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A New Methodology for Two-Dimensional 
Numerical Simulation of Semiconductor 

Devices 
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Abstract-A new methodology for obtaining the self-consis­
tent solution of semiconductor device equations discretized in 
the finite-difference scheme is proposed, in which a new discre­
lized Green's function solution method is used to solve the two­
dimensional discretized Poisson's equation and a surface map­
ping technique is developed to treat arbitrary surface boundary 
conditions, As a result of the proposed new solution method, 
the two-dimensional potential distribution can be expressed in 
terms of charge density distribution and bias conditions. Using 
the derived potential distribution, the SLOR-nonlinear itera­
tion for the current continuity equations of botb carriers can 
be performed by incorporating with a new algorithm to get the 
self-consistent solution of full set of semiconductor device equa­
tions without any outer iteration. Comparisons between the 
proposed method and the Gummel's method in Si-MESFET 
simulation are made. It is demonstrated that the convergent 
rate of the proposed method can be speeded up to 4-8 times 
over the Gummel's method. The proposed new iterative method 
can be incorporated with the conventional solution method such 
as the Gummel's method to get a stable and efficient computa­
tion scheme for device simulation. 

I. INTRODUCTION 

THE electrical characteristics of the scaled semicon­
ductor devices are sensitive to the device structure and 

the operational condition due to the multidimensional ef­
fects [I J, In generaL fundamental device modeling may 
provide some valuable information for understanding the 
physics of semiconductor devices, However, an accurate 
analytical model becomes difficult to develop hecause of 
the complexity of mathematical treatment for the multi­
dimensional effects and cannot be generalized for any de­
vice structure, Therefore , the device numerical simula­
tion [2]-[5] based on the self-consistent calculation of 
semiconductor device equations has become important in 
device modeling, 

In general, numerical techniques [6]-[8], [to] have be­
come a standard method to solve semiconductor device 
equations, However, the primary problems concerning the 
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two-dimensional numerical simulation are mainly due to 
the fact that a large nonlinear system must be solved it­
eratively to get the self-consistent solution of discretized 
semiconductor equations, Moreover, an efficient solution 
method becomes very difficult to develop for solving the 
full sct of semiconductor device equations, The major 
reason is that the mutual coupling effect between the Pois­
son's equation and the current continuity equations is very 
strong . The convergent property becomes very poor when 
the decoupling method (the Gummel's method) is used, 
especially when the device is operated in the high-current 
levcl. The strongly nonlinear behavior of equations to be 
solved may produce significant error when the linear ex­
pansion is used, In general, this effect may cause the over­
shooting for the Newton's method if the initial condition 
of the numcrical iteration is not in the contraction domain, 
and some physical quantities such as electron and hole 
densities may vary over a huge range, leading to arith­
metic difficulties, For any device structure and bias con­
ditions, no method can guarantee to be stable and efficient 
in solving the semiconductor equations, From this view­
point. the development of a fundamental solution method 
for the semiconductor equations is necessary to enhance 
the flexibility in the selection of an iteration algorithm, 

Recently ,  several new approaches [11], [12\ have been 
developed by using the combination of the analytical 
method and the numerical techniques, In the Fourier-nu­
merical method r I I ], all of the semiconductor equations 
are transformed into the discrete Fourier series by using 
the fast-Fourier transformation (FFT) method to get the 
well-conditioned matrix equations, and these matrices can 
be solved by the Newton's method to obtain the accurate 
result. On the other hand, the analytical solution of the 
2-D Poisson's equation using the Green's function tech­
nique is used to obtain the initial guess for the Newton's 
iteration in simulating the MOSFET devices L121, As 
compared to the full  numerical method, the analytical 
method takes the advantage of saving the computer re­
sources including the CPU time and the memory space, 
However, it is still limited by lack of flexibility in appli­
cations for different device structures, 

In this paper, a general solution method is proposed to 
solve the ful l  set of 2-D semiconductor equations discre­
tized in the finite-difference scheme. The Green's t'unc-
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tion in the hyperbolic-sine (hyperbolic-cosine) fonn [14] 
is adopted and discretized to calculate the 2-D potential 
distribution, and a surface mapping technique is devel­
oped for solving the surface potential to simulate arbitrary 
surface boundary conditions in the rectangular domain. 
Furthennore, the full set of semiconductor equations can 
be self-consistently solved by incorporating the proposed 
method with a numerical solver for the current continuity 
equations. The features of the proposed scheme are that: 
1) the potential ripple due to Gibb' s phenomenon [17], 
which is induced by the summation of a finite number of 
trigonometric series in the Green's function, can be com­
pletely eliminated, and the computation efficiency can be 
improved by the discretization of the Poisson' s equation; 
2) a surface mapping technique is used to enhance the 
flexibility of the discretized Green's function to treat ar­
bitrary surface boundary conditions; 3) an SLOR-nonlin­
ear itcrative method for solving the current continuity 
equations is developed by using a dynamic coefficient ma­
trix for the variation of the potential change, and the mu­
tual coupling effect between semiconductor device equa­
tions can be properly considered. As a consequence, no 
outer iteration is needed for obtaining the self-consistent 
solution of semiconductor device equations and the re­
quired memory space is then much reduced. 

In Section II, a new discretized Green's function solu­
tion method is proposed to solve the 2-D Poisson's equa­
tion and a surface mapping technique for arbitrary surface 
boundary conditions in the rectangular domain is de­
scribed. In Section III, a new iteration scheme for the self­
consistent calculation of discretized semiconductor equa­
tions is given. In order to demonstrate the usefulness of 
the proposed method. a Si-MESFET device operated in 
the high-current level is simulated, and comparisons of 
the performance between the proposed method and the ex­
isting method are given in Section IV. A conclusion is 
made in Section V. 

II. A GENERAL METHOD FOR SOLVING THE 2-D 
POISSON'S EQUATION DISCRETIZED IN THE 

FINITE-DIFFERENCE SCHEME 

A. Conventional Green's Functiun Solutiun MeThod 

The Green's function technique for semiconductor de­
vice modeling was first developed by Lin and Wu [13] in 
modeling the threshold voltage and the subthreshold prop­
erty of short-channel MOSFET's. Comparing it to other 
analytical methods , the major advantage of the Green's 
function method is that the two-dimensional charge dis­
tribution can be exactly considered. The flexibility of the 
analytical method can be enhanced in treating arbitrary 
charge distribution by the Green's function method. 

Considering the 2-D Poisson's equation in a rectangu­
lar domain shown in Fig. I ,  the second-order elliptical 
differential equation can be written as 

p (x, y) 
- --- (I) 

T 
(0 I)'t I �=constant or B.L=O 

b p(X',y') EJL,y)=O 

1 'Jr=ronstant or E J. =0 
I 

• iV(x,y) 

---------
Fig. I. The schematic cross section of a semiconductor device with the 

rectangular coordinate system indicated. 

where 'l' (�, y) is thc 2-D potential distribution, p (x. y) is 
the charge density distribution, and E is the dielectric per­
mittivity. 

The solution of the 2-D Poisson's equation in a finite 
region can be obtained by means of Green's theorem [14]: 

'l' (x, y) [ G( ,. , ") (' ') d ' t, x, y, x , y p x , y v 

+ tEl G(x. y; x', y') :: 
aG I -
an' 

'l' (x', y') J ds' (2) 

where (x, y) and (x', y') denotes the field- and source­
point coordinates. respectively; G(x, y; x', y') is the 
Green's function and must satisfy 

1 
v,,2G(X, y; x', y') = -- 0 (x - x') 0 (y - y') (3) 

E 

where 0 (x - x ' ) and 0 (y - y') are the Dirac delta func­
tions. The Grecn's function G(x. y; x', y') can be inter­
preted as the potential response of this l inear operator at 
the field point (x, y) due to an impulse of charge intro­
duced at the source point (x', y') . For a rectangular do­
main with the same dielectric pennittivity, G(x, y; x', y') 
can be expressed as a hyperbolic-sine (cosine) series of 
infinite tenns [141: 

G(x, y; x', y') = 2..: gn/(x, x') fll(Y' y') (4) 
III 

and g", (x, x') can be expressed as 

g",(x, x') = Am sin (k",x) sin (k",x') 

+ Bm cos (k",x) cos (k",x') (5) 

where k", is eigenvalue, Am and Bill are the coeflicients and 
can be detennined by setting the known boundary condi­
tions. 

fll ( y, y') in (4) must satisfy the following I -D differ­
ential equation with the eigenvalue k",: 

d2fn J 1 
dy,2 - l¢"{,,, = - � b( y y') (6) 
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and its solution can be easily obtained as [sInh (kmY) sinh km(b - y') 

Ekm sinh (kmb) 
. 

sinh (k",y') sinh km (b - y) 

Ek", SInh (k",h) 

Po\pn\iai Rippip 

for y < y' 

fury> y'_ 

(7) 

The number of the eigcnvalue (km) is infinite because 
(1) is defined in the continuous space, and the resolution 
of the solution must be infinite. The following weak points 
will occur when (4), (5), and (7) are applied to device 
simulation: 

Fig. 2. An example showing the unwanted current path induced by the 
potential ripple. 

I) The accuracy of simulation depends on the number 
of trigonometric series used . In general, the computation 
efficiency will degrade when the number of trigonometric 
series is increased. Therefore, the accuracy will be traded 
off with the efficiency of simulation. 

2) A potential ripple will be induced by keeping a finite 
number of trigonometric series and will produce the un­
wanted current path in metal contact, as shown in Fig. 2. 
This effect may reduce the stability and accuracy of sim­
ulation. 

3) Mixed surface boundary conditions and heterostruc­
ture devices cannot be solved by this form of Green's 
function. 

T 
t.Yj __ l 

i-1J 
�Yj �i-t.Xi-l 

� .. 1Vi-I-1, ,,) 

baxj ·1 
In order to el i minate the potential ripple and improve 

the accuracy, a new d iscretized Green's function solution 
method is proposed to solve the 2-D Poisson's equation 
discretized in the finite-difference scheme. Furthennore, 
a surface mapping technique is developed to treat arbi­
trary surface boundary conditions. 

Fig. 3. The auopted nomenclature for the discretization of the 2-D Pois­
son', equation in the finite-difference scheme. 

B. Discretized Green's Function Solution Method 

According to Fig. 3, the 2-D Poisson's equation can be 
discretized in the finite-difference scheme as follows: 

Multiplying (9) with Wi'.j'(�Xi' + �X" _I) (�Yj' + 
j),.yj' _I) /4 and performing the summation over all the node 
(i', j'). Wi.} can be obtained by substituting (8) into (9) 

2 (Wi+ I.j - Wi.) + 
Wi-I.} - Wi,}) 

+ 
2 (Wi.) I I - Wi,} + 

W,,}-I - Wi.i) 
�Xi + �Xi-I �Xi �Xi-I �Yi + �y} I �Yj �Y}-I 

P,.} 
for 1 :$ i :$ imax and I :$.i :$ jmax 

in which imax and jmax are the grid number along x-direction and y-direction, respectively, 
The discretized Green's function, GU, i'; j, j'), is chosen to solve (8) and must satisfy 

2 (G(i, i' + l;j,j ') - GU, i';j,j') + G(i, i' - J;j,j') - G(i, i';j,j') ) 
�Xi' + �X"_I �Xi' �Xi'-I 

+ 2 (GU, i',j,j' + 1)- G(i, i',j,j') + G(i, i';j,j' - 1) - G(i, i';j,j') ) 
�Yj' + �Yi'-I �y}, �Yj'-I 

[ - t �Xi' + 

2 

�Xi' -I �Yj' 

0, 

2 
for i' = i and j' = j 

for i' '* i and j' '* j 

(8) 

(9) 
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and is expressed as 

(" ") .:lv + .:ly,"_1 .T. '" G(' 'I ' ") pi, J --,' j_" _----"._ 
'f',.j=�' L.J 1,1:./,./ ---

. 1 <i'<im,n Ej' 2 1 <j' <lrmn 

( G(i. I;j,j') - G(i, 2;j,j') 'It I' -'------'-''-'--''---'----'--'--'-''-'--''---"-
,] .:lXI 

( CU, i'; j, I) - CU, i'; j, 2) 'It, 1 -'-----'��--�-�� 
I ,  

.:lYI 

'It, I - 'It, , ) .:lX + .:lx, - 1 - G(i, i';j, I)' '· .:lV ,,-
'

2 
' 

_ 1 

+ ('It, G(i, i '; j, jm"x) - GU, i'; j: jllla, - I) 
I.Jma>; 

Ll.Yjlll,1\ - I 
'¥i .jnlJX - 'l'i'.}rn.lx - I) GU, imax; j, j') -...:="'-----

LlYjlll:JX - I 
.:lXi'  + .:lXi'_1 

2 
The generalized form of (10) can be derived as 

.T. - . '" G ( , , , , ' . ') p (i' ,j') 
'V' '¥i.j -Ej L.J II,I,],] "" 

v' E;' 

+ E 2: G - - - 'It .:lS I ( .:l'lt .:lC ) ] s' .:In .:In 

(10) 

( II) 

where S' and V I denote the boundary point and the source 
point. respectively , and n is the outward direction in the 
boundary point. 

11 is clearly seen that (II) is the discretized Green's 
theorem for the 2-D Poisson's equation in the discretized 
domain. It is noted that the first term in the right-hand 
side of (II) is used to describe the potential at the field 
point (i. j) produced by the linear operator C(i, j; i', j') 
for the charge density in the source point (i', j'), and the 
other temlS exhibit the correlation between the potential 
distribution and the boundary conditions. 

Note that the choice of a proper form for the Green's 
function is very important in order to decouple the poten­
tial and its potential gradient at the boundary points, as 
expressed in the third and second terms in the right-hand 

side of (II), The Green's function is set up to produce a 
zero potential along the boundary points for the Dirichlet 
boundary condition, The second term in the right-hand 
side of (11) vanishes due to G(x, x'; y, y') = 0 along the 
boundary points, and this means that the potential distri­
bution can be expressed only in terms of the boundary 
potential and the charge distribution, Similar to the case 
of the Dirichlet boundary condition, the Green's function 
must be set up to produce a zero gradient at the boundary 
points for the Neumann boundary condition to decouple 
the relation between the potential distribution and the 
boundary potential. As a result of this setup, (11) can be 
written as 

= '" G(' ", ' ") p(i', j') 
.:lV' 'lti.) E) L.J I, I ,J,] 

v' Ej' 

where N is used to denote the Neumann boundary condi­
tion and D is used to denote the Dirichlet boundary con­
dition. 

In the rectangular domain, G(i, i';j,j' )  in ( 12) can be 
expressed as 

G(i, i'; j, j') = 2: glll(i; i')fm(j; j') (13) '" 

where the Neumann boundary condition is used for the 
lateral sides of the simulation domain, The boundary con­
dition at the bottom side is dependent on the device (0 be 
simulated, and the Dirichlet boundary condition is used 
for the surface boundary by incorporating with a surface 
mapping technique described in the following subsection. 
Furthermore, g",(i, i 'l in (13) can be written as 

(14) 

where gm i is the sol ution of the following linear system 
with the eigenvalue Am and the boundary condition of 
.:lgm,) .:lXi = 0 for i = I and i = ima,: 

2 (gm.i+ 1 - g""i + glll.i- I - gnLi)' LlXi + LlXi - 1 LlXi .:lxi - 1 

for 1 < i < imax' (15) 

The linear system described in (15) is a typical eigen­
value problem. The number of the eigenvalue (Am) is equal 
to the grid number along the x-direction, and the set of 
the eigenvectors (g",. i) consists of a complete mutual or­
thogonal set defined in the discretized points {XI' X2, ' • •  , 

Xi",,,} [15]. This means that any arbitrary function f(x,) 
defined in the discretized points {xj, X2, ... ,Xi""J can 
be exactly expressed as 

fex) = 2: {, 0 . , 
m� I' In"m.! (16) 

where the coefficient!'n can be calculated by the following 
equation: 

irna\ :\ A 2: . . ""Xi + uXi_ I fm = i� I I(XJR",., 2 (17) 
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and the eigenpair (I\m, gm,;) can be obtained by the nu­
mcrical method in [16] with thc defined boundary condi­
tions. 

Furthermore, incorporating with (15), fm (j, j') can bc 
obtained by solving the following equation with the sur­
face boundary condition offm (j, 0) = 0 and a proper bot­
tom boundary: 

2 ffm(j;j' + 1) - fm(j;j') 
�Yj'+�Yj'-I L �y}, 

+fm(J;i' - 1) -j;lI(J;j')l_ 'f...�j�Ji;j') �Yj' - I J 

for j' = j 
( 18) 

for j' '* i. 

Similar to (7), (18) can be expressed as the following 
form: 

for i :5 i' 
for j > j' (19) 

where urn,) can be solved by substituting (19) into (18) and 
is given by 

for 1 < i < lmax· (20) 

As u",.j is detemlined, llm.) can be obtained from the 
following recursive relation: 

Thc potential distribution, 'lti,), can be directly calcu­
lated by substituting (13), (14), and (19) into (12) ,  and 
can be simplified as 

'lti,) = L; (Om.ill",.) + Lm.)um.)gm.iEj (22) m 
where the symbol ( - ) is used to represent the Fourier­
transformation of the eigenvector gm,i' i.e. , 

Xm,) = :6 Xi.jgm,i�Xi (23) 
I 

and Om.) and Lm,) represent the net contributions of the 
upper and lower planes in the field point (i, j), respec­
tively , and can be written as 

and 

- - "" Pm)' 
Urn.} = 'lts,mUm.O + LJ -� Urn,,. (24) 

j' <j Ej' 

-- - "" Pm,)' L",.) = 'ltb.mllm.)max + .,LJ. �E- llm.}'· (25) 
}?} j' 

Note that the potential distribution can be expressed in 
terms of >!I"m, >!Ib,m, and Pm,)' in which >!Is,m, >!Ib.m, and 

Pm,) are the Fourier transformations of the surface potcn­
tial, the bottom potential , and the charge density distri­
bution in the j' -column, respectively . 

The relation between Om) and Om,j+ I can be expressed 
as 

(26) 

and similarly, the relation between Lm.) and Lm•J + I can be 
written as 

(27) 

These two relations can be used to obtain the potential 
distribution efficiently when the calculation is swept from 
i to j + 1 column. 

The major feature of the discretized Grccn's function is 
that the potential ripple induced by keeping a finite num­
ber of trigonometric series has been completely elimi­
nated by the discretization of the 2-D Poisson's equation. 
In order to show the usefulness of (16) in eliminating the 
potential ripple, a step function is used as a testing ex­
ample. Comparisons between a step function approxi­
mated by trigonometric series and the use of (16) are 
shown in Fig. 4(a). It is clcarly seen that the potential 
ripple induced by kecping a finite number of trigonomet­
ric series is very serious; however, there occurs no po­
tential ripple when (16) is used. Moreovcr, the differences 
between the step function and its approximations obtained 
by trigonometric series and (16) are plotted in a logarith­
mic scale, as shown in Fig, 4(b), where the rcsidue is 
defined as the difference between a step function and its 
approximations obtained by the two spccified methods, It 
is clcarly shown that the residucs of about to orders can 
be reduced as the use of the 512 temlS of trigonometric 
series for the conventional solution method is compared 
to that of the 36 terms for our proposed discretized scheme 
in (16), Note that the residues produced by the use of (\6) 
are mainly due to the roundoff error. Therefore, the ac­
curacy and efficiency can bc significantly improved by us­
ing the proposed discrctized scheme. 

C. Surface Mapping Technique 
J n order to calculate thc potential distribution subjected 

to the given surface boundary conditions shown in Fig. 5, 
the surface potential >!Is.m in (22) and (24) must be deter­
mined by the condition that the electric displacement at 
the surface is continuous across the interface, The basic 
concept is that the electric field produced by the charge­
density distribution can be substituted by the electric field 
produced by the surface potential. In order to implement 
this effect, a transformation matrix em, m' is introduced and 
derived as follows: 
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Fig. 4. (a) Comparisons of the pruuuced potential ripple in a linear scale 
between two specified methods. (h) Comparisons of thc residue in a loga­
rithmic scale between two specified methods. 

Metal Contact Mptal Contact Metal Contact 

L, --+-
Fig, 5. An example showing the boundary conditions in a semiconductor 

device. 

The normal electric field (E1,) due to the charge-den­
sity term in (22) at the surface node j can be expressed as 

(28) 

and the normal electric field (E2) due to the surface po­
tential is 

(29) 

In general, the surface boundary conditions can be di­
vided into the Neumann boundary condition(N) and the 
Dirichlet boundary condition(D) .  The function F can be 
defined as the continuous condition of the boundary con­
ditions at the node j, If the node i is in the Neumann re­
gion, the normal electric field must vanish at this point: 

FCi) = E l , i + E2,i = 0, for i E N (30) 

and if the fixed surface potential is in the Dirichlet region, 
we obtain 

FCi) = 
� 

ts,mgm.i - 'It�.i = 0, for i E D (31) 
m 

where 'It�,i is the fixed surface potential, It is noted that 
'It�,i is usually denoted as the applied bias on contact metal 
in the node i, 

Multiplying F(i) by gm',i and performing the summa­
tion over all the node i at the surface, the following linear 
system can be obtained : 

� FCi)gm',i�xi 
I 

where 

-0 'It ',m' 

-0 � ( dVm) -
irs,m' + 

m Dm,m' - Nm,m' dy "'s,m 

� 'It� igm' i �x,. 
iED ' , 

0, for m' 

(32) 

Furthermore, (32) can be rewritten in a matrix form: 
- - - ° A'lts = BLo + 'Its (33) 

where the entries of A and B are separately defined as 

[Alm. m ' 
dVm 

Dm,m' - N --m,m dy 
dUm' 

[BJm.m' = Nm,m -d y 

and the vectors ts, Lo, and t� are defined as: 

(34) 

(35) 

(36) 

(37) 

(38) 
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Thc surface potential can be obtained by inverting a linear 
system of equations in (33), i.e., 

� s = cIo + A -I �� (39) 

where C = A-lB. and 

�s m = :6 C m m, in!' 0 + A';;,;n'��.m' (40) , 
m' ' , 

The mapping matrix C is only dependent on the device 
structure and the grid partition, which is fixed when the 
simulated structure and the grid partition are not changcd 
during simulation. The surface potential can be directly 
mapped from the term Lm,o by thc mapping matrix C, and 
the complex boundary can be solved by the proposed 
method. Therefore, the conventional Green's function so­
lution method can be extended to calculate the potential 
distribution for the case with arbitrary surface boundary 
conditions in semiconductor devices. The application of 
this technique to a MOSFET structure can be imple­
mcntcd by adding a Laplace equation in the oxide region. 

III. A NEW ITERATION SCHEME FOR CALCULATING 
THE DISCRETIZED SEMICONDUCTOR DEVICE 

EI.,)UATIONS 

In order to develop a gcncral-purpose device simulator 
with thc capability of simulating various device structures 
including heterostructures with arbitrary surface bounda­
ries in the rectangular domain and operated under any op­
eration bias condition, the full set of semiconductor de­
vice equations including thc Poisson's equation and the 
continuity equations of both carriers must be solved self­
consistently. In this section, a new iterative scheme for 
solving these equations simultaneously is developed by 
incorporating the discretized Green's function solution 
with the SLOR method, 

The discrctization of current continuity equations is 
based on the finite-difference scheme originally proposed 
by Schafetter and Gummel [9]. and later extended to the 
multidimensional case by using the box-method. The cur­
rent continuity equations of both carricrs can bc discrc­
tized at the nodc (i, j). For clcctron current continuity 
equation, we obtain 

E?/I,.j + E!.jn,.j_1 + E�.jn'_I,j + E1.jn,.1+ 1 

+ ELn,+ I.j = G;�j (41) 

and for hole current continuity equation, we obtain 

Htp,.j + H!,jp,.j_1 + H�'1P'-I,j + H;,jp"j+1 

(42) 

where the content of each term in (41) and (42) can refer 
to [8]. 

The discretized equations described in (41) and (42) 
form a linear system with nand p as the variables, and 
also form a nonlinear system in terms of the potential dis­
tribution. Since the potential distribution is a function of 
the charge-density distribution, (41) and (42) form im-

plicitiy the nonlinear systems for carrier densities (n and 
pl. Thercfore, the weak points of using the conventional 
numerical methods are obvious and described as follows. 

1) The linear expansions of (41) and (42) are not valid 
when the potential change is too large. The Newton's 
method, which is based on this techniquc to describe the 
mutual coupling effcct between these equations, will di­
vergc if the initial guess for the Newton's iteration is not 
good enough to keep the I inear expansions of (41) and 
(42) valid, 

2) The mutual coupling effcct is not properly consid­
ered in thc Gummcl's method. The Gummers method will 
exhibit slow convergence if the mutual coupling effect be­
tween these equations is strong. 

A new algorithm, which incorporates the Poisson's sol­
ver with the current continuity cquation solver, is devel­
oped to properly model the mutual coupling effect. The 
basic concept is that the potential distribution for the pre­
calculated charge can be obtained from (22) and (40), and 
the coefficient matrix for the current continuity equations 
can be updated by the dynamic responsc to the change of 
the potential whcn pcrforming the numerical SLOR iter­
ation to solve (41) and (42). The potential can be treated 
as a linear response to the charge-density distribution by 
the discretized Green's function solution method devel­
oped in Section II, A modified SLOR method is used to 
implement the proposed new algorithm. 

Thc proposed algorithm is somewhat similar to the 
standard SLOR method. However, the coefficient matrix 
for the current continuity equations is modified to dynam­
ically response to the change of thc potential distribution 
directly calculated from the discretized Green's function 
solution method in Sections U-B and II-C. Therefore, the 
proposed algorithm is different from the standard SLOR 
method with a fixed coefficient matrix. The algorithm is 
explained as follows: 

Step I: From (41) and (42), thc potcntial distributions 
involved to dcscribe thc current continuity equation in the 
j-column are j - I , j, j + 1. The potential distributions 
in these columns can be generated by (22) and (40), i.e., 

k '" -k -k 'It'-,1-1 = L.. (Um.j-1Vm.j-1 + Lm,j-IUm,j-l)gm"Ei-1 
HI 

(43) 

(44) 

(45) 

where the superscript k denotes the kth iteration. 
Step 2: The coefficient matrix for the current continu­

ity equations at the node point in the jth column is cal­
culated by (41) and (42). 

Step 3: The carrier density at the node point in thcjth 
column is obtained from solving the system of linear 
equations by using the j + 1 and j - 1 columns as the 
boundary conditions. The matrix form denotes that this 
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iteration can be written with a relaxation factor w as 

ni" (1 - w)n;-I + w[B�,jrl 
(GN,k Ak k Ck k - I) (46) . j - N,Jnj-l- n,jnj+1 

where the vectors nj.k and Gj are the electron density cal­
culated from current continuity equation and the electron 
generation-rate in the j-column at the kth iteration, re­
spectively, and can be written as 

nc,k = (c,k c,k c,k nc,k )1 J nl.j' n2,j ' n3,), . . " imax.j 
G ",k 

= 
(G",k G"k Cn.k . . •  C"k )1 ) 1.), 2,j' 3.j' ' imax.; 

(47) 

(48) 

the vector nj represents the electron density in the j-col­
umn at the kth iteration, which is obtained from nrk as 
described in Step 4 and is written as 

nJ = (nL, nL. nL, .. . , n7rnaxj (49) 

and the matrices A�,j. H:"j' and C!,j can be expressed as 

EI,k I,j 

EO.k I.) 
E2,k 2,) 

H:,,) 

and 

C�j 

ELk 2,) 

E4•k I,J 
EO,k 2,) 
E2,k 3,J 

E3,k 2,) 

EI,k 
3,) 

E4,k 2,J 
EQ,k 3,} 

E3,k 
3,j 

(50) 

ELk Irna,;.,) 

E4,k 3,} (51) 

E2,k , lrna",,} EO,k lmax,} 

(52) 

E3,k Imax.j 

The similar treatment can be performed for the hole 
continuity equation and is denoted by 

pj'k = (1 - W)pj-I + w [B!.T I 

. (GP,k _ Ak k _ Ck k-I) ) p,)p) -1 p,jPj + 1 . (53) 

Step 4: It is noted that when the carrier densities are 
calculated by Step 3, the potential change due to the 
change of charge density is not considered in this column, 
and the change of carrier densities calculated from Step 3 
will be overestimated, However, the damping method as 
described in the Appendix is adopted to prevent the over­
shoot. The changes of carrier densities in the j-

column (!1n�,j and !1p�) obtained by using the damping 
method are updated for the current continuity equations 
and the Poisson's equation. i,e" 

and 

k = k-I + !1n},j ni,} ni,) 
P�J = 

k-1 + t;p�,j Pi,; 

k k-I A k A k 
Pi.) = Pi,) + .... Pi,) - uni.j· 

(54) 

(55) 

(56) 

The potential distributions in the j, j + 1, j + 2 col­
umns are calculated from the discretized Green's function 
solution method, and the iteration is performed for the j 
+ 1 column, The iteration is continued until the stopping 
criterion is reached, 

The algorithm for the SLOR-nonlinear iteration can be 
summarized as follows: 

Procedure SLOR-nonlinear iteration 
For k from I to kmax do 

For j from 1 to jmax do 
For i from I to imax do 

Calculate it7, i-I, it7,j and it},j + I 
End for 
C I I Gn,k Bk Ak Ck G,),k r>k Ak a eu ate ) , fl.,' 11,)_ n.j' j ,Dp.j' p.i' 

and C�) 
, 

Solve n',k and pc,k 
J } 

Get !1nJ and !1PJ from nj k and py-k by damping 
method. respectively. 

Update the variables for carrier continuity 
equations 

nJ = n; - 1 + !1nj 
pJ = pJ-1 + !1PJ 

Update the charge-density distribution for 
Poisson's equation 

k k-I k k Pj = Pj + !1Pj - !1n, 
End for 
if the stopping criterion is reached then 

stop 
End if 

End for 
End SLOR-nonlinear iteration 

The matrix form of the conventional SLOR iteration 
method, which needs another outer iteration to get the self­
consistent solution, can be expressed as 

nj,k = (1 - w)nj,k + w[B�,}l-1 

(57) 

and 

py = (1 - w)py + w[B�,jrl 
. (GPI.k - A' pl,k _ C' .pl,k I) 

J PJ J-I PJ J+I (58) 

where the symbol I denotes the lth outer iteration, Note 
that the equations needed to be solved are the current con-
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Fig. 6. Comparisons of the convergent rate between the Gummel', method and the proposed method with V", = 5 V and 

V" = -1.5 V. 

tinuity equations of both carriers in (41) and (42) and the 
variabl es chosen for iteration are (n, p) because the po­
tential distribution. can be obtained from (22) and (40) ex­
actly. The coefficient matrix for the current continuity 
equation can be changed due to the change of the potential 
during simulation, and the full set of semiconductor equa­
tions is solved simultaneously by the SLOR iteration. The 
major difference between the proposed method and the 
standard SLOR method is that the other outer iteration is 
needed for the standard SLOR method to obtain the self­
consistent solution of semiconductor equations. This outer 
iteration may cause another convergent problem. 

It is noted that the memory space needed to perform 
this iteration is proportional to (3 X imax) because the coef­
ficient matrix is updated for each column in every itera­
tion. The convergent property of the proposed method is 
limited by the intrinsic convergent property of the SLOR 
method and is sensitive to the relaxation factor (w). How­
ever, the convergent rate becomes poor in some cases be­
cause the SLOR method does not converge efficiently. 
This drawback can be improved by using a direct method 
for solving the matrices obtained by the discretized cur­
rent continuity equations. 

IV. RESULTS AND DISCUSSIONS 

The use of the Newton's method for semiconductor de­
vice simulation is l imited by the requirement of a proper 
choice of the initial guess and cannot converge if the 
initial guess is not in the contraction domain. In general, 
the Newton's method needs a solution method insensitive 
to the initial guess to improve the quality of the initial 
guess before switching to the Newton's method. There­
fore, the Gummers method is chosen to compare with the 

proposed method because the initial guess strategy is not 
necessary for the Gummel' s method. 

The Si-MESFET device with the floating substrate is 
used as a test example. This device can be operated as 
FET or diode mode, depending on the bias condition. The 
device structure is illustrated in Fig. 4 with Ls = 0. 3 Mm, 
Lgs = 0.8 Mm, L� = 0. 5 j.tm, Lgd = 0.8 Mm, Ld = 0.3 
Mm, and Nd = 2 X 1017 / cm3. It is noted that the floating 
substrate is assumed for the substrate boundary condition, 
i. e., E 1. = 0 for y = h. The grid points used are 56 x 20 
(lateral grid points X vertical grid points) . The Si-film 
thickness is 0.2 Mm, in which the grid spacing is 100 A. 
The pinchoff voltage is about 6 V, and the mobility model 
and its parameters used arc the same as those used in [13]. 

In order to make a clear comparison between different 
algorithms. The residue at the kth iteration (Rk) for dif­
ferent algorithms is defined as the difference between the 
carrier densities at the k th iteration (117,; and p�J), and the 
carrier densities solved from the current continuity equa­
tions (nt/ and p�:)k), and can be described in the following 
algorithm: 

Procedure obtain residue 
For j from 1 to jmax do 

For i from 1 to imax do 

End for 
End for 
Calculate >It ;.} for each node point (i, j ) 

Calculate 11;) and p;) from current continuity equations 
Rk = 0 
For j from 1 to jlllax do 
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For i from 1 to illl", do 
Rk = Rk + Inf.1' - nU + Ipf./ - pLi 

End for 

direct method for the potential distribution at the kth it­
eration ('I' 7,j ) . 

End for 
End obtain residue 

Note that the potential is calculated from the precalcu­
lated charge density (pL), and the carrier densities are 
solved from the current continuity equations by using the 

Fig. 6 shows a comparison of the convergent rate be­
tween the proposed method and the Gummel's method. 
The device is biased at Vd.l = 5 V and VX1 = - 1. 5 V, and 
the initial condition is set to be in the quasi-neutrality con­
dition, i.e. , n = Nd and p = nT In. It is noted from Fig. 
6 that the convergent rate of the proposed method is 4 
times faster than that of the Gummel's method. Fig. 7(a) 
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shows a comparison of the iteration number versus differ­
ent biases for continuous simulation, and the simulated I­

V characteristic is shown in Fig. 7(b). From Fig. 7(a), the 
iteration number of a proposed method is less than that of 
the Gummel's method by a factor 4 for a given stopping 
criterion. 

The simulation speed is proportional to the convergent 
rate and the CPU time per iteration. However, the CPU 
time per iteration for the Gummel' s method strongly de­
pends on the matrix solver and the nonlinear iteration 
method used. The average CPU time run by a IBM RS/ 
6000 workstation versus bias points for continuous sim­
ulation is shown in Fig. 8, From this figure , it is known 
that the proposed method is insensitive to the initial con­
dition used . 

In order to show the stability of the proposed method, 
the simulation is performed with the drain bias of 100 V 
and under the initial condition of quasi-neutrality, and the 
result is shown in Fig. 9. F rom this figure, the limitation 
of the bias step does not exist in our proposed method. 

A hybrid method, which combines the proposed method 
and the Gummel's method, is used to simulate the diode 
mode of the device, The Schottky diode is turned on when 
the gate bias is Vg, = 1.5 V. The convergent rate of the 
hybrid method is shown in Fig. 10, in which the residue 
of 12 orders is reduced within about 100 iterations. The 
convergent rate is much larger than the Gummel' s method 
but is less than the Newton's method, However, the New­
ton's method shows two major disadvantages: one is that 
a great computation effort is required to solve a large lin­
ear system derived from the discretization of semi con duc-

tor device equations; the other is that the initial guess must 
be within the contraction domain and the additional 
method is needed to improve the quality of the initial guess 
such as the Gummcl's method or the analytic model [121. 

The convergent rate of the standard SLOR method is 
strongly dependent on the relaxation factor (w), and the 
speed of the convergent rate should trade off with the sta­
bility. The convergent rate can be speeded up by using a 
large relaxation factor but the stability becomes worse. 
The convergent property versus the SLOR iteration is 
shown in Fig. 11. It is shown that the convergent property 
keeps the same as the standard SLOR method. The relax­
ation factor can be optimized to speed up the convergent 
rate in the stable scheme. It is found that the simulation 
will diverge when the chosen relaxation factor is greater 
than 1.3. 

It is interesting to note that the proposed new method­
ology can be extended to the case of a nonplanar device 
structure by a new Fourier-conformal mapping method 
which will be addressed in our future publications. 

V. CONCLUSIOK 
A new methodology for 2-D numerical simulation of 

semiconductor devices has been proposed, in which the 
2-D potential distribution is derived by a new discretized 
Green's function solution method in the rectangular do­
main. The flexibility of the proposed solution method can 
be further improved by a surface mapping technique to 
treat arbitrary surface boundary conditions. In addition, 
the full set of semiconductor equations can be solved by 
a new SLOR-nonlinear iteration technique in which the 
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matrix element can be updated for the potential change 

due to the linear response to the change of the charge den­
sity. The proposed new methodology has been imple­
mented in Fortran code and run at an IBM RS/6000 work­
station. It has been shown that the use of the discrctized 

Green's function solution method in semiconductor de­
vice simulation is extremely practical from the tested ex­
ample. Moreover, the convergent property of the Gum­
mel's method can be significantly improved by the 
proposed new method. 
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ApPENDIX 
THE DAMPING METHOD 

The carrier density can be expressed in terms of the 
quasi-Fermi level as : 

nfJ = nj exp lk�T ('f1 �j - <pU)  J (AI )  

where 'f1 �.J and <p;,} are the electrostatic potential and the 
quasi-Fermi potential for electrons in the node (i. j )  at 
the kth iteration , respectively . 

At the k th iteration, (A 1) can be rewritten in the fol­
lowing form when the potential is changed with changing 
the carrier density : 

n7.; 1 + fln?J = nj exp l k� T ('f1 7.J - 'P 7:/ + fl 'f1 j) J 
_ c , k  ( q ' ,T, ) - ni.J exp kb T '-1 '" i,j . (A2) 

The potential change in the node (i , j ) , fl 'f1j•j , which 
is induced by the change of carrier density in the column 
j, can be roughly estimated by the superposition principle: 

fl'f1, . = W ilnk ,  I ,} I,.! I ,} (A3) 

where Wi.; is a proportional constant in the node (i, j ) and 
can be calculated from (20) and (38). 

Substituting (A3) into (A2) , we obtain 

n7J-
I + fln7,j = nf:/ exp (k� T Wi,j fln7.j ) . (A4) 

The change of carrier density at the iteration k (fln�.j ) i s  
less than nr) - n�; I by a factor exp «q / k" T) w" j iln�.j ) 
from (A4) , and can be obtained by solving (A4) in terms 
of carrier density as 

iln7,j = ; 
. 

In \' 1 + :�t[ 
I,} l ni,j 

IL exp ( - k�T Wi,jn�.j 
1 ) -1 JJ . (AS) 

Similarly, the equivalent equation for holes can be ob­
tained, 
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