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Staggered quantum well structures are studied to eliminate the influence of polarization-induced
electrostatic field upon the optical performance of blue InGaN light-emitting diodes �LEDs�. Blue
InGaN LEDs with various staggered quantum wells which vary in their indium compositions and
quantum well width are theoretically studied and compared by using the APSYS simulation program.
According to the simulation results, the best optical characteristic is obtained when the staggered
quantum well is designed as In0.20Ga0.80N �1.4 nm�–In0.26Ga0.74N �1.6 nm� for blue LEDs.
Superiority of this novelty design is on the strength of its enhanced overlap of electron and hole
wave functions, uniform distribution of holes, and suppressed electron leakage in the LED device.
© 2010 American Institute of Physics. �doi:10.1063/1.3471804�

I. INTRODUCTION

The visible III-nitride light-emitting diodes �LEDs� have
received much attention due to their wide applications in
full-color display, liquid crystal display back-lighting, mobile
platforms, and illumination.1–6 High-luminescence and high-
efficiency blue InGaN LEDs, especially, are of foremost im-
portance for application in illumination market such as out-
door display and solid-state lighting. However, several
mechanisms degenerating the optical performance including
light extraction efficiency, current crowding effect, high op-
eration voltage, and piezoelectric effect remain unsolved
which will sabotage the achievement of high-power blue In-
GaN LEDs.7–11

For the III-nitride system, the electrostatic field within
the active region is a critical factor to poor lighting charac-
teristic. Resulting from spontaneous and piezoelectric polar-
izations, the piezoelectric effect eventually leads to strong
electrostatic field and band bending situation within the ac-
tive region. Piezoelectric polarization is caused by stress
formed in the situation when layers were grown on a lattice-
mismatch substrate; spontaneous polarization results from
the asymmetric structure along the �0001� axis of wurtzite
structures.12–14 The large electrostatic field within the active
region results in quantum confined Stark effect and poor
overlap of electron and hole wave functions, and it conse-
quently reduces the radiative recombination rate and internal
quantum efficiency of the optoelectronic devices. To mini-
mize the piezoelectric effect of blue InGaN LEDs, several
specific structure designs such as heavily Si-doping in quan-
tum barriers,15–17 nonpolar �a- and m-planes� quantum wells
�QWs� grown on r-plane sapphire and �-LiAlO2,18–22 semi-

polar QWs grown on m-plane sapphire,23–27 polarization-
matched AlGaInN layers,28,29 and staggered-QW structures
have been proposed.30–39 For InGaN LEDs, as the overlap of
electron and hole wave functions improves, the photolumi-
nescence lifetime will decrease, and the radiative recombina-
tion rate and optical gain will be accordingly enhanced;
hence, the percentage of carrier leakage would be reduced
owing to carriers that effectively contribute toward radiative
recombination. In addition, although the above-mentioned
methods are useful for abating the piezoelectric effect,
staggered-InGaN QW LEDs have the merit of an identical
growth process to the conventional structures that makes
commercial fabrication possible and substantial. After the
concept of the staggered-InGaN-QW structure was proposed
by Arif et al.30 for the first time, various similar designs
including type-II InGaN QW,40–42 strain-compensated
InGaN-AlGaN QW,43,44 three-layer staggered-InGaN
QW,35,36,39 InGaN QW with AlGaN �-layer,45–47 and dip-
shaped InGaN/GaN QW �Ref. 37� have been recommended
to decrease the strong polarization-induced electrostatic field
in the GaN-based optoelectronic devices. Therefore, the fo-
cus of the current research is upon staggered-QW LEDs; by
adjusting the indium composition and well width of the stag-
gered QWs, the authors seek to accomplish better optical
performance of blue InGaN LEDs.

In this work, various staggered-InGaN QW LEDs are
theoretically studied in detail by using the APSYS �abbrevia-
tion of advanced physical models of semiconductor
devices�48 simulation program. By performing computational
simulations, the authors examine proper designs of
staggered-QW blue LEDs and the critical physical mecha-
nisms behind the improvement of the optical performance.a�Electronic mail: ykuo@cc.ncue.edu.tw.
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II. SIMULATION PARAMETERS AND DEVICE
STRUCTURE

The band gap energies of GaN, AlN, InN, and other
binary alloys at temperature T can be expressed by the
Varshni formula49

Eg�T� = Eg�0� −
� · T2

T + �
, �1�

where Eg�T� is the band gap energy at temperature T, Eg�0�
is the band gap energy at 0 K, � and � are material-related
constants. Table I lists the band gap energies of GaN, AlN,
and InN used in our simlulation.49,50 Besides, for InxGa1−xN
and AlxGa1−xN ternary alloys, the band gap energies can be
described as a linear combination of GaN, AlN, or InN bi-
nary alloys and a second-order correction as the following
formula:51

Eg�InxGa1−xN� = Eg,InN · x + Eg,GaN · �1 − x� − b · x · �1

− x� , �2�

Eg�AlxGa1−xN� = Eg,AlN · x + Eg,GaN · �1 − x� − b · x · �1

− x� , �3�

where Eg�InxGa1−xN� and Eg�AlxGa1−xN� are the band gap
energies of InxGa1−xN and AlxGa1−xN, and the band gap
bowing parameters, b, of InxGa1−xN and AlxGa1−xN are
adopted to be 2.8 eV and 0.7 eV, respectively.52 Other mate-
rial parameters of the relevant binary semiconductors used in
the simulation can be found in Ref. 52.

In addition, it is important to take into consideration the
built-in polarization induced by spontaneous and piezoelec-
tric polarizations at heterointerfaces of nitride related devices
since it plays an essential role for III-nitride optical devices.
To calculate the built-in polarization induced by spontaneous
and piezoelectric polarizations at heterointerfaces of III-
nitride LEDs, the method developed by Bernardini12 is em-
ployed to estimate the fixed interface charges. The spontane-
ous polarization of ternary nitride alloys can be expressed by
the formulas with bowing terms as shown in Eqs. �4� and �5�

Psp�AlxGa1−xN� = x · Psp�AlN� + �1 − x� · Psp�GaN�

+ B�AlGaN� · x · �1 − x� , �4�

Psp�InxGa1−xN� = x · Psp�InN� + �1 − x� · Psp�GaN�

+ B�InGaN� · x · �1 − x� , �5�

where Psp�InN�, Psp�AlN�, and Psp�GaN� are values of spon-
taneous polarization of InN, AlN, and GaN alloys, which are
set to be −0.042 C /m2, −0.090 C /m2, and −0.034 C /m2,

respectively; B�InGaN� and B�AlGaN� are spontaneous po-
larization bowing parameters of InGaN and AlGaN, which
are −0.037 C /m2 and −0.021 C /m2, respectively.52

On the other hand, the piezoelectric polarization of Al-
GaN and InGaN can be calculated by the following formu-
las:

Ppz�AlxGa1−xN� = Ppz�AlN� · x + Ppz�GaN� · �1 − x� , �6�

Ppz�InxGa1−xN� = Ppz�InN� · x + Ppz�GaN� · �1 − x� , �7�

where

Ppz�AlN� = − 1.808 · � + 5.624 · �2 for � � 0, �8�

Ppz�AlN� = − 1.808 · � − 7.888 · �2 for � � 0, �9�

Ppz�GaN� = − 0.918 · � + 9.541 · �2, �10�

Ppz�InN� = − 1.373 · � + 7.559 · �2. �11�

The basal strain matched to a GaN layer for the alloy in this
study is defined as

� = �asub − a�/a , �12�

where asub and a are the lattice constants of GaN and alloy
layers, respectively. Total polarization is obtained by sum-
ming the values of spontaneous and piezoelectric polariza-
tions. Note that the amount of surface charges obtained from
the experimental measurement is usually smaller than those
obtained by theoretical calculation. The surface charges
could be screened due to the defects inside the device and the
screening percentage commonly ranges between 20% and
80% for InGaN materials.53,54 To ascertain identical results
of the simulated data to the original structure, approach real
situation, 40% of the calculated surface charge density is
assumed in our simulation.

The simulated InGaN blue LED used as a reference for
subsequent analysis is based on the structure fabricated by
Chang et al.55 The device geometry was a rectangular shape
design with dimensions of 400	320 
m2. This LED was
grown on a c-plane sapphire substrate, followed by a GaN
buffer layer. A 3 
m thick Si-doped n-GaN layer with a
doping concentration of 1	1018 cm−3 was used to be the
n-type contact layer. The active region consisted of five 3 nm
thick In0.23Ga0.77N QWs separated by six 7 nm thick GaN
barriers. On top of the active region was a 50 nm thick Mg-
doped p-Al0.15Ga0.85N electron-blocking layer �EBL� with a
doping concentration of 3	1017 cm−3. A 0.25 
m thick
Mg-doped p-GaN contact layer with a doping concentration
of 5	1017 cm−3 was grown to complete the structure.

To simplify the structure referred, the number of QW in
our simulation is remained to be one. Therefore, the subse-
quent investigations are for the blue InGaN LED with single
QW �SQW� and the schematic diagram could be referred in
Fig. 1. To model the staggered-QW structure, the original
In0.23Ga0.77N QW layer is divided into two layers, which are
layer I close to the n-layers and layer II close to the p-layers;
the schematic diagram of the staggered-QW is presented in
Fig. 2. Note that the total thickness of the InGaN QW is fixed
for all the structures considered in the subsequent discussion.

TABLE I. Band gap energy of GaN, AlN, and InN.

Parameter

Alloy

GaN AlN InN

Eg�0� �eV� 3.507 6.23 0.735
� �meV/K� 0.909 1.799 0.245
� �K� 830 1462 624

063107-2 Liao et al. J. Appl. Phys. 108, 063107 �2010�
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Steps in exploring the most appropriate design of layers I
and II in the simulation are illustrated as the following. First,
the indium composition of layer I increased from 0.20 to
0.26 while that of layer II decreased from 0.26 to 0.20, cor-
respondingly. Then, the width of layer I changed from 0.5 to
2.5 nm and that of layer II changed from 2.5 nm to 0.5 nm
accordingly. Figure 3 shows the output power and emission
wavelength of each staggered-QW LED of which the indium
composition for each structure ranges from 0.20 to 0.26 and
well width ranges from 0.5 to 2.5 nm. Based on Fig. 3, the
authors enumerated a few appropriate staggered-QW designs
which sustained the InGaN LEDs emitting at approximately
460 nm and, at the same time, enhanced the lighting power
of the devices. After comparing, preferable designs of the
staggered QWs are In0.20Ga0.80N �1.4 nm�–In0.26Ga0.74N �1.6
nm�, In0.21Ga0.79N �1.4 nm�–In0.25Ga0.75N �1.6 nm�, and
In0.22Ga0.78N �1.5 nm�–In0.24Ga0.76N �1.5 nm�, which are
named as structure A, structure B, and structure C, respec-
tively.

III. SIMULATION RESULTS AND DISCUSSION

The simulated light-current-voltage �L-I-V� performance
curves of structure A, B, and C, as well as the original one
are plotted in Fig. 4. From Fig. 4, it is apparent that all the
three staggered-QW LEDs possess better lighting character-
istic than the original one while the electrical performances
of these devices are similar. To scrutinize the main physical
factors to the improvement in the lighting performance of
staggered-QW LEDs, optical characteristics of structure A
possessing the best performance and the original structure,
including band diagram, overlap between electron and hole

wave functions in the QW, electrostatic field, and carrier dis-
tribution, are compared and discussed in the following para-
graph.

First, the emission spectra of structure A and the original
structure are plotted in Fig. 5. The emitting spectra are
peaked at around 460 nm and furthermore the spontaneous
emission rate of structure A is effectively enhanced as com-
pared with the original structure. In Fig. 6, the band diagrams
with ground-state electron and hole wave functions of struc-
ture A and the original structure at 20 mA are presented. It
could be found that for structure A which features a design of
InGaN QW, the tilted valence band within the QW is re-
formed because of the step-like shape. In another word,
structure A has the merit of more uniform distribution of
holes inside the QW when compared with the original struc-
ture. As a result of right-shifted hole wave function, the over-
lap of electron and hole wave functions in structure A is
improved. The percentage of overlap between electron and
hole wave functions is 14.9% for structure A and 13.9% for
the original structure.

Second, the electron concentration and conduction band

FIG. 1. �Color online� Schematic diagram of the SQW LED in this study.

FIG. 2. �Color online� Schematic diagram of the staggered-QW.
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FIG. 4. �Color online� Simulated L-I-V curves of structure A, B, C, and
original structure.

063107-3 Liao et al. J. Appl. Phys. 108, 063107 �2010�

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

140.113.38.11 On: Wed, 30 Apr 2014 10:01:21



in the active region for structure A and the original structure
at 20 mA are shown in Fig. 7�a� while the hole concentration
and valence band for them are presented in Fig. 7�b�. The
gray areas in the figures represent the locations of the QW.
For ordinary blue InGaN LEDs, since holes are the minority
carriers in the active region, the radiative emission is domi-
nated mainly by holes. It can be easily observed that hole
distribution within the QW for structure A is right-shifted
due to little sagged valence band as shown in Fig. 7�b�.
Moreover, the negative electrostatic field within the active
region of structure A is larger than that of the original struc-
ture as indicated in Fig. 8. Figure 9 schematically presents
the polarization charges at each interface within the active
region for structure A and the original structure. The
strengthened negative electrostatic field of structure A results
from the larger lattice-mismatch between the In0.26Ga0.74N
well layer and the GaN barrier layer as compared with the
difference between the In0.23Ga0.77N well layer and the GaN
barrier layer in the original structure as shown in Fig. 9.
Since a large negative electrostatic field contributes to hole
injection into the QW, consequently, it is anticipated that,

compared with the original structure, structure A may pos-
sess more holes inside the QW. When comparing the area
under the curves of hole concentration for these two struc-
tures, we conclude an increase of 1% of the hole concentra-
tion inside the QW in structure A. Given that right-shifted
hole distribution and larger amounts of holes inside the QW
lead to improvement in overlap of electrons and holes, the
recombination of electrons and holes is enhanced, and the
emission power is increased correspondingly in structure A.

Third, Fig. 10 indicates the conduction band diagrams of
structure A and the original structure at 20 mA. After calcu-
lating, the effective potential heights of structure A and the
original structure �which are the difference between the con-
duction band energy of the EBL and quasi-Fermi level� are
201 meV and 173 meV, respectively. Due to larger effective
potential height, structure A has a smaller percentage of elec-
tron leakage of 6.5% when compared with the original struc-
ture �11.9%�. In other words, larger amounts of holes inside
the QW as well as increased overlap of electron and hole
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FIG. 5. �Color online� Emission spectra of structure A and original structure
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wave functions result in more electrons contributing to radia-
tive recombination. Therefore, the issue of electron leakage,
accordingly, is diminished.

Finally, considering the Shockley–Read–Hall �SRH� re-
combination rate of structure A and the original structure at
20 mA �see Fig. 11�, the authors integrated areas under the
curves of SRH recombination rates for the two structures and
found that structure A possessed less SRH recombination,
which is the effect of nonradiative recombination. Therefore,
for structure A, owing to an increase in overlap of electron
and hole wave functions, there will be less carriers inside the
QW recombining via nonradiative recombination process
and more carriers through radiative recombination process
when compared with the original structure.

IV. CONCLUSION

Optical characteristics of various staggered-InGaN-QW
LEDs, which are designed to debase the significant piezo-
electric effect of blue InGaN LEDs, are numerically investi-
gated in this study by using the APSYS simulation program.
Indium composition and width of the staggered-QW are ad-
justed to obtain the optimal structure and the corresponding
optical performance including emission wavelength, band
diagram, and carrier distribution are investigated and com-
pared. According to the simulation results, predicaments
such as overlap of electron and hole wave functions, inho-
mogeneous carrier distribution inside the QW, electron leak-
age, and SRH recombination rate in the active region are
remarkably improved in the In0.20Ga0.80N �1.4
nm�–In0.26Ga0.74N �1.6 nm� staggered-QW structure. There-
fore, it is concluded that the best optical performance is ob-
tained in the blue InGaN LED characterized by the design of
an In0.20Ga0.80N �1.4 nm�–In0.26Ga0.74N �1.6 nm� QW.
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