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The natural frequency of the flapwise bending vibration, and coupled lagwise bending and axial vibration
is investigated for the rotating beam. A method based on the power series solution is proposed to solve
the natural frequency of very slender rotating beam at high angular velocity. The rotating beam is sub-
divided into several equal segments. The governing equations of each segment are solved by a power ser-
ies. Numerical examples are studied to demonstrate the accuracy and efficiency of the proposed method.
The effect of Coriolis force, angular velocity, and slenderness ratio on the natural frequency of rotating
beams is investigated.
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1. Introduction

Rotating beams are often used as a simple model for propellers,
turbine blades, and satellite booms. The free vibration frequencies
of rotating beams have been extensively studied [1–19]. Rotating
beam differs from a non-rotating beam in having additional cen-
trifugal force and Coriolis effects on its dynamics. The lagwise
bending and axial vibration are coupled due to the Coriolis effects
[8,15,18]. However, most studies neglected the Coriolis effects in
the literature. It is well known that the beam sustains a steady
state axial deformations (time-independent displacement) induced
by constant rotation [20]. For the rotating uniform beam as shown
in Fig. 1, the maximum steady axial strain occurs at the root of the
beam and may be expressed as [15] emax ¼ �k2ðR=Lþ 0:5Þ, where
�k ¼ XL

ffiffiffiffiffiffiffiffiffi
q=E

p
is a dimensionless angular velocity, R is the radius

of the hub, L, q, and E are the length, density, and Young’s modulus
of the beam, respectively, X is the angular velocity of the hub. In
practice, rotating structures are designed to operate in the elastic
range of the materials. Thus, the allowable value of the maximum
steady axial strain for the rotating beam should be smaller than the
yield strain, which is much smaller than unity for most engineering
material. In this sense, if the maximum steady axial strain is close
to the yield strain, the corresponding angular velocity may be
called high angular velocity. However, as mentioned in [15], the
magnitudes of the steady state axial strain induced by the centrif-
ugal force and the corresponding angular velocity are not checked
in most literature. The dimensionless angular velocity used in most
literature is �g�k, where �g is the slenderness ratio of the beam. The
ll rights reserved.
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siao).
difference of the maximum steady axial strains corresponding to
the same value of �g�k may be remarked for rotating beams with dif-
ferent slenderness ratio. Thus, the maximum steady axial strains
corresponding to some angular velocity considered in many litera-
tures are even larger than unity for rotating beam with small slen-
derness ratio, but are much smaller than the yield strain of most
engineering material for very slender beam. In this study, if the
maximum steady axial strain is much smaller than the yield strain,
the corresponding angular velocity is regarded as low angular
velocity. To the authors’ knowledge, the study of the natural fre-
quency for very slender rotating beam at high angular velocity is
rather rare in the literature. The objective of this paper is to inves-
tigate the natural frequencies of the flapwise bending vibration,
and coupled lagwise bending and axial vibration for very slender
rotating Euler beam at high angular velocity using power series
solution. However, the rotating beams with different slenderness
ratio at different angular velocities are also investigated.

A number of methods based on the power series solution have
been developed for determination of natural frequencies and mode
shapes of rotating beams [2,6,9–19]. However, only the uncoupled
bending vibration was considered in most methods based on the
power series solution. It was asserted that only one single segment
is needed for power series solution to obtain any modal frequency
or mode shape for uniform beams or uniformly tapered beams in
[17]. A similar statement was given in [18]. However, no results
for slender rotation beams at high angular velocity were given in
[17,18]. The assertion given in [17,18] may be correct if a computer
can retain infinite number of significant digits to represent the re-
sult of an operation. However, any computer can only retain a fi-
nite number of significant digits to represent the result of an
operation. The accuracy of the calculated natural frequency
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Nomenclature

A cross-section area of rotating beam
E Young’s modulus
F1 force in X1 direction
F3 force in X3 direction
I principal second moment of cross-section area
k �k=N
�k dimensionless angular velocity of the hub
K K=N
K dimensionless natural frequency of rotating beam
l length of each segment
L length of rotating beam
M moment about negative X2 axis
N number of segments
�r dimensionless radius of rotating hub
r position vector
€r second time derivative of r
R radius of the hub

t time
u time dependent infinitesimal displacements in X1 direc-

tion
U dimensionless u
us steady state axial deformations
w time dependent infinitesimal displacements in X3 direc-

tion
W dimensionless w
b setting angle of rotating beam
e axial strain
emax maximum steady axial strain of rotating beam
g �g=N
�g slenderness ratio of rotating beam
h rotation of beam cross-section
x natural frequency of rotating beam
X angular velocity of hub
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Fig. 1. A rotating Euler beam.
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depends on the precision with which the computing facility oper-
ates, and a great number of terms in the power series solution does
not necessarily result in a more accurate solution [12]. The authors
use the power series method proposed in [15] and double precision
computation to calculate the natural frequencies for slender rotat-
ing beams at high angular velocity. It is found that the rate of con-
vergence of the power series solution is slower at higher angular
velocity and the computation fail to converge when the angular
velocity is higher than some value. In [12], it is found that to calcu-
late the frequencies for rotating beam at high centrifugal tension
using one segment and quadruple precision computation failed
for some case due to arithmetic overflow. The failure may be
attributable to the accuracy lost caused by the insufficient preci-
sion used in computation. It seems that the rate of convergence
of the power series solution decreases and the degree of accuracy
lost of the power series solution in computation increases with
the increase of the dimensionless angular velocity �k. The power
series solution using one segment with quadruple precision com-
putation may be still not enough to get the frequencies for slender
rotating beams at very high angular velocity. However, using qua-
druple or higher precision computation may be impractical. To
alleviate the aforementioned numerical difficulties, in this study,
a practical method based on the power series solution is proposed
to solve the natural frequency of slender rotating beam at very
high angular velocity.

In this study, the equations of motion for rotating Euler beam
are derived by the d’Alembert principle and the virtual work prin-
ciple. In order to capture all inertia effect and coupling between
extensional and flexural deformation, the consistent linearization
[21–23] of the fully geometrically non-linear beam theory
[22,23] is used in the derivation. The governing equations for linear
vibration of rotating beam are two coupled linear ordinary differ-
ential equations with variable coefficients. The rotating beam is
subdivided into several equal segments. The solution of each seg-
ment is expressed as a power series with six independent coeffi-
cients. Substituting the power series solution of each segment
into the corresponding boundary conditions at two end nodes of
the rotating beam and the continuity conditions at common node
between two adjacent segments, a set of homogeneous equations
can be obtained. The natural frequencies may be determined by
solving the homogeneous equations using the bisection method.

The dimensionless angular velocity corresponding to each seg-
ment is �k=N, where N is the number of segment. Subdividing the
rotating beam into more segments can make the value of dimen-
sionless angular velocity in the power series solution smaller. We
believe that when the value of dimensionless angular velocity in
the power series solution decrease, the rate of convergence of
power series solution will increase, the accuracy lost in computa-
tion will decrease, and double precision computation will be suffi-
cient to obtain natural frequency with high accuracy for slender
rotating beams at very high angular velocity. This belief will be
examined through numerical examples in the paper. Numerical
examples are studied to investigate the effect of Coriolis force, ro-
tary inertia, angular velocity, hub radius and slenderness ratio on
the natural frequency of rotating beams. The frequency veering
phenomenon [24] induced by the Coriolis force and the centrifugal
force are also investigated.

2. Formulation

2.1. Description of problem

Consider a uniform Euler beam of length L rigidly mounted on
the periphery of rigid hub with radius R rotating about its axis fixed
in space at a constant angular velocity X as shown in Fig. 1. The
deformation displacements of the beam are defined in a rotating
rectangular Cartesian coordinate system which is rigidly tied to
the hub. The origin of this coordinate system is chosen to be the
intersection of the centroid axes of the hub and the undeformed
beam. The X1 axis is chosen to coincide with the centroid axis of
the undeformed beam, and the X2 and X3 axes are chosen to be
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the principal directions of the beam cross-section at the unde-
formed state. The angular velocity of the hub may be given by

X ¼ f0 X sin b X cos b g ð1Þ

where the symbol { } denotes a column matrix, which is used
through the paper, b, the angle between the hub axis and the X3

axis, is the setting angle of the beam.
Here it is assumed that the beam is only deformed in the X1–X3

plane. As mentioned in [15], the flapwise and lagwise bending mo-
tions are coupled for setting angles other than b = 0� and 90�. Thus,
only b = 0� and 90� are considered in this study. When b = 0� and
90�, bending vibrations are flapwise and lagwise, respectively. It
is well known that the beam sustains a steady state axial deforma-
tions (time-independent displacement) induced by constant
rotation [20]. In this study, the vibration (time-dependent dis-
placement) of the beam is measured from the position of the stea-
dy state axial deformation, and only infinitesimal free vibration is
considered. Here the engineering strain and stress are used for the
measure of the strain and stress. It is assumed that the strains are
small and the stress–strain relationships are linear.

2.2. Kinematics of Euler beam

Let P (see Fig. 2) be an arbitrary point in the rotating beam, and
Q be the point corresponding to the beam cross-section of P on the
centroid axis. The position vector of point P in the undeformed and
deformed configurations may be expressed as

r0 ¼ fRþ x y z g ð2Þ
r ¼ fRþ xþ �uðx; tÞ � z sin h y wðx; tÞ þ z cos h g ð3Þ
�uðx; tÞ ¼ usðxÞ þ uðx; tÞ ð4Þ

where t is time, us(x) is the steady state axial deformations induced
by constant rotation, u(x, t) and w(x, t) are the infinitesimal dis-
placements of point Q in the X1 and X3 directions, respectively,
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Fig. 2. Kinematics of deformed Euler beam.
caused by the free vibration, h = h(x, t) is the infinitesimal angle of
rotation of the cross-section passing through point Q about the neg-
ative X2 axis, caused by the free vibration.

From Eq. (3) and the definition of engineering strain [25,26],
making use of the assumption of small strain, and using the
approximation sin h � h � w,x and cos h � 1, the engineering strain
in the Euler beam may be approximated by

e ¼ �u;x þ
1
2

w2
;x � zw;xx ð5Þ
2.3. Equations of motion

The equations of motion for rotating Euler beam are derived by
the d’Alembert principle, the virtual work principle and the consis-
tent first order linearization of the fully geometrically non-linear
beam theory [22,23]. Fig. 3 shows a portion of the deformed centr-
eline of the beam. Here the generalized displacements are chosen
to be �u, w, and h defined in Eq. (3). Note that the approximation
h � w,x is used in this study. The corresponding generalized forces
are F1, F3, and M, the forces in X1, X3 directions, and moment about
negative X2 axis. F1j, F3j, and Mj (j = a, b) in Fig. 3 denote the values
of F1, F3, and M at section j.

For linear elastic material, the virtual work principle may be
written as

dWext ¼ dWint ð6Þ

dWext ¼ ðF1d�uþ F3dwþMdhÞjba ¼
Z b

a

d
dx
ðF1d�uþ F3dwþMdhÞdx

ð7Þ

dWint ¼ E
Z

Vab

detedV þ q
Z

Vab

€rtdrdV ð8Þ

where dWext and dWint are the virtual work of the external forces
and the internal stresses, respectively, ðÞjba is the value of ( ) at sec-
tion b minus the value of ( ) at section a, d�u, dw and dh are the virtual
displacements, de is the variation of e given in Eq. (5), E is Young’s
modulus, Vab is the volume of the undeformed beam between sec-
tion a and section b. The differential volume dV may be expressed
as dV = dA dx, where dA is the differential cross-section area of the
beam, q is the density, dr is the variation of r given in Eq. (3), and
€r ¼ d2r=dt2. The symbol (�) denotes differentiation with respect to
time t. The derivations and explicit forms of de, dr, and €r are pro-
vided in the Appendix.

The exact expression of dWint may be very complicated. How-
ever, due to the assumption of infinitesimal vibration, the quanti-
ties u, w, and h defined in Eqs. (3) and (4), and their derivatives
with respect to x and t are all infinitesimal quantities. For linear
vibration analysis only the terms up to the first order of infinites-
imal quantities are required. All terms up to the first order of infin-
itesimal quantities in dWint are retained. Note that the steady state
b
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Fig. 3. Free body of a portion of deformed beam.
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axial deformations us(x) in Eq. (4) and its derivatives with respect
to x are small finite quantities, not infinitesimal quantities, and
are all retained as zeroth order terms of infinitesimal quantities.

Substituting Eqs. (5), (A.1), (A.2), and (A.5) into Eq. (8), usingR
A zdA ¼ 0,

R
A yzdA ¼ 0, and retaining all terms up to the first order

of infinitesimal quantities, and then substituting Eqs. (7) and (8)
into Eq. (6), and equating the terms in both sides of Eq. (6) corre-
sponding to the same generalized virtual displacements, one may
obtain

F1;x ¼ qA½€uþ 2X _w sin b�X2ðRþ xþ �uÞ� ð9Þ
F3;x ¼ qAð €w� 2X _u sin b�X2w sin2 bÞ ð10Þ
F3 þM;x ¼ EA�u;xw;x þ qIð €w;x �X2w;x cos2 bÞ ð11Þ
M ¼ EIw;xx ð12Þ
F1 ¼ EA�u;x ð13Þ

where I ¼
R

A z2 dA is the principal second moment of the cross-sec-
tion area. Eqs. (9)–(11) are equations of motion and Eqs. (12) and
(13) are constitutive equations.

From Eqs. (9) and (13), and Eqs. (10)–(12), one may obtain

EA�u;xx ¼ qA½€uþ 2X _w sin b�X2ðRþ xþ �uÞ� ð14Þ

EIw;xxxx ¼ EAð�u;xw;xÞ;x � qAð€w�2X _u sin b�X2w sin2 bÞ

þ qIð €w;xx �X2w;xx cos2 bÞ ð15Þ

where the single underlined terms are Coriolis force terms and the
double underlined terms are rotary inertia terms. When b = 0� and
90�, bending vibrations are flapwise and lagwise. respectively. The
flapwise bending vibration and axial vibration are not coupled.
However, due to the effect of the Coriolis force, the lagwise bending
vibration and axial vibration are coupled.

The boundary conditions for a rotating Euler beam with fixed
end at x = 0 and free end at x = L are given by

usð0Þ ¼ uð0; tÞ ¼ 0; wð0; tÞ ¼ 0; w;xð0; tÞ ¼ 0
F1ðL; tÞ ¼ 0; MðL; tÞ ¼ 0; F3ðL; tÞ ¼ 0

ð16Þ
2.4. Steady state axial deformation

For the steady state axial deformations, �uðx; tÞ ¼ usðxÞ,
u(x, t) = w(x, t) = 0. Thus Eqs. (14)–(16) can be reduced to

EAus;xx ¼ �qAX2ðRþ xþ usÞ ð17Þ
usð0Þ ¼ 0; us;xðLÞ ¼ 0 ð18Þ

Let

�k ¼ XL
ffiffiffiffiffiffiffiffiffi
q=E

p
ð19Þ

where �k is a dimensionless angular velocity. If �k� 1, the steady
state axial deformation us(x), which satisfies Eqs. (17) and (18),
may be approximated by [15]

usðxÞ ¼
�k2

L2

�x3

6
� Rx2

2
þ L2x

2
þ RLx

 !
ð20Þ

The maximum value of the steady state axial strain correspond-
ing to the axial deformation given in Eq. (20) occurs at the root of
the beam and may be expressed as

emax ¼ us;xðLÞ ¼ k2ð�r þ 0:5Þ ð21Þ

�r ¼ R
L

ð22Þ

where �r is a dimensionless radius of the rotating hub, and R is the
radius of the rotating hub. In practice, emax should not be larger than
the yield strain. For most engineering materials, the yield strain is
much smaller than unit. In this study, if the maximum steady axial
strain is close to the yield strain, the corresponding angular velocity
is called high angular velocity.

2.5. Free vibration

The vibration of the beam is measured from the position of the
steady state axial deformation. To obtain the natural frequency of
the rotating beam, the beam is subdivided into N equal segments.
The length for each segment is l = L/N. For convenience, the follow-
ing nondimensional variables are used:

nm ¼
x� xm

l
� 1

2
; Um ¼ UðnmÞ ¼

u
l
; Wm ¼WðnmÞ ¼

w
l
;

k ¼
�k
N
; g ¼

�g
N

ð23Þ

�g ¼

ffiffiffiffiffiffiffiffi
AL2

I

s
ð24Þ

where xm 6 x 6 xm+1, xm = (m � 1)l, m = 1, 2, . . . , N, m denotes the
mth segment, �k is defined in Eq. (19), and �g is the slenderness ratio
of the beam.

Note that the segment index m will hereafter be dropped for
simplicity of notation unless clarity is lost.

From Eqs. (4), (14), (15), (19), (20), (23), and (24), the dimen-
sionless governing equations of free vibration for segment m may
be expressed as

U;nn �
ql2

E
ð€U �X2U þ 2X _W sin bÞ ¼ 0 ð25Þ

W ;nnnn � g2ðUs;nW ;nÞ;n �
ql2

E
ð €W ;nn �X2W ;nn cos2 bÞ

� qAl4

EI
ð2X _U sin b� €W þX2W sin2 bÞ ¼ 0

Us;n ¼ �k2ð0:5n2 þ rmn� 0:5Q 2
m � Q mrmÞ ð26Þ

rm ¼ r þm� 1
2
; Q m ¼ N �mþ 1

2
; r ¼ N�r ð27Þ

We shall seek a solution of Eq. (25) in the form

Uðn; tÞ ¼ ½URðnÞ þ iUIðnÞ�eixt ð28Þ
Uðn; tÞ ¼ fU;Wg; URðnÞ ¼ fUR;WRg; UIðnÞ ¼ fUI;WIg ð29Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

, and x is the natural frequency to be determined.
For convenience, the following nondimensional variables are used:

K ¼ K=N ð30Þ
K ¼ xL

ffiffiffiffiffiffiffiffiffi
q=E

p
ð31Þ

where K is a dimensionless natural frequency of the rotating beam.
Introducing Eq. (28) into Eq. (25), it is observed that UI = UR and

WR = �WI. Thus only UR and WI are solved in this study and the cor-
responding governing equations are given by

UR;nn þ aUR þ bWI ¼ 0 ð32Þ
WI;nnnn þ ðcn2 þ dnþ eÞWI;nn þ ð2cnþ dÞWI;n � g2bUR � fWI ¼ 0

a ¼ K2 þ k2
; b ¼ 2Kk sin b; c ¼ 0:5g2k2

; d ¼ g2k2rm ð33Þ
e ¼ K2 þ k2 cos2 b� g2k2ð0:5Q 2

m þ rmQmÞ; f ¼ g2ðK2 þ k2 sin2 bÞ;
2.6. Power series solution

The solution of Eq. (32) can be expressed as a power series in
the independent variable n:
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AðnÞ ¼
UR

WI

� �
¼
X1
n¼0

Cn

Dn

� �
nn ¼

X1
n¼0

Cnn
n ð34Þ

where Cn, Dn are undetermined coefficients.
Substituting Eq. (34) into Eq. (32) and equating coefficients of

like power of n, we obtain the recurrence formula

Cn ¼
X4

j¼1

Aj
nCn�j; n P 4 ð35Þ

C2 ¼ �
1
2
f a b gtC0; C3 ¼ �

1
6
f a b gtC1 ð36Þ

A1
n ¼ 02�2; A2

n ¼
�1

nðn� 1Þ
a b

0 e

� �
;

A3
n ¼

�ðn� 3Þ
nðn� 1Þðn� 2Þ

0 0
0 d

� �
ð37Þ

A4
n ¼

1
nðn� 1Þðn� 2Þðn� 3Þ

0 0
gb f � cðn� 3Þðn� 4Þ

� �

From Eq. (35), It can be seen that only C0, D0, C1, D1, D2 and D3

are independent constants in Eq. (34), and Cn (n P 4) can be rewrit-
ten as

Cn ¼ Yn
0 þ Yn

2Da
� �

C0 þ ðYn
1 þ Yn

3DbÞC1 þ D2Yn
2e2 þ D3Yn

3e2; ð38Þ
n P 4

Yn
i ¼

X4

j¼1

Aj
nYn�j

i ; i ¼ 0;1;2;3 ð39Þ

Yj
i ¼

I if i ¼ j

0 if i – j

�
; i; j ¼ 0;1;2;3 ð40Þ

Da ¼
�1
2

a b

0 0

� �
; Da ¼

�1
6

a b

0 0

� �
; e2 ¼

0
1

� �
ð41Þ

where I and 0 are unit matrix and zero matrix of order 2 � 2,
respectively.

Substituting Eq. (38) into Eq. (34), Eq. (34) can be rewritten
as

AðnÞ ¼ EðnÞC ð42Þ
EðnÞ ¼ E1 E2 E3½ � ð43Þ

E1 ¼ Iþ n2Da þ
X1
n¼4

nnðYn
0 þ Yn

2DaÞ;

E2 ¼ nIþ n3Db þ
X1
n¼4

nnðYn
1 þ Yn

3DbÞ

E3 ¼ E4e2 E5e2½ �; E4 ¼ n2Iþ
X1
n¼4

nnYn
2; E5 ¼ n3Iþ

X1
n¼4

nnYn
3

C ¼ C0 D0 C1 D1 D2 D3f g ð44Þ

where E(n) is a 2 � 6 matrix.
Let n1 = �0.5 and n2 = 0.5 denote the values of the nondimen-

sional coordinates at local nodes j (j = 1, 2) for each segment. Let
Um

j , Wm
j and W 0m

j , and Fm
1j, Fm

3j and Mm
j (j = 1, 2, m = 1 � N) denote

the values of nondimensional generalized displacements U, W
and W,n, and the values of generalized forces F1, F3, and M, respec-
tively, at local nodes j (j = 1, 2) for segment m.

From Eqs. (34) and (42), the generalized displacement vector
Um

j ¼ fUm
j Wm

j W 0m
j g may be expressed as

Um
j ¼ fUm

j Wm
j W 0m

j g ¼ Nm
ujC

m ð45Þ
Nm
uj ¼

et
1EðnjÞ

et
2EðnjÞ

et
2E0ðnjÞ

2
64

3
75 ð46Þ

where Nm
uj is a 3 � 6 matrix, j = 1, 2, m = 1 � N, Cm is the column ma-

trix of undetermined coefficients (Eq. (44)) corresponding segment
m, e1 ¼ f1 0 g, e2 ¼ f0 1 g, E0 ¼ E;n.

From Eqs. (11)–(13), (34) and (42), the generalized force vector
Fm

j ¼ f Fm
1j Fm

3j Mm
j g may be expressed as

Fm
j ¼ f Fm

1j Fm
3j Mm

j g ¼ Nm
Fj C

m ð47Þ

Nm
Fj ¼

EAet
1E0ðnjÞ

EI
l2

et
2½ðg2Us;nðnjÞ � K2 � k2 cos2 bÞE0ðnjÞ � E000ðnjÞ�

EI
l et

2E00ðnjÞ

2
664

3
775 ð48Þ

where Nm
Fj is a 3 � 6 matrix, j = 1, 2, m = 1 � N, E0 ¼ E;n, E00 ¼ E;nn,

E000 ¼ E;nnn.
From boundary conditions given in Eq. (16) and Eqs. (45) and

(47), one may obtain

U1
1 ¼ N1

u1C1 ¼ 0 ð49Þ
FN

2 ¼ NN
F2CN ¼ 0 ð50Þ

From the continuity conditions at common node between two
adjacent segments, Um

2 ¼ Umþ1
1 and Fm

2 ¼ Fmþ1
1 , and Eqs. (45) and

(47), one may obtain

Nm
u2Cm � Nmþ1

u1 Cmþ1 ¼ 0 ð51Þ
Nm

F2Cm � Nmþ1
F1 Cmþ1 ¼ 0 ð52Þ

where m ¼ 1; . . . ;N � 1.
From Eqs. (49)–(52), one may obtain a set of homogeneous

equations expressed by
KðKÞCG ¼ 0 ð53Þ

KðKÞ ¼

N1
u1

N1
u2 �N2

u1

N1
F2 �N2

F1

N2
u2 �N3

u1

N2
F2 �N3

F1

N3
u2

N3
F2

. .
.

�NN�1
u1

�NN�1
F1

NN�1
u2 �NN

u1

NN�1
F2 �NN

F1

NN
F2

2
6666666666666666666666666666664

3
7777777777777777777777777777775

ð54Þ

CG ¼ fC1 C2 C3 � � � CN g ð55Þ
where K(K) denotes K is a function of K defined in Eq. (30), K is a
6N � 6N matrix, and CG is a column matrix of order 6N � 1 assem-
bled from the column matrix Cm (m = 1 � N).

For a nontrivial CG, the determinant of the matrix K must be
equal to zero. The values of K which make the determinant vanish
are called eigenvalues of matrix K and give the natural frequencies
of the rotating Euler beam through K defined in Eq. (31). The bisec-
tion method is used here to find the eigenvalues.
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3. Numerical examples

In order to investigate the effect of the number of segments and
precision used in computation on the convergence rate of solution
and accuracy of the natural frequency for very slender rotating
beam at very high angular velocity, the following cases are consid-
ered: slenderness ratio �g ¼ 1000, setting angle b = 0�, dimension-
less radius of the rotating hub �r ¼ 1; 1:5, dimensionless angular
velocity �k ¼ 0:06 and number of segments N = 1, 2, 3, 5. Computa-
tion is in double precision for all cases. However, quadruple preci-
sion is also used for the cases with N = 1. The maximum steady
state axial strains (Eq. (21)) corresponding to �r ¼ 1 and 1:5 at
�k ¼ 0:06 are emax = 5.4 � 10�3 and 7.2 � 10�3, respectively. Thus,
�k ¼ 0:06 may be regarded as a very high angular velocity for
�r ¼ 1 and 1:5. Let Ki denote the ith dimensionless natural fre-
quency of the rotating beam. The results are shown in Table 1. It
can be seen that the convergence rate of the power series is nearly
the same for all frequencies, and the number of terms used in the
power series decrease with increase in the number of segments. It
is found that the higher frequencies are not obtained for the cases
using one segment and double precision, and except the natural
frequencies obtained using one segment and double precision,
the natural frequencies obtained for the rest cases are identical
to six digits. It is clear that by subdividing the rotating beam into
several segments, one can not only increase the rate of conver-
gence of the power series but also improve the accuracy of the nat-
ural frequency calculated with the same precision. It seems that
double precision used in the computation is sufficient to obtain
accurate natural frequency of rotating slender beam at very high
rotation speed. It can be seen that the number of terms used in
the power series decrease with increase in the number of seg-
ments. To explore a possible explanation for the accuracy lost of
natural frequencies for the cases using one segment and double
precision, the determinant of matrix K (Eq. (53)) as a function of
the dimensionless frequency K calculated with double and quadru-
ple precision are depicted in Fig. 4 for the case with N = 1 and
�r ¼ 1:5. It may be noted that the curve calculated in double preci-
Table 1
Comparison of results for different numbers of segment (b = 0�, �g ¼ 1000, �k ¼ 0:06).

�r i K1
i

I1 K1�
i ; K

1 1 0.095034 120 0.0950
2 0.225414 119 0.2253
3 0.364765 118 0.3647
4 0.520978 120 0.5209
5 0.693584 117 0.6934
6 0.879911 116 0.8797
7 1.07900 115 1.0789
8 1.29057 115 1.2907
9 1.51306 114 1.5153

10 – – 1.5696
11 – – 1.7531
12 – – 2.0045

1.5 1 0.108115 135 0.1079
2 0.253961 133 0.2543
3 – – 0.4098
4 – – 0.5826
5 – – 0.7725
6 – – 0.9767
7 – – 1.1938
8 – – 1.4233
9 – – 1.5696

10 – – 1.6652
11 – – 1.9198
12 – – 2.1875

KN
i ; (N = 1, 2, 3, 5) denote that Ki are obtained using N segments and double precision, a

K1�
i denotes that Ki are obtained using one segment and quadruple precision, and I�1 de

The symbol ‘‘–” denotes that erroneous solution or no converged solution is obtained.
sion is fluctuated around the smooth curve calculated in quadruple
precision. The fluctuation of the curve may be a typical symptom of
accuracy lost due to insufficient precision in computation. It seems
that the accuracy of solution may be improved with increase in
computation precision.

In the rest of the section, we subdivide the rotating beam in to
three segments and use double precision in computation for all
examples studied.

To investigate the effect of Coriolis force and rotary inertia on
the natural frequency of rotating Euler beams, several numerical
examples are studied. Here the following cases are considered:

Ea – All the terms in Eq. (25) are considered.
Eb – The Coriolis force terms (single underlined terms in Eq.
(25)) are not considered.
Ec – The rotary inertia terms (double underlined terms in Eq.
(25)) are not considered.
Ed – The Coriolis force terms and rotary inertia terms are not
considered.

The examples considered are: slenderness ratio
�g ¼ 20; 50; 100, setting angle b = 90�, dimensionless radius of
the rotating hub �r ¼ 0, and dimensionless angular velocity
2
i ; K3

i ; K5
i

I�1 I2 I3 I5

36 120 69 54 41
99 119 68 54 42
33 118 69 54 42
47 120 71 56 44
18 117 69 55 42
99 116 69 54 42
8 115 69 54 42
6 115 69 54 42
3 114 69 54 42
5 114 69 55 42
2 114 69 55 42
9 114 69 55 42

75 135 75 58 44
46 133 75 58 45
29 133 75 59 45
87 133 76 60 46
41 132 77 60 46
37 131 76 59 45
1 130 75 59 45
0 129 75 59 45
5 128 75 59 45
3 128 75 59 45
6 128 75 59 45
8 127 76 59 45

nd IN denote the corresponding number of terms used in the power series.
notes the corresponding number of terms used in the power series.



Table 2
Comparison of results for different cases (b = 90�, �r ¼ 0, N = 3).

�g �k Case K1 K2 K3 K4 K5

20 0 Ea 0.17479 1.05953 1.57080(a) 2.82431 4.71239(a)
Eb 0.17479 1.05953 1.57080(a) 2.82431 4.71239(a)
Ec 0.17580 1.10172 1.57080(a) 3.08486 4.71239(a)
Ed 0.17580 1.10172 1.57080(a) 3.08486 4.71239(a)
Ta 0.17182 0.95696 1.57080(a) 2.33755 4.71239(a)

0.1 Ea 0.17871 1.08105 1.58112(a) 2.84767 4.71573(a)
Eb 0.18006 1.08303 1.56761(a) 2.84892 4.71133(a)
Ec 0.17972 1.12413 1.58132(a) 3.11043 4.71617(a)
Ed 0.18109 1.12632 1.56761(a) 3.11205 4.71133(a)
Ta 0.17530 0.98084 1.58090(a) 2.36838 4.71565(a)

50 0 Ea 0.07026 0.43786 1.21530 1.57080(a) 2.35176
Eb 0.07026 0.43786 1.21530 1.57080(a) 2.35176
Ec 0.07032 0.44069 1.23394 1.57080(a) 2.41804
Ed 0.07032 0.44069 1.23394 1.57080(a) 2.41804
Ta 0.07006 0.42956 1.16396 1.57080(a) 2.18360

0.1 Ea 0.08079 0.49511 1.27989 1.58044(a) 2.42053
Eb 0.08141 0.49574 1.28048 1.56761(a) 2.42096
Ec 0.08086 0.49836 1.29965 1.58046(a) 2.48885
Ed 0.08148 0.49900 1.30026 1.56761(a) 2.48932
Ta 0.08033 0.48736 1.23102 1.58042(a) 2.25797

100 0 Ea 0.03515 0.21999 0.61460 1.20047 1.57080(a)
Eb 0.03515 0.21999 0.61460 1.20047 1.57080(a)
Ec 0.03516 0.22034 0.61697 1.20902 1.57080(a)
Ed 0.03516 0.22034 0.61697 1.20902 1.57080(a)
Ta 0.03513 0.21891 0.60755 1.17564 1.57080(a)

0.1 Ea 0.05009 0.32030 0.73655 1.33525 1.58038(a)
Eb 0.05048 0.32065 0.73685 1.33554 1.56761(a)
Ec 0.05010 0.32084 0.73946 1.34483 1.58039(a)
Ed 0.05049 0.32120 0.73977 1.34513 1.56761(a)
Ta 0.04987 0.31932 0.73034 1.31266 1.58037(a)

a The results of Timoshenko beam are obtained using the method and data given in [15].
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�k ¼ 0; 0:1. The maximum steady state axial strain (Eq. (21)) corre-
sponding to �k ¼ 0:1 is emax = 5 � 10�3. Thus, �k ¼ 0:1 may be re-
garded as a very high angular velocity for �r ¼ 0.

The lowest five natural frequencies of the present study and the
results of Timoshenko beam obtained by the authors using the
method and data given in [15] are shown in Table 2. The natural
frequency corresponding to the fourth lateral vibration mode for
rotating beams with slenderness ratio �g ¼ 20 and 50 is depicted
in Fig. 5. With the consideration of the Coriolis force, except b = 0
or �k ¼ 0, the axial and lateral vibrations are coupled in the vibra-
tion modes. In Table 2, ‘‘(a)” denotes that the corresponding vibra-
tion mode is axial vibration at �k ¼ 0 and is dominated by axial
vibration at �k – 0. From Table 2 and Fig. 5, it can be seen that for
higher natural frequencies of lateral vibration, the discrepancy be-
Ea Eb Ec Ed T
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Fig. 5. The dimensionless natural frequency corresponding to the fourth lateral
vibration mode.
tween the results of Ea and Ec increases with decrease of the slen-
derness ratio. It seems that the effect of the rotary inertia on the
higher natural frequencies of the Euler beam is not negligible when
the slenderness ratio is small. The discrepancy between the results
of Timoshenko beam and Euler beam increases for higher natural
frequencies of lateral vibration with decrease of the slenderness ra-
tio. It indicates that the effect of the shear deformation on the nat-
ural frequencies of beam is not negligible when the slenderness
ratio is small. The difference between the results of Ea and Eb (Ec
and Ed) is still small for all slenderness ratios at high angular veloc-
ity. It seems that the effect of the Coriolis force on the natural fre-
quencies of the rotating Euler beam may be negligible in practice.

To investigate the effect of Coriolis force and centrifugal stiffen-
ing on the coupling of the axial and lateral vibration modes, the fol-
lowing case is considered: b = 90�, �r ¼ 1 and �g ¼ 78. Fig. 6 shows
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Fig. 6. The fourth and fifth natural frequencies verse the dimensionless frequency K
(b = 90�, r = 1, g = 78).
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the fourth and the fifth dimensionless natural frequencies for the
rotating beam considered at different dimensionless angular veloc-
ities. Let mode 4 denote the fourth bending vibration mode at �k ¼ 0
and the vibration mode dominated by the fourth bending vibration
mode at �k – 0. Let mode 5 denote the first axial vibration mode at
�k ¼ 0 and the vibration mode dominated by the first axial vibration
mode at �k – 0. Fig. 7 shows how mode 4 and mode 5 change with
the dimensionless angular velocities. It can be seen from Fig. 6 that
when the beam is stationary, the fourth and the fifth natural fre-
quencies are relatively close, and their modes are mode 4 mode
5, respectively. Because the fourth frequency tend to increase at
a faster rate than that of the fifth frequency, the phenomenon
known as frequency veering [24] is observed. From the natural fre-
quencies in Fig. 6 and the mode shapes in Fig. 7 we can see that at
�k ¼ 0:05 modes corresponding to the fourth and the fifth natural
frequency have switched, i.e., the mode of the fourth frequency is
mode 5 and the mode of the fifth frequency is mode 4. In the
veering region, for example, �k ¼ 0:04, both modes are strongly
coupled.

To investigate the effect of angular velocity on the natural
frequency of rotating Euler beams with different slenderness ra-
tios, the following cases are considered: dimensionless angular
velocity �k ¼ 0; 0:01; 0:03; 0:06, slenderness ratio �g ¼ 20; 50;
100; 500; 1000, setting angle b = 0�, 90�, and dimensionless radius
of the rotating hub �r ¼ 0; 0:5; 1; 1:5. The first dimensionless nat-
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Fig. 7. Mode 4 and mode 5 at different dimensionless frequencies K (b = 90�, r = 1,
g = 78).
ural frequency for rotating beam with different slenderness ration
and �r ¼ 1:5 at different �k is depicted in Fig. 8. The first six dimen-
sionless natural frequencies for different �r and some results avail-
able in [7] are tabulated in Tables 3–6. In Tables 3–6, ‘‘(a)” denotes
that the corresponding vibration mode is axial vibration at b = 0� or
�k ¼ 0 and is dominated by axial vibration at b = 90� and �k – 0. Duo
to the stiffening effect of the centrifugal force, as expected, it can
be seen from Fig. 8 and Tables 3–6 that the lower natural frequen-
cies of lateral vibration increase remarked with increase of angular
velocity and the hub radius for very slender beam. It is seen that
the natural frequencies of flapwise bending vibrations (b = 0�) are
always higher than those of lagwise bending vibrations (b = 90�).
However, their difference becomes much smaller for higher mode.
It may be noted that for b = 0�, the natural frequencies of axial
vibration slightly decrease with increase of angular velocity, but
are independent of the radius of the rotating hub. It can be seen
from Eq. (25) that the axial vibration and the flapping vibration
are not coupled and can be solved independently at b = 0�. The
closed form solution for the natural frequency of axial vibration
at b = 0� may be easily obtained from Eq. (25) and expressed as
K ¼ ½ðnpþ 0:5pÞ2 � �k2�1=2, n = 0, 1, 2, . . . The values of the closed
form solutions and the results given in Tables 3–6 are identical.
It may also be noted that for b = 90�, the dimensionless natural fre-
quencies of axial vibration slightly increase with increase of angu-
lar velocity and the radius of the rotating hub, but slightly decrease
with increase of slenderness ratio of the rotating beam. The de-
crease of the dimensionless natural frequencies of axial vibration
may be caused by the centripetal term X2U in Eq. (30). In this sec-
tion it is mentioned that �k ¼ 0:1 may be regarded as a very high
angular velocity for �r ¼ 0. Thus, the centripetal effect on the
dimensionless natural frequencies of axial vibration of rotating
beam may be negligible in practice.
4. Conclusions

In this paper, the correct governing equations for linear vibra-
tion of a rotating Euler beam are derived. The natural frequencies
of flapwise bending vibration, and coupled lagwise bending and
axial vibration are investigated for the rotating Euler beam. A prac-
tical method based on the power series solution is proposed to
solve the natural frequency of slender rotating beam at very high
angular velocity using double precision computation. The rotating
beam is subdivided into several segments. Two coupled governing
equations for linear vibration of each segment are solved by a
power series with six independent coefficients. Substituting the



Table 3
Dimensionless frequencies for rotating beam with different slenderness ratios (�r ¼ 0, N = 3).

b �k �g K1 K2 K3 K4 K5 K6

0� 0 20 0.17479 1.05953 1.57080(a) 2.82431 4.71239(a) 5.19119
50 0.07026 0.43786 1.21530 1.57080(a) 2.35176 3.82644
100 0.03515 0.21999 0.61460 1.20047 1.57080(a) 1.97618
500 0.00703 0.04407 0.12338 0.24173 0.39954 0.59671
1000 0.00352 0.02203 0.06169 0.12089 0.19984 0.29851

0.01 20 0.17512 1.05982 1.57076(a) 2.82458 4.71238(a) 5.19144
50 0.07110 0.43859 1.21601 1.57076(a) 2.35248 3.82717
100 0.03681 0.22145 0.61604 1.20195 1.57076(a) 1.97768
500 0.01290 0.05089 0.13039 0.24906 0.40706 0.60437
1000 0.01120 0.03364 0.07465 0.13487 0.21444 0.31350

0.03 20 0.17778 1.06206 1.57051(a) 2.82668 4.71229(a) 5.19348
50 0.07749 0.44438 1.22168 1.57051(a) 2.35826 3.83298
100 0.04796 0.23282 0.62742 1.21371 1.57051(a) 1.98966
500 0.03228 0.08787 0.17586 0.30051 0.46227 0.66201
1000 0.03109 0.07847 0.13761 0.21290 0.30413 0.41188

0.06 20 0.18645 1.06960 1.56965(a) 2.83375 4.71201(a) 5.20036
50 0.09583 0.46338 1.24062 1.56965(a) 2.37766 3.85252
100 0.07358 0.26765 0.66425 1.25247 1.56965(a) 2.02949
500 0.06219 0.15692 0.27518 0.42570 0.60804 0.82334
1000 0.06108 0.15072 0.24802 0.36025 0.48701 0.62736

90� 0.01 20 0.17483 1.05976 1.57090(a) 2.82455 4.71242(a) 5.19143
50 0.07039 0.43847 1.21597 1.57089(a) 2.35246 3.82715
100 0.03542 0.22122 0.61596 1.20191 1.57089(a) 1.97766
500 0.00815 0.04990 0.13001 0.24886 0.40694 0.60428
1000 0.00505 0.03212 0.07397 0.13450 0.21420 0.31334
1000[7] 0.00505 0.03212 – - - -

0.03 20 0.17517 1.06152 1.57173(a) 2.82646 4.71269(a) 5.19335
50 0.07142 0.44333 1.22129 1.57166(a) 2.35806 3.83284
100 0.03740 0.23087 0.62669 1.21333 1.57166(a) 1.98942
500 0.01192 0.08258 0.17328 0.29900 0.46129 0.66132
1000 0.00817 0.07250 0.13429 0.21077 0.30264 0.41078

0.06 20 0.17629 1.06746 1.57452(a) 2.83288 4.71359(a) 5.19984
50 0.07461 0.45936 1.23905 1.57427(a) 2.37684 3.85195
100 0.04251 0.26077 0.66148 1.25097 1.57425(a) 2.02856
500 0.01631 0.14495 0.26853 0.42142 0.60506 0.82114
1000 0.01138 0.13822 0.24063 0.35519 0.48328 0.62447

Table 4
Dimensionless frequencies for rotating beam with different slenderness ratios (�r ¼ 0:5, N = 3).

b �k �g K1 K2 K3 K4 K5 K6

0� 0.01 20 0.17535 1.06001 1.57076(a) 2.82476 4.71238(a) 5.19163
50 0.07165 0.43907 1.21651 1.57076(a) 2.35300 3.82769
100 0.03786 0.22242 0.61704 1.20301 1.57076(a) 1.97877
500 0.01560 0.05495 0.13504 0.25413 0.41239 0.60986
1000 0.01417 0.03941 0.08229 0.14385 0.22426 0.32389

0.03 20 0.17974 1.06377 1.57051(a) 2.82834 4.71229(a) 5.19514
50 0.08191 0.44868 1.22613 1.57051(a) 2.36290 3.83770
100 0.05477 0.24099 0.63621 1.22305 1.57051(a) 1.99933
500 0.04141 0.10696 0.20338 0.33491 0.50166 0.70490
1000 0.04043 0.09877 0.16906 0.25554 0.35715 0.47391

0.06 20 0.19384 1.07636 1.56965(a) 2.84040 4.71201(a) 5.20697
50 0.10946 0.47966 1.25799 1.56965(a) 2.39597 3.87125
100 0.09036 0.29495 0.69649 1.28804 1.56965(a) 2.06696
500 0.08087 0.19752 0.33807 0.51095 0.71403 0.94734
1000 0.07997 0.19196 0.31256 0.44930 0.60145 0.76716

90� 0.01 20 0.17505 1.05995 1.57090(a) 2.82474 4.71242(a) 5.19161
50 0.07094 0.43896 1.21646 1.57089(a) 2.35298 3.82768
100 0.03651 0.22220 0.61696 1.20296 1.57089(a) 1.97874
500 0.01197 0.05403 0.13467 0.25394 0.41226 0.60978
1000 0.01004 0.03812 0.08168 0.14350 0.22404 0.32373

0.03 20 0.17716 1.06323 1.57173(a) 2.82813 4.71269(a) 5.19501
50 0.07618 0.44765 1.22573 1.57167(a) 2.36270 3.83756
100 0.04580 0.23910 0.63548 1.22267 1.57166(a) 1.99909
500 0.02853 0.10266 0.20115 0.33356 0.50076 0.70425
1000 0.02709 0.09409 0.16637 0.25376 0.35588 0.47296

0.06 20 0.18404 1.07422 1.57453(a) 2.83952 4.71359(a) 5.20644
50 0.09137 0.47576 1.25643 1.57428(a) 2.39515 3.87068
100 0.06740 0.28870 0.69384 1.28658 1.57426(a) 2.06605
500 0.05406 0.18812 0.33266 0.50738 0.71148 0.94541
1000 0.05272 0.18228 0.30671 0.44525 0.59843 0.76479
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Table 5
Dimensionless frequencies for rotating beam with different slenderness ratios (�r ¼ 1:0, N = 3).

b �k �g K1 K2 K3 K4 K5 K6

0� 0.01 20 0.17557 1.06020 1.57076(a) 2.82495 4.71238(a) 5.19181
50 0.07219 0.43956 1.21700 1.57076(a) 2.35352 3.82822
100 0.03888 0.22339 0.61805 1.20406 1.57076(a) 1.97985
500 0.01788 0.05870 0.13950 0.25909 0.41763 0.61530
1000 0.01661 0.04437 0.08915 0.15217 0.23358 0.33387

0.03 20 0.18169 1.06547 1.57051(a) 2.83001 4.71229(a) 5.19679
50 0.08609 0.45294 1.23056 1.57051(a) 2.36753 3.84241
100 0.06080 0.24888 0.64484 1.23231 1.57051(a) 2.00894
500 0.04882 0.12287 0.22694 0.36528 0.53741 0.74468
1000 0.04793 0.11532 0.19472 0.29058 0.40138 0.52663

0.06 20 0.20094 1.08307 1.56965 2.84703 4.71201 5.21357
50 0.12153 0.49536 1.27507 1.56965 2.41411 3.88986
100 0.10442 0.31976 0.72703 1.32243 1.56965 2.10361
500 0.09585 0.23062 0.38939 0.58102 0.80246 1.05271
1000 0.09504 0.22540 0.36473 0.52095 0.69342 0.87980

90� 0.01 20 0.17528 1.06014 1.57090(a) 2.82492 4.71242(a) 5.19180
50 0.07149 0.43944 1.21696 1.57089(a) 2.35349 3.82820
100 0.03757 0.22316 0.61796 1.20402 1.57089(a) 1.97983
500 0.01482 0.05784 0.13914 0.25889 0.41751 0.61521
1000 0.01326 0.04323 0.08859 0.15184 0.23336 0.33372
1000[7] 0.01326 0.04324 – – – –

0.03 20 0.17913 1.06493 1.57173(a) 2.82979 4.71269(a) 5.19666
50 0.08066 0.45192 1.23016 1.57167(a) 2.36732 3.84227
100 0.05286 0.24704 0.64413 1.23193 1.57166(a) 2.00871
500 0.03849 0.11914 0.22494 0.36404 0.53657 0.74407
1000 0.03735 0.11134 0.19239 0.28902 0.40025 0.52578

0.06 20 0.19147 1.08093 1.57454(a) 2.84615 4.71359(a) 5.21304
50 0.10546 0.49158 1.27353 1.57429(a) 2.41330 3.88930
100 0.08524 0.31398 0.72448 1.32100 1.57426(a) 2.10271
500 0.07454 0.22260 0.38469 0.57787 0.80018 1.05098
1000 0.07349 0.21719 0.35972 0.51744 0.69079 0.87773

Table 6
Dimensionless frequencies for rotating beam with different slenderness ratios (�r ¼ 1:5, N = 3).

b �k �g K1 K2 K3 K4 K5 K6

0� 0.01 20 0.17579 1.06039 1.57076(a) 2.82513 4.71238(a) 5.19199
50 0.07273 0.44005 1.21750 1.57076(a) 2.35403 3.82874
100 0.03987 0.22435 0.61905 1.20511 1.57076(a) 1.98093
500 0.01990 0.06221 0.14380 0.26392 0.42280 0.62067
1000 0.01872 0.04878 0.09542 0.15995 0.24244 0.34349

0.03 20 0.18361 1.06717 1.57051(a) 2.83168 4.71229(a) 5.19845
50 0.09008 0.45716 1.23496 1.57051(a) 2.37214 3.84712
100 0.06628 0.25650 0.65335 1.24149 1.57051(a) 2.01849
500 0.05522 0.13680 0.24784 0.39270 0.57031 0.78188
1000 0.05438 0.12967 0.21697 0.32102 0.44004 0.57314

0.06 20 0.20780 1.08974 1.56965(a) 2.85364 4.71201(a) 5.22015
50 0.13248 0.51055 1.29188 1.56965(a) 2.43209 3.90837
100 0.11675 0.34262 0.75609 1.35575 1.56965(a) 2.13949
500 0.10875 0.25933 0.43388 0.64187 0.87974 1.14567
1000 0.10798 0.25435 0.40983 0.58269 0.77254 0.97674

90� 0.01 20 0.17550 1.06033 1.57090(a) 2.82511 4.71242(a) 5.19198
50 0.07204 0.43993 1.21746 1.57089(a) 2.35401 3.82873
100 0.03860 0.22413 0.61896 1.20507 1.57089(a) 1.98091
500 0.01720 0.06141 0.14345 0.26373 0.42268 0.62059
1000 0.01582 0.04775 0.09490 0.15964 0.24224 0.34335

0.03 20 0.18108 1.06663 1.57173(a) 2.83146 4.71269(a) 5.19832
50 0.08490 0.45614 1.23457 1.57167(a) 2.37194 3.84698
100 0.05907 0.25472 0.65265 1.24111 1.57166(a) 2.01826
500 0.04632 0.13345 0.24601 0.39155 0.56952 0.78130
1000 0.04532 0.12614 0.21488 0.31961 0.43901 0.57235

0.06 20 0.19862 1.08760 1.57455(a) 2.85276 4.71360(a) 5.21962
50 0.11784 0.50687 1.29036 1.57429(a) 2.43127 3.90780
100 0.09989 0.33722 0.75363 1.35435 1.57427(a) 2.13860
500 0.09045 0.25220 0.42965 0.63902 0.87766 1.14407
1000 0.08952 0.24708 0.40536 0.57955 0.77017 0.97486

1000 C.L. Huang et al. / Computers and Structures 88 (2010) 991–1001
power series solution of each segment into the corresponding
boundary conditions at two end nodes of the rotating beam and
the continuity conditions at common node between two adjacent
segments, a set of homogeneous equations can be obtained. The
natural frequencies may be determined by solving the homoge-
neous equations using the bisection method.
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The effect of the number of segments on the convergence rate of
solution and accuracy of the natural frequency for very slender
rotating beam at very high angular velocity are investigated using
numerical examples. It is demonstrated that the accuracy of solu-
tion and the rate of convergence of the power series solution can
be improved with increase in the number of segments. The rotating
beam is subdivided into three segments and double precision in
computation is used for all examples studied. Due to effect of the
Coriolis force and centrifugal stiffening, frequency veering phe-
nomenon is observed when two natural frequencies corresponding
to axial vibration and lateral vibration are close. Duo to the effect of
the centrifugal stiffening, the lower natural frequencies of lateral
vibration increase remarked with increase of angular velocity and
the hub radius for very slender beam.

Finally, it may be emphasized that, although the proposed
method are only applied to the uniform rotating cantilever beams
here, the present method can be easily extended to non-uniform
rotating beams with discontinuities, as well as with other end
conditions.

Appendix A. Derivations and explicit forms of de, dr, and €r

From Eqs. (3) and (5), using the approximation h � w,x, and
retaining all terms up to the first order of infinitesimal quantities,
dr and de may be approximated by

dr ¼ f d�u� zdw;x 0 dw� zw;xdw;x g ðA:1Þ

de ¼ d�u;x þw;xdw;x � zdw;xx ðA:2Þ

The second time derivative of r in Eq. (3) may be expressed as

€r ¼ €riei þ 2_ri _ei þ ri€ei ðA:3Þ
_ei ¼ X� ei; €ei ¼ X� _ei ðA:4Þ

where i = 1, 2, 3 and X is given in Eq. (1).
From Eqs. 1, 3, and A.4, using the approximation h � w,x, €r in Eq.

(A.3) may be approximated by

€r ¼
€u� z €w;x þ 2X _w sin bþX2½�ðRþ xþ �uÞ þ zw;x�

2Xð _u� z _w;xÞ cos bX2y cos2 bþX2ðzþwÞ sin b cos b

€wþ 2Xð� _uþ z _w;xÞ sin bþX2y sin b cos b�X2ðzþwÞ sin2 b

8><
>:

9>=
>;

ðA:5Þ
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