilization can be attained by

employing replication.

Figure 6(b) shows that the execution time of algorithm

BPGR increases as channel number decreases. It is because

Avg: access time of algorithm MULS� Avg: access time of algorithm BPGR

Avg. access time of the algorithm MULS
:

3 http://www.cs.uga.edu/jam/jsim/.

Table 4 System parameters

Parameters Values

Size of each data item (s) 8 kb

Bandwidth of each channel (B) 80 kb/s.

Number of data items (|D|) 2000

Number of channels (n) 6

Replication factor (rf) 3

Number of queries (|Q|) 100

Average query length 10

Zipf distribution (h) 0.75

Data error rate 0%

Simulation time 12 h

Wireless Netw (2010) 16:1817–1836 1829

123

http://www.cs.uga.edu/jam/jsim/.

that with the same replication factor, fewer broadcast

channels imply longer broadcast programs. Algorithm

BPGR has more possibilities to place each replica, thus

increasing the execution time. In our experiment, the

execution time of algorithm BPGR increases from 0.58 to

7.3 s as channel number decreases from 12 to 2.

5.3 Effect of query skewness

We use Zipf distribution to model skewness of queries. As

observed in [41], h is usually larger than one for busy web

sites. Thus, we set h from 0 to 1.25 to investigate the effect of

query skewness to both algorithms. Note that setting h to 0

indicates that the access frequencies of all queries are set to

be equal.

From Fig. 7(a), we observe that the average access

time of both algorithms decreases as the query frequen-

cies become more skewed. It is because that when query

frequencies become more skewed, optimizing a smaller

amount of queries is enough to minimize average access

time of all queries. Thus, both algorithms perform well

when query skewness is high. Algorithm BPGR outper-

forms algorithm MULS in all cases, showing the

advantage of employing replication in broadcast pro-

grams. In addition, the performance gain of algorithm

BPGR is between 48.16 and 62.61%. As shown in

Fig. 8(b), query skewness does not significantly affect on

the execution time of algorithm BPGR. The execution

time of algorithm BPGR is ranging from 1.19 to 1.27 s in

this experiment.

0

2

4

6

8

10

12

14

A
ve

ra
ge

 A
cc

es
s

T
im

e
(s

ec
)

Channel Number

MULS BPGR

(a) Average Access Time

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12

E
xe

cu
tio

n
T

im
e

(s
ec

)

Channel Number

(b) Execution Time

2 4 6 8 10 12

Fig. 6 Effect of channel

number

0

1

2

3

4

5

6

0 0.25 0.5 0.75 1 1.25

A
ve

ra
ge

 A
cc

es
s

T
im

e
(s

ec
)

Zipf Parameter

MULS BPGR

Average Access Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(s
ec

)

Zipf Parameter

Execution Time(b)(a)Fig. 7 Effect of query

skewness

0
1
2
3
4
5
6
7
8
9

A
ve

ra
ge

 A
cc

es
s

T
im

e
(s

ec
)

MULS BPGR

Average Access Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

6 8 10 12 14 20

E
xe

cu
tio

n
T

im
e

(s
ec

)

Averege Query Length

Execution Time(b)(a)

6 8 10 12 14 20

Averege Query Length

Fig. 8 Effect of average query

length

1830 Wireless Netw (2010) 16:1817–1836

123

5.4 Effect of average query length

Given a query profile, average query length is used as an

indicator to measure strength of data item dependency.

A query profile of high average query length means that the

data items are highly dependent upon others. In this

experiment, average query length is set from 6 to 20.

Figure 8(a) shows the average access time of both

algorithms as average query length varies. We observe that

the average access time of both algorithms becomes longer

as the data dependency of query profiles becomes stronger.

The reason is that in a query profile with higher data

dependency, the relationship among data items is more

entangled and minimizing average access time becomes

more difficult. In our experiment, the average access time

of algorithm MULS increases from 2.56 to 7.85 s while the

average access time of algorithm BPGR is from 0.89 to

4.17 s. In addition, the performance gain of algorithm

BPGR slightly decreases from 64.96 to 46.84%. As shown

in Fig. 9(b), average query length only slightly affects the

execution time of algorithm BPGR.

5.5 Effect of replication factor

We now consider the effect of the degree of replication on

average access time and execution time. In this experiment,

replication factor is set from 1 to 2.5. Setting replication

factor to 1 indicates that replication is disabled in algorithm

BPGR.

Figure 9(a) shows the average access time of both

algorithms as the value of replication factor varies. Since

not employing data replication, algorithm MULS is not

affected by the change of replication factor. We observe

that when replication factor is smaller than 1.75, algorithm

BPGR performs worse than algorithm MULS because

algorithm BPGR has insufficient free slots to allocate

replicas. When replication factor is larger than 1.75,

algorithm BPGR has enough free slots to allocate the

replicas into good positions, thus being able to generate

broadcast programs of high quality. In addition, the

improvement of performance gain of algorithm BPGR

becomes insignificant as replication factor is larger than 2.

Figure 9(b) shows that the execution time of algorithm

BPGR increases as replication factor is getting larger. It is

because that high replication factor indicates that there are

many slots to place replicas, thus increasing the execution

time of algorithm BPGR. In our experiment, the execution

time of algorithm BPGR is still under 2 s even replication

factor is set to 2.5. Since replication factor is a user-con-

trollable parameter, the value of replication factor should

be set carefully to strike a balance between the quality of

broadcast programs and execution time.

5.6 Effect of data error rate

Since wireless networks are usually error-prone, we

investigate in this subsection how data error rate affects the

performance of algorithm BPGR and algorithm MULS.

Since data error rate does not affect the execution time of

both algorithms, only average access time is given. We set

data error rate from 0 to 15% and the experimental results

is shown in Fig. 10. It is obvious that the average access

time of both algorithms increase as data error rate increa-

ses. Since each data item may have multiple replicas in

broadcast programs, the performance degradation of algo-

rithm BPGR caused by data error is slighter than the

performance degradation of algorithm MULS. In our

0

1

2

3

4

5

6

7

A
ve

ra
ge

 A
cc

es
s

T
im

e
(s

ec
)

MULS BPGR

Average Access Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 1.25 1.5 1.75 2 2.25 2.5

E
xc

ut
io

n
T

im
e

(s
ec

)

Replication Factor

Execution Time(b)(a)

1 1.25 1.5 1.75 2 2.25 2.5

Replication Factor

Fig. 9 Effect of replication

factor

0

2

4

6

8

10

12

0% 3% 6% 9% 12% 15%

A
ve

ra
ge

 A
cc

es
s

T
im

e
(s

ec
)

Error Rate

MULS BPGR

Fig. 10 Effect of data error rate

Wireless Netw (2010) 16:1817–1836 1831

123

experiment, as data error rate is set from 0 to 15%, the

average access time of algorithm BPGR increases from

1.69 to 4.79 s while the average access time of algorithm

MULS increases from 3.45 to 9.62 s. In addition, the

performance gain of algorithm BPGR over algorithm

MULS is around 50%. This result shows that besides

reducing average access time, employing replication in

broadcast programs also makes broadcast programs more

resilient to data error, showing the advantage of algorithm

BPGR in error-prone environments.

6 Conclusion

We explored in this paper the problem of broadcasting

dependent data in multiple broadcast channels, and explic-

itly investigated the effect of data replication. By analyzing

the model of dependent data broadcasting, we formulated

the average access time of a broadcast program in a multiple

channel environment. In light of the theoretical results, a

two-phase algorithm called BPGR is developed to generate

broadcast programs with replicas. Our experimental results

showed that, in most cases, algorithm BPGR outperformed

algorithm MULS in terms of the average access time of the

resultant broadcast programs. In addition, experimental

results also showed that in error-prone environments, per-

formance degradation of algorithm BPGR is slighter than

that of algorithm MULS, showing the robustness of algo-

rithm BPGR over algorithm MULS and the advantage of

replication in broadcast programs.

Appendix: Proof of all Lemmas

Proof of Lemma 1 Consider a broadcast program with

replication and a query Qi. Suppose that the first required

data item of Qi is Dk (i.e., k = qi(1)). Since each data item

is of multiple replicas, the mobile device will retrieve the

nearest copy of Dk in order to minimize the access time of

the Qi. Without loss of generality, we order each copy of

Dk by its position in the broadcast program, and let a(j) be

position(Dk(j)).

Suppose that a mobile user submits Qi in the m-th

broadcast cycle and the time interval between the start time

of the m-th broadcast cycle and the moment when the user

submits Qi to be x. As shown in Fig. 11, the broadcast

program can be divided into b ? 1 parts, where b is the

number of replicas of Dk, by the start time of each copy of

Dk. It is obvious that the mobile device will read Dk(j)

when x lies on part j, 1 B j B b. In addition, the mobile

device will read Dk(1) in (m ? 1)-st broadcast cycle when

x lies on part (b ? 1).

Recall that the time interval between the start time of the

m-th broadcast cycle and the moment of the appearance of

the j-th copy of Dk is ðpositionðDkðjÞÞ � 1Þ � s
B
¼ ðaðjÞ � 1Þ

� s
B: Suppose that x is a uniform distribution over (0, L*). The

average startup time of Qi on the broadcast program with

replication can be formulated as below.

TStartupðQiÞ

¼ 1

L�
�
(Z að1Þ�1

x¼0

að1Þ � 1� x½ �dx

þ
Z að2Þ�1

x¼að1Þ�1

að2Þ � 1� x½ �dx

þ � � � þ
Z aðbÞ�1

x¼aðb�1Þ�1

aðbÞ � 1� x½ �dx

þ
Z L�

x¼aðbÞ�1

L� � xþ að1Þ � 1½ �dx

)
� s

B

¼ s

L� � B
�

Xb�1

i¼1

aðiþ 1Þ � aðiÞ½ �2

2
þ L� � aðbÞ þ að1Þ½ �2

2

()

h

Proof of Lemma 2 Consider the same scenario in the

Proof of Lemma 1 and Fig. 11. Suppose that the first

required data item of Qi is Dk (i.e., k = qi(1)) and the

mobile device will try its best to minimize the access time.

It is obvious that the mobile device will retrieve the j-th

copy of Dk, j = 2, 3,…, b, as the first required data item

when x lies on part j. In addition, the mobile device will

retrieve the first copy of Dk when x lies on part 1 and part

b ? 1. Suppose that x is a uniform distribution over (0, L*).

Dk(1)

Dk(2)

Dk(b-1)

Dk(b)

the m-th broadcast cycle

Part 1 Part 2 Part (b+1)Part b
Time

A mobile user issues a query
x

Fig. 11 The illustration for the Proof of Lemma 1 and 2

Dk(1)

Dk(2)

Dk(b-1)

Dk(b)

Part 1 Part 2

Fig. 12 The illustration for the Proof of Lemma 3

1832 Wireless Netw (2010) 16:1817–1836

123

The probability that x lies on part j is equal to the ratio of

the length of part j over the length of the broadcast pro-

gram. Therefore, we can formulate pi(j) as follows:

piðjÞ ¼
L��aðbÞþ að1Þ

L� : if j ¼ 1;
aðjÞ� aðj�1Þ

L� : otherwise:

(

Since x is a uniform distribution over (0, L*), for j = 1,

TStartup(Qi(j)) can be formulated as

Similarly, for j = 2, 3,…, b, TStartup(Qi(j)) can be

formulated as

TStartupðQiðjÞÞ

¼ 1

L� � aðbÞ þ að1Þ

�
Z L�

x¼aðbÞ
ðL� � xþ að1ÞÞdxþ

Z að1Þ

x¼0

ðað1Þ � xÞ
 !

dx� s

B

¼ 1

L� � aðbÞ þ að1Þ

� ðL� � að1ÞÞ � 1

2
L� þ að1Þ � 1

2
aðbÞ

� �
þ 1

2
að1Þ2

� 	
� s

B

¼ L� � aðbÞ þ að1Þ
2

� s

B
:

TStartupðQiðjÞÞ

¼ 1

aðjÞ�aðj�1Þ�
Z aðjÞ

x¼aðj�1Þ
ðaðjÞ� xÞdx� s

B

¼ 1

aðjÞ�aðj�1Þ� aðjÞ
Z aðjÞ

x¼aðj�1Þ
1dx�

Z aðjÞ

x¼aðj�1Þ
xdx

 !
� s

B

¼ aðjÞ�aðj�1Þ
2

� s

B
:

To summarize the above results, we have

TStartupðQiðjÞÞ ¼
L��aðbÞþað1Þ

2
� s

B : if j ¼ 1;
aðjÞ�aðj�1Þ

2
� s

B : otherwise:

(

h

Proof of Lemma 3 We prove this lemma by mathematical

induction on the value of b.

Basis

We assume that the first data item of Qi is Dk (that is,

Dk ¼ DqiðjÞ) and the number of the replicas Dk is b. Con-

sider the case that b = 1. In this case, there is the only one

copy of Dk in the broadcast program. On average, the user

has to wait for a half broadcast cycle to retrieve Dk. Thus,

TStartupðQiÞ ¼ L�

2
� s

B ¼ L�

2b� s
B; and Lemma 3 is true when

b = 1.

Consider the case that b = 2. Without loss of generality,

we reorder the replicas of Dk based on their positions in

ascending order and assume that the first copy of Dk is

placed in the first slot of the broadcast program (i.e.,

a(1) = 1). Thus, the TStartup(Qi) can be formulated as

TStartupðQiÞ

¼
Xb

j¼1

ðpiðjÞ�QiðjÞÞ

¼
"

að2Þ� að1Þ
L�

� að2Þ� að1Þ
2

þL� � ðað2Þ� að1ÞÞ
L�

�L� � ðað2Þ� að1ÞÞ
2

#
� s

B

¼ 1

2�L�
� ðað2Þ2� 2að2Þþ 1Þþ 1

2�L�

� ðL�2� 2�L� � ðað2Þ� 1Þþ ðað2Þ� 1Þ2Þ� s

B

¼ 1

2�L�
� 2að2Þ2�ð2L� þ 4Það2ÞþL�2þ 2L� þ 2

 �

� s

B
:

ð10Þ

Since only a(2) is unknown in the above equation, we have

T
00

StartupðQiÞ ¼ 2
L� � s

B[0: Thus, TStartup(Qi) has a minimal

value and the minimal value is in the point that

TStartup

0
(Qi) = 0. By the following derivation, the minimal

value of TStartup(Qi) is in the point that að2Þ ¼ L�

2
þ 1:

T 0StartupðQiÞ ¼ 0

4að2Þ � ð2L� þ 4Þ ¼ 0

að2Þ ¼ L�

2
þ 1

Then, we have að2Þ � að1Þ ¼ L�

2
and L� � aðbÞ þ að1Þ ¼

L�

2
: In addition, by substituting að2Þ ¼ L�

2
þ 1 into Eq. (10),

we obtain that the lower bound of TStartup(Qi) is L�

4
� s

B ¼
L�

2b� s
B: Thus, Lemma 3 is true when b = 2.

Induction step

Assume that Lemma 3 is true for b = 1, 2,…, k. We would

like to use this hypothesis to prove that Lemma 3 is also

true when b = k ? 1. Without loss of generality, we

assume that a(1) = 1. To facilitate the following deriva-

tion, we reorder the replicas of Dk based on their positions

in ascending order. In addition, as shown in Fig. 12, we

divide the broadcast program into two parts according to

the position of the b-th replica of Dk (i.e., a(b)).

Part 1 is equivalent to a broadcast program of length

a(b) - 1 and with b - 1 replicas of Dk. Based on the

hypothesis, the lower bound of the average startup time of

part 1 is
aðbÞ�1

2ðb�1Þ ¼
aðbÞ�1

2k : In addition, we also have

Wireless Netw (2010) 16:1817–1836 1833

123

aðjþ 1Þ � aðjÞ ¼ aðbÞ � 1

b
¼ aðbÞ � 1

k
; for j

¼ 1; 2; . . .; b� 2; and ð11Þ

aðb� 1Þ ¼ aðbÞ � 1

k
� ðb� 2Þ þ 1

¼ k � 1

k
� ðaðbÞ � 1Þ þ 1: ð12Þ

Thus, TStartup(Qi) can be formulated as

TStartupðQiÞ

¼
"

aðbÞ � 1

L�
� aðbÞ � 1

2k
þ L� � aðbÞ þ 1

L�

� L� � aðbÞ þ 1

2
� � s

B

¼ 1

2� L�
�
"

1þ 1

k

� �
aðbÞ2 � 2

k
þ 2L� þ 2

� �
aðbÞ

þ 1

k
þ L�2 þ 2L� þ 1� � s

B
ð13Þ

Similarly, only a(2) is unknown in the above equation.

Since T
00

StartupðQiÞ ¼ 1þ1
k

L� � s
B [0: the minimal value of

TStartup(Qi) is in the point that TStartup

0
(Qi) = 0. By the

following derivation, the minimal value of TStartup(Qi) is in

the point that aðbÞ ¼ k
kþ1

L� þ 1:

T 0StartupðQiÞ ¼ 0

1

2� L�
� 2þ 2

k

� �
aðbÞ � 2

k
þ 2L� þ 2

� �� 	
� s

B
¼ 0

aðbÞ ¼
2
k

þ 2L� þ 22þ 2

k
¼ k

k þ 1
L� þ 1

By substituting the value of a(b) into Eq. (12), we have

aðb� 1Þ ¼ k�1
k � ðaðbÞ � 1Þ þ 1 ¼ k�1

kþ1
L� þ 1 and aðbÞ �

aðb� 1Þ ¼ 1
kþ1

L�: The following equations can be obtained

by summarizing this result and Eq. (11).

aðjþ 1Þ � aðjÞ ¼ aðbÞ � 1

k
¼ L�

k þ 1
; j ¼ 1; 2; . . .b� 1

L� � aðbÞ þ að1Þ ¼ L�

k þ 1
¼ L�

b

By substituting aðbÞ ¼ k
kþ1

L� þ 1 into Eq. (13), we obtain

that the lower bound of TStartup(Qi) is L�

2ðkþ1Þ � s
B ¼ L�

2b� s
B:

To summarize the above results, Lemma 3 is true for

b = k ? 1 when Lemma 3 is true for b = 1, 2,…, k.

Finally, Lemma 3 is proven by mathematical induction.

References

1. Acharya, S., Alonso, R., Franklin, M., & Zdonik, S. (1995,

March). Broadcast disks: Data management for asymmetric

communication environments. In Proceedings of the ACM SIG-
MOD Conference (pp. 198–210).

2. Acharya, S., & Muthukrishnan S. (1998, October). Scheduling

On-demand broadcasts: New metrics and algorithms. In Pro-
ceedings of the 4th ACM/IEEE International Conference on
Mobile Computing and Networking (pp. 43–94).

3. Agrawal, M., Manjhi, A., Bansal, N., & Seshan, S. (2003, March–

April). Improving web performance in broadcast-unicast net-

works. In Proceedings of the IEEE INFOCOM Conference.

4. Aksoy, D., & Franklin, M. J. (1998, March). Scheduling for

large-scale on-demand data broadcasting. In Proceedings of IEEE
INFOCOM Conference (pp. 651–659).

5. Aksoy, D., Franklin, M. J., & Zdonik, S. (2001, September). Data

staging for on-demand broadcast. In Proceedings of the 27th
International Conference on Very Large Data Bases, (pp. 571–

580).

6. Amarmend, D., Aritsugi, M., & Kanamori, Y. (2006, April). An

air index for data access over multiple wireless broadcast chan-

nels. In Proceedings of the 22nd IEEE International Conference
on Data Engineering.

7. Anticaglia, S., Barsi, F., Bertossi, A. A., Iamele, L., & Pinotti, M.

C. (2008). Efficient heuristics for data broadcasting on multiple

channels. Wireless Networks, 14(2), 219–231.

8. Ardizzoni, E., Bertossi, A. A., Pinotti, M. C., Ramaprasad, S.,

Rizzi, R., & Shashanka, M. V. S. (2005). Optimal skewed data

allocation on multiple channels with flat broadcast per channel.

IEEE Transactions on Computers, 54(5),558–572.

9. Bar-Noy, A., Naor, J., & Schieber, B. (2000, August). Pushing

dependent data in clients-providers-servers systems. In Pro-
ceedings of 6th ACM/IEEE International Conference on Mobile
Computing and Networking (pp. 222–230).

10. Breslau, L., Cao, P., Phillips, G., & Shenker, S. (1999, March).

Web caching and zipf-like distributions: Evidence and implica-

tions. In Proceedings of the IEEE INFOCOM Conference.

11. Chehadeh, Y. C., Hurson, A. R., & Kavehrad, M. (1999). Object

organization on a single broadcast channel in the mobile com-

puting environment. Multimedia Tools and Applications, 9(1),

69–94.

12. Chen, J., Huang, G., & Lee, V. C. S. (2007). Scheduling algo-

rithm for multi-item requests with time constraints in mobile

computing environments. In Proceedings of the 13th Interna-
tional Conference on Parallel and Distributed Systems.

13. Chen, M. -S., Wu, K. -L., & Yu, P. S. (2003, February). Opti-

mizing index allocation for sequential data broadcasting in

wireless mobile computing. IEEE Transactions on Knowledge
and Data Engineering, 15(1), 161–173.

14. Chu, C. -H., Yang, D. -N., & Chen, M. -S. (2007, November).

Using network coding for dependent data broadcasting in a

mobile environment. In Proceedings of IEEE GLOBECOM
Conference.

15. Chung Y. D., & Kim, M. H. (2001). Effective data placement for

wireless broadcast. Distributed and Parallel Databases,
9(2),133–150.

16. Dewri, R., Ray, I., Ray, I., & Whitley, D. (2008, March). Opti-

mizing on-demand data broadcast scheduling in pervasive envi-

ronments. In Proceedings of the 11th International Conference
on Extending Database Technology.

17. Dewri, R., Whitley, D., Ray, I., & Ray, I. (2008, September).

Optimizing real-time ordered-data broadcasts in pervasive envi-

ronments using evolution strategy. In Proceedings of the 10th
international conference on Parallel Problem Solving from
Nature.

18. Dey, S., & Schabanel, N. (2006, March) Customized newspaper

problem: Data broadcast with dependancies. In Proceedings of
the 7th Latin American Theoretical Informatics Conference.

1834 Wireless Netw (2010) 16:1817–1836

123

19. Dykeman, H. D., Ammar, M. H., & Wong, J. W. (1986).

Scheduling algorithms for videotex systems under broadcast

delivery. In Proceedings of IEEE ICC Conference.

20. Hu, Q. L., Lee, D. L., & Lee, W. -C. (1998, November). Dynamic

data delivery in wireless communication environments. In Pro-
ceedings of International Workshop on Mobile Data Access (pp.

218–229).

21. Huang, J. -L. (2008). AIDOA: An adaptive and energy-con-

serving indexing method for on-demand data broadcasting sys-

tems. IEEE transactions on systems, man, and cybernetics, part
A: Systems and humans, 38(2).

22. Huang, J. -L., & Chen, M. -S. (2004). Dependent data broad-

casting for unordered queries in a multiple channel mobile

environment. IEEE Transactions on Knowledge and Data Engi-
neering, 16(9), 1143–1156.

23. Huang, J. -L., Chen, M. -S., & Peng, W. -C. (2003, March).

Broadcast dependent data for ordered queries without replication

in a multi-channel mobile environment. In Proceedings of the
19th IEEE International Conference on Data Engineering.

24. Huang, J. -L., & Peng, W. -C. (2005, May). An energy-conserved

on-demand data broadcasting system. In Proceedings of the 6th
International Conference on Mobile Data Management.

25. Huang, J. -L., Peng, W. -C., & Chen, M. -S. (2001, November).

Binary interpolation search for solution mapping on broadcast

and on-demand channels in a mobile computing environment. In

Proceedings of the 10th ACM International Conference on
Information and Knowledge management.

26. Hung, H.-P., & Chen, M.-S. (2007, October). MULS: A general

framework of providing multi-level service quality in sequential

data broadcasting. IEEE Transactions on Knowledge and Data
Engineering.

27. Hung, H. -P., Huang, J. -W., Huang, J. -L., & Chen, M. -S. (2006,

April). Scheduling dependent items in data broadcasting envi-

ronment. In Proceedings of the 21st ACM Symposium on Applied
Computing, (pp. 23–27).

28. Imielinski, T., Viswanathan, S., & Badrinath, B. R. (1997). Data

on air: Organization and access. IEEE Transactions on Knowl-
edge and Data Engineering, 9(9), 353–372.

29. Jung, S., Lee, B., Pramanik, S. (2005). A tree-structured index

allocation method with replication over multiple broadcast

channels in wireless environments. IEEE Transactions on
Knowledge and Data Engineering, 17(4).

30. Lee, G., & Lo, S. -C. (2003). Broadcast data allocation for effi-

cient access of multiple data items in mobile environments.

Mobile Networks and Applications, 8(4), 365–375.

31. Lee, G., Lo, S. -C., & Chen, A. L. P. (2002, October). Data allo-

cation on the wireless broadcast channel for efficient query pro-

cessing. IEEE Transactions on Computers, 51(10), 1237–1252.

32. Lee, K. C. K., Schiffman, J., Zheng, B., & Lee, W. -C. (2008,

October). Valid scope computation for location-dependent spatial

query in mobile broadcast environments. In Proceedings of the
17th ACM Conference on Information and Knowledge
Management.

33. Lee, S., Carney, D. P., & Zdonik S. (2003, March). Index hint for

on-demand broadcasting. In Proceedings of the 19th IEEE
International Conference on Data Engineering.

34. Lee, W. -C., Hu, Q. L., & Lee, D. L. (1999). A study on channel

allocation for data dissemination in mobile computing environ-

ments. Mobile Networks and Applications, 4(5), 117–129.

35. Lee, W. -C., & Zheng, B. (2005, June). DSI: A fully distributed

spatial index for location-based wireless broadcast services. In

Proceedings of the 25nd IEEE International Conference on
Distributed Computing Systems.

36. Liberatore, V. (2002, June). Multicast scheduling for list requests.

In Proceedings of IEEE INFOCOM Conference.

37. Lin, K. -F., & Liu, C. -M. (2006, June). Schedules with mini-

mized access latency for disseminating dependent information on

multiple channels. In Proceedings of IEEE International Con-
ference on Sensor Networks, Ubiquitous, and Trustworthy
Computing.

38. Liu, C. -M., & Lin, K. -F. (2007, January). Disseminating

dependent data in wireless broadcast environments. Distributed
and Parallel Databases, 22(1), 1–25.

39. Lo, S. -C., & Chen, A. L. P. (2000, March). Optimal index and data

allocation in multiple broadcast channels. In Proceedings of the
16th International Conference on Data Engineering (pp. 293–702).

40. Nanopoulos, A., Katsaros, D., & Manolopoulos, Y. (2001,

August). Effective prediction of web-user accesses: A data min-

ing approach. In Proceedings of the WEBKDD Workshop.

41. Padmanabhan, V., & Qiu, L. (2000, August–September). The

content and access dynamics of a busy web site: Findings and

implications. In Proceedings of the IEEE SIGCOMM Conference
(pp. 111–123).

42. Peng, W. -C., & Chen, M. -S. (2003). Efficient channel allocation

tree generation for data broadcasting in a mobile computing

environment. Wireless Networks, 9(2), 117–129.

43. Prabhakara, K., Hua, K. A., & Oh, J. H. (2000, February-March).

Multi-level multi-channel air cache designs for broadcasting in a

mobile environment. In Proceedings of the 16th International
Conference on Data Engineering (pp. 167–186).

44. Robert, J., & Schabanel, N. (2007, January). Pull-based data

broadcast with dependencies: Be fair to users, not to items. In

Proceedings of the 18th ACM/SIAM Symposium on Discrete
Algorithms (pp. 238–247).

45. Shih, M. -T., & Liu, C. -M. (2008, December). Fair broadcasting

schedules on dependent data in wireless environments. In Pro-
ceedings of IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing.

46. Shivakumar, N., & Venkatasubramanian, S. (1996). Efficient

indexing for broadcast based wireless systems. Mobile Networks
and Applications, 4(6), 433–446.

47. Si, A., & Leong, H. V. (1999). Query optimization for broadcast

database. Data and Knowledge Engineering, 29(3), 351–380.

48. Vaidya, N. H., & Hameed, S. (1999). Scheduling data broadcast

in asymmetric communication environments. Wireless Networks,
5(3), 171–182.

49. Wu, Y., & Cao, G. (2001). Stretch-optimal scheduling for on-

demand data broadcasts. In Proceedings of the 10th IEEE Inter-
national Conference on Computer Communications and Networks.

50. Xu, J., Lee, W. -C., & Tang, X. (2004, June). Exponential index:

A parameterized distributed indexing scheme for data on air. In

Proceedings of the 2nd ACM/USENIX International Conference
on Mobile Systems.

51. Xu, J. L., Lee, D. L., & Li, B. (2003, March). On bandwidth

allocation for data dissemination in celluar mobile networks.

Wireless Networks, 9(2), 103–116.

52. Xu, J. L., Zheng, B., Lee, W.-C., & Lee, D. K. (2003, March).

Energy efficient index for querying location-dependent data in

mobile broadcast environments. In Proceedings of the 19th
International Conference on Data Engineering.

53. Yajima, E., Hara, T., Tsukamoto, M., & Nishio, S. (2002,

March). Scheduling and caching strategies for broadcasting cor-

related data. In Proceedings of the ACM Symposium on Applied
Computing (pp. 504–509).

54. Yee, W. G., Navathe, S. B., Omiecinski, E., & Jermaine, C.

(2002, October). Efficient data allocation over multiple channels

at broadcast servers. IEEE Transactions on Computers, 51(10),

1231–1236.

55. Zhang, X., Lee, W. -C., Mitra, P., & Zheng, B. (2008, March).

Processing transitive nearest neighbor queries in multi-channel

Wireless Netw (2010) 16:1817–1836 1835

123

access environments. In Proceedings of the 33rd International
Conference on Extending Database Technology.

56. Zheng, B., Lee, W. -C., Lee, K. C. K., Lee, D. L., & Shao, M.

(2009). A distributed spatial index for error-prone wireless data

broadcast. VLDB Journal, 18(4), 959–986.

57. Zheng, B., Xu, J., Lee, W. -C., & Lee, D. L. (2004, March).

Energy-conserving air indexes for nearest neighbor search. In

Proceedings of the 9th International Conference on Extending
Database Technology.

Author Biographies

Jiun-Long Huang Jiun-Long

Huang received his B.S. and

M.S. degrees in Computer Sci-

ence and Information Engineer-

ing Department in National

Chiao Tung University in 1997

and 1999, respectively, and his

Ph.D. degree in Electrical

Engineering Department in

National Taiwan University in

2003. Currently, he is an assis-

tant professor in Computer Sci-

ence Department in National

Chiao Tung University. His

research interests include:

mobile computing, wireless networks and data mining.

Jen-He Huang Jen-He Huang

received the B.S. and M.S.

degrees in Department of Com-

puter Science in National Chiao

Tung University, Taiwan, in

2006 and 2008, respectively.

His research interests include

sensor networks and wireless

networks.

1836 Wireless Netw (2010) 16:1817–1836

123

	Exploiting replication on dependent data allocation for ordered queries over multiple broadcast channels
	Abstract
	Introduction
	Preliminaries
	Related work
	On-demand data broadcasting
	Broadcast program generation for unordered queries
	Broadcast program generation for ordered queries

	Problem description and formulation

	Formulation of average access time
	Decomposition of access time
	Broadcast program with replication
	Derivation of average startup time
	Formulation of average waiting time
	Formulation of average retrieval time

	Algorithm BPGR: broadcast program generation with replication
	Replica number determination phase
	Data item allocation phase
	Leading item allocation
	Successive item allocation

	Time complexity
	Integration with index allocation

	Performance evaluation
	The simulation model
	Effect of channel number
	Effect of query skewness
	Effect of average query length
	Effect of replication factor
	Effect of data error rate

	Conclusion
	Appendix: Proof of all Lemmas
	Basis
	Induction step

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

