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Vision-Based Autonomous Vehicle Guidance for
Indoor Security Patrolling by a SIFT-Based
Vehicle-Localization Technique

Kuan-Chieh Chen and Wen-Hsiang Tsai, Senior Member, IEEE

Abstract—A novel method for guidance of vision-based
autonomous vehicles for indoor security patrolling using scale-
invariant feature transformation (SIFT) and vehicle localization
techniques is proposed. Along-path objects to be monitored are
used as landmarks for vehicle localization. The localization work
is accomplished by three steps: SIFT-based object image feature
matching, 2-D affine transformation using the Hough transform,
and analytic 3-D space transformation. Object monitoring can be
simultaneously achieved during the vehicle-localization process,
and most planar-surfaced objects can be utilized in the process,
greatly enhancing the applicability of the proposed method. Vehi-
cle trajectory deviations from the planned path due to mechanic
error accumulation are also estimated by setting up a calibra-
tion line on the monitored object image and applying the 3-D
space transformation. Moreover, a path-correction technique is
proposed to conduct a path adjustment and guide the vehicle to
navigate to the next path node. Analysis of the accuracy of the
vehicle-localization and path-correction results is finally included.
The experimental results show that the proposed method, utilizing
only a single view of each object, can guide the vehicle to navigate
accurately and monitor objects successfully.

Index Terms—Autonomous vehicle, computer vision, guidance,
landmarks, planar-surfaced objects, scale-invariant feature trans-
formation (SIFT), security patrolling, vehicle localization, 3-D
space transformation.

I. INTRODUCTION

N RECENT years, due to fast developments of computer
vision techniques, studies on vision-based autonomous ve-
hicle navigation have high prominence because of their great
potential in various applications [1]-[8]. Autonomous vehicles
are becoming increasingly capable of performing a great va-
riety of dangerous or dreary work to replace human beings
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in applications of interoffice document delivering, unmanned
transportation, house cleaning, security patrolling, etc. The goal
of this study is to develop an autonomous vehicle system
for indoor security patrolling applications. The major issue
in this study is to make the vehicle precisely navigate in its
patrolling path. This may be accomplished by accurate vehicle
localization in each navigation cycle.

Traditionally, an autonomous vehicle is equipped with an
odometer to measure the current location of the vehicle with
respect to a starting point. However, this scheme usually suffers
from incremental mechanic errors that are caused by the vehicle
wheel system. On the other hand, it is common to equip vehicles
with visual cameras that provide more flexible visual informa-
tion for navigation control. It is, thus, desired to develop an
automatic vision-based vehicle-localization technique to over-
come the mechanic error-accumulation problem. One way to
achieve this goal is to utilize the features of artificial landmarks
or natural scenes in the environment to locate the vehicle by fea-
ture matching. Chou and Tsai [9] proposed a method to utilize
house corners to estimate vehicle locations. Okuma et al. [10]
used a colored marker for camera pose estimation. Huang et al.
[11] used a colored rectangular signboard to obtain the relative
position of the vehicle by calculating the vanishing points in
the signboard image. Wu and Tsai [12] used a circular shape
that is attached on the ceiling for vehicle-location estimation
using an upward-looking omni-camera equipped on the vehicle.
Xu et al. [13] utilized parallel lines and corner points on ceilings
as features for vehicle localization.

Most of the aforementioned methods can only deal with land-
marks with specific shapes or in ideal backgrounds, resulting
in unreasonable restrictions on the environment in which the
vehicle can navigate. Another approach to vehicle localization
[14]-[17], [26] is to represent vehicle locations as a visual
path that consists of a set of reference node images and a
topological graph. Each node in the graph corresponds to a
vehicle location, and each between-node link represents a path
segment through which the vehicle can navigate. The vehicle-
localization process is performed by finding the reference node
image that is most similar to the current location view and
then accordingly estimating the relative vehicle position. By
repeating this process, the vehicle may be guided to follow
the visual path. However, such a continuous image-matching
process acquires the along-path environmental images very
frequently, even at nonnode spots, and are therefore very time
consuming, resulting in slow navigation speeds, in general.
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In this paper, a vision-based method for indoor security pa-
trolling is proposed, which conducts vehicle localization using
the image features of along-path fixed objects to be monitored.
Such a type of object is abundant in indoor environments and,
thus, can be used as a landmark for vehicle localization. An
advantage of this method of localization by along-path objects
is that vehicle-location estimation and object monitoring can be
conducted simultaneously.

More specifically, the security patrolling process as proposed
is divided into two stages: learning and navigation. In the
learning stage, the vehicle is instructed to learn relevant infor-
mation of a preselected path and the along-path objects to be
monitored. In the navigation stage, the vehicle moves along the
learned path and visits each node where a concerned object is
located. Since the position of an object in an image of it will
be just close to, instead of exactly at, the position of the object
found in a reference image acquired in the learning stage, we
adopt the scale-invariant feature transformation (SIFT) tech-
nique proposed by Lowe [18]-[20] for image feature extraction
and matching. Accordingly, any planar-surfaced object can be
utilized as a landmark, leading to the great improvement on the
flexibility to choose a landmark.

After the image-matching step is conducted, an affine trans-
formation between the image taken in the learning stage and
that taken in the navigation stage is estimated from the matching
result using the Hough transform. Then, a line called the
calibration line is set up in the object image to compute
the deviation of the vehicle trajectory from its correct path
by utilizing the found affine transformation and an analytic
3-D transformation technique proposed in this paper. Finally,
a path-correction technique is proposed to guide the vehicle to
navigate more accurately to the next object to be monitored.
Only single views of the monitored objects are needed for
vehicle localization and object monitoring. With reasonable
between-node distances, the proposed method can guide the
vehicle to smoothly navigate specified paths without hitting the
walls in the environment, as demonstrated by the experiments
conducted in this study.

In the remainder of this paper, the problem dealt with in this
paper and the advantages of the proposed method are described
in Section II. The detail of the proposed analytic 3-D trans-
formation technique is described in Section III. The proposed
path-correction technique utilizing the 3-D transformation re-
sult is presented in Section IV. The proposed object image-
matching scheme based on the SIFT to find the transformation
between two images is given in Section V. Some experimental
results are described in Section VI, followed by conclusions in
Section VIIL

II. IDEA OF THE PROPOSED METHOD

The vehicle used as a test bed in this study is shown in
Fig. 1(a). An odometer in the vehicle provides three parameters
of the vehicle location in each navigation cycle—one parameter
for the vehicle orientation and the other two for the x- and
y-coordinates of the vehicle position in the real-world space.
A pan-tilt-zoom (PTZ) camera is equipped on the vehicle for
image acquisition, as shown in Fig. 1(b).
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Fig. 1. Autonomous vehicle system used in this study. (a) Vehicle. (b) PTZ
camera equipped on the vehicle.

A. Problem Definition and Advantages
of the Proposed Method

The problem investigated in this paper is defined here. A
vehicle navigates in an indoor environment along a preselected
path on which a number of objects are to be monitored. These
objects are utilized for vehicle localization, each with at least a
planar surface facing the vehicle. Such objects may be posters,
paintings, boxes, etc. They need not be manmade; instead, even
wall planes with granite surfaces, for example, are also appro-
priate. The vehicle visits each object in a navigation session to
monitor the existence of the object, uses the features existing in
the object’s surface image to find the deviation of the vehicle
from the planned trajectory, and corrects its pose (including its
position and orientation) before moving to the next node, where
another object is to be monitored. This way, several advantages
can be identified, as described in the following.

1) The proposed method is more flexible than traditional
ones, which require landmarks with special shapes
(circles, rectangles, etc.).

2) The proposed method utilizes single views of fixed object
scenes for vehicle localization, which is simpler than
many visual path-following techniques [14]-[17], [26]
utilizing contents of the entire environmental views.

3) Object monitoring and vehicle localization may be si-
multaneously conducted to save time and speed up
navigation.

4) Objects with planar surfaces are abundant in indoor envi-
ronments so that the localization work can be frequently
carried out along the navigation path to guide the vehicle
more effectively.

5) Frequent vehicle localization is advantageous as an aid
for path correction during navigation, overcoming the
mechanical error-accumulation problem that is often
encountered in autonomous vehicle guidance.

B. Main Idea of Vehicle Localization
by Planar-Surfaced Objects

The main idea of using a planar-surfaced object for vehicle
localization, as proposed in this paper, is to set up a reference
coordinate system (RCS) on a line, which is called the
calibration line, on the object surface with one end of the line
as the origin of the system and compute the vehicle location
(including its position and orientation) with respect to this coor-
dinate system. Also, the calibration line is selected to be parallel
to the environment floor and is used as an axis of the RCS.
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Fig. 2. Two methods for creating a calibration line. (a) Using a line stand
affixed with a line structure. (b) Manually drawing a virtual line in the image
(the green one on the top of the poster).

To set up the calibration line, it is noted that a manmade
object often has rectangular surface shapes, on which a real
line can be detected for this purpose. For an object that does not
have line features on its planar surface, for example, a granite-
surfaced wall, it is proposed in this paper to create for it a
virtual (physically nonexistent) calibration line by two ways:
1) putting right under the object a “line stand” affixed with a
line structure (e.g., a straight steel wire or a line on the surface
of the stand) and then automatically detecting the line in the
image or 2) drawing in the object image a line that is parallel
to the environment floor using any clue of the image features.
See Fig. 2 for an illustration.

With the allowance of a virtual line as an axis of the RCS,
the flexibility of choosing objects for use as vehicle-localization
landmarks is greatly raised. This is another advantage of the
proposed method.

C. Sketch of the Proposed Navigation Process

In the navigation stage, the vehicle moves from one node to
another according to the path that is learned in the learning
stage. Vehicle localization at a node along the path is imple-
mented to include three stages: SIFT-based feature matching,
2-D affine transformation, and analytic 3-D space transforma-
tion. The first stage is to match the SIFT feature vectors of two
monitored object images, i.e., one taken in the navigation stage
and the other taken in the learning stage. The second stage is
to find an affine transformation from the matching results using
the Hough transform [21]. In addition, the third stage is to find
the vehicle location based on a new technique of analytic 3-D
space transformation proposed in this paper. More details are
described in the following, where the two images mentioned
above taken in learning and navigation stages are denoted as Ir,
and Iy, respectively.

Algorithm 1: autonomous vehicle navigation process.
Stage 1—SIFT-based feature matching for finding similar
feature point pairs.

1) Apply the SIFT to Iy to obtain a set F of SIFT feature
vectors, and retrieve the corresponding feature vector set
Fy, of I, which was obtained in the learning stage.

2) Take every pair of similar feature vectors, i.e., one from
F1, and the other from Fy, to define a group of four
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(b)

Fig. 3. Object images I, and I taken in learning and navigation stages.
(a) Red calibration line I, detected or selected manually. (b) Cyan calibration
line I (on the top of the poster) generated by applying the transform 7.

parameters of an affine transformation from Iy, to I,
where the feature vector similarity is as defined in [18].

Stage 2—2-D affine transformation for finding the relative
mapping between images taken in learning and navigation.

3) Put all found parameter groups into a Hough space.

4) Detect the peak in the space.

5) Find the affine transform 7' corresponding to the peak,
and take it to represent the best relative mapping from I,
to In.

Stage 3—analytic 3-D space transformation for computing
the deviation of the vehicle from the planned trajectory and
conducting path correction.

6) Use T to transform the calibration line [;,, which was
automatically detected or manually selected in Iy, in the
learning stage, into the image space of Iy, resulting in a
new image line in I, which is denoted as Iy (see Fig. 3
for an example, and note that if the navigation incurs
no deviation from the planned path, then [y, and [x will
perfectly match in position).

7) Unambiguously transform [y, and [y into the RCS accord-
ing to an analytic 3-D transformation process (proposed
in this paper and described later in the next section) from
the image space to the RCS to obtain two sets Sy, and
Sn of vehicle poses with respect to the RCS, i.e., one for
the learning stage and the other for the navigation stage,
respectively.

8) Use ST, and Sy to derive the translation V; and the ori-
entation 6; of the vehicle’s current location with respect
to its location planned in the learning stage, and call
the parameter set (V;,0,) the deviation of the vehicle
trajectory.

9) Use the deviation (V;, 6;) to derive a sequence of vehicle
commands to guide the vehicle to the correct path learned
in advance, and continue the navigation work for the next
session.

D. Advantages of Using SIFT for Object Image Matching

The use of the SIFT as described above is advantageous in
several aspects. First, in traditional vehicle-localization tech-
niques, obvious features like lines and curves on landmarks are
detected. However, this limits the variety of objects for use as
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landmarks because it is not always true that there exist obvious
line or curve features on an object’s surface. Use of the SIFT
followed by the Hough transform removes this inconvenience;
any point pattern on the object surface may be utilized, leading
to great improvement in the flexibility to select objects as
landmarks. Nearly all point-patterned object surfaces may be
used as landmarks, as found in this paper. This also leads to
the previously mentioned convenience of selecting a virtual
calibration line on the object surface to construct an RCS for
vehicle localization and path correction.

E. Sketch of the Proposed Learning Process

In the proposed learning stage, when the user drives the
vehicle to visit each object to be monitored, relevant data are
recorded, including the navigation path, the SIFT feature vec-
tors of the monitored object, and the calibration line parameters.
All data are saved in a learning database such that the learning
process need only be conducted once, and the database can
be repeatedly used in every navigation session. The proposed
learning process is sketched in the following.

Algorithm 2: navigation path-learning process.

1) Direct the PTZ camera on the vehicle toward the object
when the vehicle arrives at a spot in front of an object 5.

2) Take an image of B, and draw, as I, a rectangle to-
enclose B.

3) Apply the SIFT to I, to obtain a set Fy, of SIFT feature
vectors.

4) Automatically detect or manually select a calibration line
lr, in I, by either of the two ways of calibration line
creation mentioned previously.

5) Save the set F1, and the parameters of [y, in the path node
for B.

6) Repeat the above steps for the next object to be monitored
until all concerned along-path objects are “learned.”

III. ANALYTIC 3-D SPACE TRANSFORMATION FROM
IMAGE SPACE TO REAL-WORLD SPACE
FOR VEHICLE LOCALIZATION

Vehicle localization and computation of the deviation of the
vehicle trajectory are made possible by the use of the calibration
line and unambiguous mapping of the image space to the real-
world space specified by the previously mentioned RCS, as
described in the following.

Let (X,Y, Z) denote the RCS that is set up on the calibration
line L and one of its two endpoints, i.e., Ry, with L taken to be
the X -axis of the RCS and R, to be the origin. An illustration
of the system is shown in Fig. 4. Recall that the calibration line
L, possibly virtual, is assumed to be parallel to the floor so that
the X —Y plane of the RCS, as illustrated, is parallel to the floor
as well. Also, the images of L in I, and Iy, respectively, are [f,
and [y, as mentioned previously. The configuration of the three
axes of the RCS may be regarded as being similar to a virtual Y -
shaped corner attached on the ceiling of a house, and therefore,
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Fig. 4. Virtual house corner specified by a given calibration line (the cyan line
on the top of the poster) and one of its end point (the red point on the left-top
corner of the poster).

the vehicle location-estimation method using house corners,
which was proposed by Chou and Tsai [9], can be employed
and simplified to estimate the location (including the position
and the direction) of the vehicle with respect to the RCS
(i.e., with respect to the object to be monitored). This means
that while the object is being monitored, localization of the
vehicle with respect to the object is achieved simultaneously,
as mentioned previously.

More specifically, the X- and Y'-axes may be regarded to
specify the two perpendicular lines on the ceiling plane of the
virtual house corner, and the Z-axis specifies the virtual line
perpendicular to the X- and Y-axes, as shown at the left top
of Fig. 4. Also shown in the figure are 1) a camera coordinate
system (CCS), which is set up on the camera equipped on the
vehicle with the lens center as the origin and the optical axis as
one of its three axes (the WW-axis) and 2) an image coordinate
system (ICS), which is set up in the image taken by the camera.
Before deriving the location of the vehicle, we derive that of the
camera as an intermediate result in the following.

Let the projection of L and Ry in an image be denoted as [
and r(, respectively. Also, let the image coordinates of ry be
(ug,vp). Assume that the equation of [ in the ICS in terms of
image coordinates (u,v) is described by u + bv 4+ ¢ = 0. The
pose of the camera may be represented by three position param-
eters X, Y., and Z,, as well as three orientation parameters 6,
1, and w, as described in the following.

1) Z. is the distance from the camera to the ceiling of
the virtual house corner, which is assumed to be known
(manually measured in advance).

2) 6 is the angle between the optical axis of the camera and
the Y'-axis of the RCS.

3) 9 is the angle of the optical axis of the camera with
respect to the RCS, which is also assumed to be known
(provided by the PTZ camera system).

4) w is the swing angle of the camera, which is set to zero in
this study.

Accordingly, the camera pose may be described just by three

parameters X, Y., and €, which may be derived in terms of
the two coefficients b and ¢ of the equation of [. At first,
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we transform the RCS coordinates into the CCS coordinates
using four steps: 1) Translate the origin Ry of the RCS with
coordinates (X, Y., Z.) to the origin of the CCS; 2) rotate the
X —Y plane about the Z-axis through the pan angle € such that
the Y —Z plane is parallel to the V —W plane of the CCS (see
Fig. 4); 3) rotate the Y —Z plane about the X -axis through the
tilt angle v such that the X —Y plane is parallel to the U—V
plane; and 4) reverse the Z-axis such that the positive direction
of the Z-axis is identical to the negative direction of the W -axis.

As a result, the transformation of the RCS coordinates
(2,9, 2) of a point in the 3-D real-world space into the CCS
coordinates (u, v, w) may be described by

(u,v,w,1) = (x,y,2,1) - T, (1)
where
cos) —sinfcosty —sinfsiny 0
0 IR A
To Yo 20 1
with

2o = — X.cos6 —Y_.sin0
yo = (Xcsinh — Y. cos ) cos ) — Z,sinp
20 = (X¢sinf — Y. cos6) siny + Z. cos . 3)
Next, let P be any point on the X-axis (the calibration line
L) with RCS coordinates (z, 0, 0). Then, its CCS coordinates
(tg, vz, w,) can be derived, using the matrix 7. described
above, to be
(ul‘7 Vgy Wy 1) = (l‘, 0,0, 1) T,
= (z cosf + xg, —x sin f cos ¥ + yo

—xsinfsiny + 2o, 1). 4)
Therefore, we have

U, =xcosl + xg

Vp = — xsinf cosy + yo

wy = — xsinfsiny + zg. ®))
Also, let (u,,v,) be the image coordinates of the projection

of P in the ICS. Then, according to the camera’s optical
geometry, we have the following:

_wz-up
f

Wy - Vp

f

Ug

(6)

Vg

where f is the camera focus length, which is assumed to be
known. Substituting the values of u,, v,, and w, of the three
equations of (5) into the above two equations and eliminating
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the variable x, we get the equation for the projection of the
calibration line [ (the X -axis) in the image plane as follows:

zp cos O + xgsinf siny
v
—yosin@sin + zpsinfcosyp ¥
B J+ (yo cosO + xgsin 6 cos ) —0.

—yosin@siny + zgsinfcostp

Up +

Furthermore, assume that the equation of the calibration line
(Ix or Iy, mentioned previously) in the ICS is uy, 4 bv, + ¢ =
0, which can be obtained from the image, i.e., b and c are
known. Then, by comparing the coefficients of this equation
with those of (7) and substituting the values of g, yo, and
zp previously described in (3) into the result, we obtain the
following equalities:

_ Yesing) — Z. cos 6 cos

b —Z.sinf ®
. f-(=Y.cosv —.Zc cos@smw). ©)
—Z.sin6

Since b, ¢, and Z, in the above equations are known values,
we can now derive the values of Y, and 6. This is done first by
eliminating Z. and Y, from the above equalities to get

f
fbcosy + csinyp

from which the value of # can be obtained. Also, from (8), we
can get the value of Y, as

Z.cosfcosy —bZ,sinb
sin 1) ’

By substituting the values of § and Y, above as well as the
coordinates (ug, vg) of ¢ (the projection of the origin Ry of
the RCS) into (7) with the values of xg, 39, and zy described
by (3), we get, finally, after some equation simplifications, the
following for computing X :

tanf =

(10)

Y. = (1)

P o (Y cos @ costp + Z.sinsin @) — Youg sin @
c .

ug sin 6 cos ¥ + vg cos 0 (12)

In summary, we have completed the derivations of (10)—(12)

for computing the parameters X, Y¢, and 6 of the camera pose
using the following known data:

1) the coefficients b and c of the equation u + bv + ¢ = 0 of
the calibration line in the image;

2) the height Z. of the virtual ceiling above the camera (i.e.,
the height of the calibration line above the camera in the
real-world space);

3) the tilt angle ¢ of the camera provided by the PTZ camera
system;

4) the image coordinates (ug,vg) of the origin Ry of the
RCS and the focal length f of the camera.

IV. PATH CORRECTION

We now describe the proposed path-correction process for
use in the navigation stage. With the camera pose described by
(X.,Y.) and 0 with respect to the RCS on the planar surface
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Fig. 5. Top view of the relations among the vehicle, camera, and reference
coordinate systems.

of an object as derived in the previous section, we want to
accordingly derive the location of the vehicle with respect to the
RCS. For this, we define an additional coordinate system, which
is called the vehicle coordinate system (VCS), as illustrated in
Fig. 5. The VCS is 2-D with its origin located at the middle
point of the line segment joining the centers of the two vehicle
wheels, which is called the center of the vehicle in the sequel.
The y-axis of the VCS is defined to align with this line segment,
and the z-axis is defined to be perpendicular to the y-axis and
parallel to the ground. The location of the vehicle with respect
to the RCS is described by the orientation #,, and the translation
(X,,Y,) of the vehicle in the RCS, which are easy to derive by
the geometry shown in Fig. 5 to be as follows:

91} :9c+9+900
X, =X.— D,cos0,

Y, =Y.+ D.sin#, (13)
where 6, is the pan angle of the camera provided by the PTZ
camera system, and D, is the distance between the camera and
the center of the vehicle (assumed to be known in advance by
manual measurement). For convenience, the vehicle location
will be described by the 3-tuple (X, Y, 0,) in the sequel.

We now describe how to correct the path of the vehicle at
a certain node N in front of an object using the information
of the current vehicle location Sy = (Xn, Yn, 0n), as well as
that of the learned vehicle location Sy, = (X1, Y1, 01.), which
is obtained through a similar process for obtaining the current
vehicle location, as described previously. On the other hand,
let the current and learned vehicle locations in the global coor-
dinate system (GCS) be described by Sy = (X{, Y, 0y) and
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St = (X{,,Y{,0;), respectively, where the latter was provided
by the odometer during the learning stage, whereas the former is
to be derived now using the relation among the RCS, VCS, and
GCS illustrated in Fig. 5. The basic idea is to find the relative
angle and translation between the current vehicle location Sy
and the learned one S, in the RCS, and then, add the angle
and translation to the learned vehicle location S} in the GCS.
The result is finally used to guide the vehicle to navigate to
the location of the next learned node N’ in the navigation path,
whose location is denoted as S} = (X{,Y{",6{) in the GCS.
The details are as follows, with Fig. 6 as an illustration for
notation references.

Algorithm 3: path-correction process.
1) Compute the relative angle 6, between 0y and 6y, by

0, = Ox — 0. (14)
2) Compute the relative translation in the following way.
a) Compute the angle

¢ = tan! (YN_YL> — Ox. (15)

XN — XL

b) Compute the angle ¢¢ of the line segment from S to
S’ in the GCS by

¢ =0, — ¢ — 0. (16)
¢) Compute the translation (X/,Y]) in the GCS with
respect to the learned vehicle location S, by
X! =D, cos ¢g
Y =D, sin¢g (17)
where
D, = /(Xx — XL)2 + (Yn — VL)% (18)

3) Compute the desired current vehicle location Sy =
(XL, Y4, 0 ) using the following:

Xy =X, - X,
W =YY,
. (19)

4) Compute the vector V; from S to S; of the next node
N’ and the direction 6; of V; by

Vi = (X, — X3, Y1 = YY)

- Y —y!
0; = tan~*! (Xz, —Xt’;) .

(20)
5) Use V; and 6; to derive the following vehicle commands
for path correction.
a) Turn the angle 0y — 6, to guide the vehicle to head to
the direction of V; to approach the next node N'.
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Reference
coordinate system
Y Ry

Global
coordinate system

Fig. 6. Top view of the relations among the RCS, the VCS, and the GCS, as
well as corresponding angles of the vehicle, where the learned vehicle location
is at position (Xt,, Y1) in the RCS, the current vehicle location is at position
(XN, Yn) in the RCS, and the location of the next node N’ is at position
(X{',Y{") in the GCS.

b) Move ahead for the following distance to reach N':

Vil = /(X0 — X002 + (v — Y02

c¢) Turn the angle 0, = 07 — 0, after arriving at N’ to
resume the original vehicle moving direction at N”.

V. OBJECT IMAGE MATCHING

In the navigation stage, the vehicle stops in front of each
object to be monitored by the use of the learned path data.
However, the stop position in front of an object may not be
accurate in every navigation session but is just close to the
one recorded in the learning stage. This results in a slight
change in the viewing angle of the object from the camera
or, equivalently, in the camera pose with respect to the object.
An image acquired of the same object will so be different
in translation, scaling, and orientation from the one taken in
the learning stage. Thus, a method with the ability to match
corresponding objects in images that are taken with different
camera poses is needed.

In the past, SIFT has been proven to be one of the robust
image-matching techniques that use local invariant feature de-
scriptors with respect to different geometrical changes [19].
To allow efficient matching between images, each image is
processed to extract feature points, each of which is then repre-
sented as a SIFT feature vector, as mentioned previously. Each
SIFT feature vector consists of local image measures that are
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invariant to image translation, scaling, and rotation and partially
invariant to 3-D viewpoint changes. In this study, we utilize
such invariance properties of SIFT feature vectors to match
object images. Specifically, the SIFT process [18] includes
four major stages to generate a set of SIFT feature vectors:
1) selection of a set of feature points in a scale space of the
input image; 2) localization of them to determine their locations
(x,y) and scales s; 3) assignment of orientations 6 to them; and
4) generation of a descriptor ® for each of the feature points as
a vector of all the gradient-orientation histogram entries in a
region around the feature point.

By using the aforementioned SIFT process for our case here,
the object images I and [, taken in the navigation and learning
stages are first transformed to obtain two sets of SIFT feature
vectors: one set Fy from Iy and the other Fi, from Iy, as
mentioned previously. According to the matching algorithm
proposed by Lowe [18], [20], the best candidate match for
each feature vector fy in Fiy can be found by identifying its
nearest neighbor in Fy,. Each nearest neighbor is defined as the
feature vector with the closest Euclidean distance to the feature
vector fy. Then, an affine transform between the match pairs is
estimated. For this purpose, many well-known fitting methods,
such as the random sample consensus algorithm [22], can be
used. However, according to [18], a better performance can
be obtained using the Hough transform [21], which is adopted
in this paper to identify the best affine transform between the
match pairs.

In more detail, using the aforementioned notations, for
each feature vector denoted as fx(xN, YN, SN, On, PN ), a point
(zN,yy) in the neighborhood of (zn,yn) can be generated
using sy and Oy to be

TNy =aNn + k- sn - cosOn

YN =Y~ + k- sn - sinfy 1)

where k is a constant value. In addition, the corresponding point
(x1,,y;,) in F1, can be computed in the same manner. Then, an
affine transform defined in the following way can be used to
obtain mapping from the pair (x1,, y1,) and (x7,, yf,) in Y, to the
pair (N, yn) and (2, yy) in Fx in terms of a scaling factor
s, an orientation 0, and a translation (¢, ty) described in the
following:

r, —yL 1 O m TN
y zr, 0 1 n| _ |yn
o -y 1 0 x te | |2 (22)
y, 7, 0 1 ty Un

where m = s-cosf, and n = s - sin 6. Equation (22) can be
solved to obtain the parameters m, n, and (t,,t,). In addi-
tion, accordingly, the values s and € can be computed by the
following:

6 = tan"! (ﬁ) and s = m (23)

m cosf’

The above process creates a set of pose parameters
(ty,ty,0,s) for each match pair of the SIFT feature vectors.
Next, a Hough space is created to find the best affine transform
for the computed pose parameters (¢, t,, 8, s) of all the match
pairs. Each match pair will yield a vote in the Hough space,
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Fig. 7. Learned navigation map.

and a peak that is found in the space with the largest number of
votes is finally taken to specify the best affine transform from
Iy, to Iy.

VI. EXPERIMENTAL RESULTS

To test the feasibility of the proposed method, we conducted
a series of experiments with a commercially available vehicle
called Pioneer 3-DX manufactured by MobileRobots, Inc., and
a PTZ camera produced by Axis Communications, Ltd. The
testing environment, as shown in Fig. 7, is a large building with
an M-shaped corridor whose length is 75.83 m. In addition, nine
objects labeled as V7 through Ng were monitored, including
one painting, seven posters, and one granite-surfaced wall plane,
which are roughly evenly distributed in the entire range of the
corridor with an average between-node distance of 7.58 m.

At first, in the learning stage, the vehicle was controlled to
learn a path in the corridor and the nine objects along the path.
The objects are all on walls at the two sides of the path. When-
ever the vehicle arrived at a spot in front of one object, the
object features were extracted from the image that is acquired
at the spot, which, together with the vehicle location, were re-
corded into the vehicle system. As a result, a navigation map that
contains nine path nodes was created, as illustrated by Fig. 7.

A. Vehicle-Localization Accuracy

To evaluate the accuracy of vehicle localization performed
by the proposed method, we compared the estimated vehicle
positions and orientations at the nine nodes N; through Ny
with the corresponding real values measured manually. In more
detail, when the vehicle was guided to navigate to each node
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TABLE 1
RESULTS OF ACCURACY ANALYSIS OF CONDUCTED
VEHICLE LOCALIZATION

Position (cm) Orientation (degree)

lmage Xerr Yerr
No. Xe Fe Xr I ratio  ratio O O Cerr
1 49.38 12194 478 120 331% 1.62% | 180 178.11 1.89
N 2 4953 12084 47.8 120 3.61% 0.70% | 180 17821 1.79
3 14934 12455 478 120 323% 3.79% | 180 178.59 141
4 [66.54 14494 664 1395 022% 3.90% | 180 178.97 1.03
N, 5 |66.67 14173 664 1395 041% 1.60% | 180 179.24 0.76
6 |66.73 14486 664 1395 0.50% 3.84% | 180 178.93 1.07
7 19173 13742 90 138 1.92% 0.42% | 180 179.62 0.38
Ny 8 |91.66 13831 90 138 1.85% 022% | 180 179.63 0.37
9 9128 13943 90 138 1.42% 1.03% | 180 179.59 0.41
10 [59.24 203.05 595 203 044% 0.03% | 190 190.97 0.97
Ny 11 [5890 203.01 595 203 1.01% 0.00% | 190 190.84 0.84
12 | 58.97 202.66 595 203 0.89% 0.17% | 190 190.75 0.75
13 |51.86 148.03 53.5 146 3.06% 1.39% | 153 151.50 1.50
N: 14 |51.64 14780 535 146 347% 123% | 153 151.05 1.95
15 |51.40 14723 535 146 3.93% 0.84% | 153 151.55 145
16 |21.56 12716 22 1245 1.99% 2.14% | 173 17446 1.46
Ng 17 [22.61 12815 22 1245 279% 293% | 173 173.83 083
18 ]22.64 126,15 22 1245 290% 133% | 173 17417 1.17
19 [30.14 123.16 296 119 1.82% 3.50% | 180 178.69 131
N; 20 3072 12216 296 119 3.78% 2.66% | 180 17849 1.51
21 [28.63 12356 296 119 328% 3.83% | 180 177.99 2.01
22 |-80.44 16895 -77.8 168 339% 0.57% | 26 26.18 0.18
Ng 23 |-81.61 170.10 -77.8 168 4.90% 125% | 26 2637 037
24 [-80.98 169.58 -77.8 168 4.09% 0.94% | 26 26.01 001
25 1648 77.84 167 742 133% 4.90% | 175 175.73 0.73
Ny 26 [1650 7736 167 742 120% 426% | 175 175.88 0.88
27 [17.05 7658 167 742 207% 321% | 175 17543 043
Average 2.33% 1.94% 1.02
Standard 132%  1.5% 0.565

deviation

in the learning stage, the real vehicle location described by
(X;,Y:,0,) at the node was measured as the reference data,
where 1) X, and Y; denote, respectively, the distances in the
X - and Y -directions from the vehicle center to the origin of the
RCS, which is set up on the planar-surfaced object on the wall;
and 2) 6, denotes the angle of the vehicle’s moving direction
with respect to the X —Z plane, which coincides with the wall
plane. After the proposed vehicle localization process was per-
formed, the estimated vehicle location parameters (X, Yo, 6,)
were computed and compared with the corresponding reference
data. Such comparisons were conducted three times at each
node. Table I includes a summation of the estimated and
reference data, as well as the average and the standard deviation
of the error ratios yielded by the comparison. Here, the errors
(Xerrs Yerr, Oerr) Of a vehicle-localization result are defined as
the absolute differences between the estimated and real vehicle
location data, respectively, and the error ratio of an estimated
distance in the X- or Y -direction is defined as the ratio of the
error X, or Y, over the real one, respectively.

From Table I, we can see that all the estimated distances have
error ratios that are smaller than 5% and that all the estimated
orientations have errors that are smaller than 2°. The averages
of the X- and Y -distance error ratios, as well as those of the
orientation errors, are 2.33%, 1.93%, and 1.02°, respectively.
The standard deviation of these error parameters are 1.32%,
1.5%, and 0.565°, respectively, which are also small. Such
vehicle-localization results may be considered to be accurate
enough for smooth vehicle navigation applications, as shown
by our experiments.
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TABLE 1I
RESULTS OF PATH-CORRECTION ACCURACY ANALYSIS

Position (cm) Orientation (degree)

SO A R D S s ol I N N X

742 1209 554% 0.72% 180.8 0.8

Py 658 1114 746 1204 6.06% 0.37% 180 1812 12

74.6 1204 6.16% 0.34% 181.3 1.3

68.7 119.9 2.24% 0.12% 1802 0.2

Ny Pi»| 703 120 73.1 1346 69.7 120.3 0.80% 0.29% (180 184 179.8 0.2

68.7 1199 2.24% 0.12% 1802 02

72.8 120.0 3.63% 0.03% 1789 1.1

P 60.7 1346 745 1202 6.04% 0.13% 181 1793 0.7

72.8 1206 3.55% 0.53% 1790 1.0

89.9 140.3 2.03% 0.55% 1821 2.1

Py 946 1429 90.1 140.1 227% 045% 193 1822 22

89.8 139.1 2.59% 0.31% 1824 2.4

86.8 140.7 2.39% 0.86% 1787 1.3

N, Py | 889 1395 90.8 1156 87.1 1412 2.06% 122% (180 179 1788 1.2

872 140.8 1.93% 0.94% 179.0 1.0

89.7 141.2 0.85% 1.20% 179.6 0.4

Pas 533 148.0 88.6 1414 038% 1.36% 186 179.8 0.2

89.3 141.1 0.46% 1.18% 180.1 0.1

113.5 140.7 0.90% 1.95% 179.6 0.4

P3 85.7 124.7 1144 140.1 1.67% 1.49% 170 180.0 0.0

113.9 139.6 1.29% 1.19% 179.9 0.1

111.6 139.2 0.82% 0.84% 1794 0.6

Ny Py |1125 138 935 1544 111.4 1393 1.01% 0.97% [180 183 179.1 0.9

110.9 139.6 1.38% 1.14% 1792 0.8

113.8 1417 1.15% 2.71% 1795 05

P33 132.5 133.7 114.6 141.2 1.85% 2.31% 181 179.6 04

115.6 140.2 2.74% 1.56% 180.1 0.1

Average 2.37% 0.92% 0.8

Standard 1.74% 0.68% 0.7
deviation

B. Path-Correction Accuracy

To show the effectiveness of the proposed path correction
process, we compared the corrected vehicle location yielded
by the process with the one learned in the learning stage at
each of the three selected path nodes NN; through Ns3. More
specifically, at each node, we put the vehicle at three differ-
ent testing locations described by S, = (X,,, Yy, 6,) in the
RCS. Next, we performed the vehicle-localization and path-
correction processes to guide the vehicle to move toward the
learned location S, = (X, Y;, 0,), yielding a corrected loca-
tion S, = (X/,Y.,0.). Then, we computed the path-correction
accuracy by finding the location errors (X[, Y., 0%..), which
are the absolute differences between the parameters of .S], and
Sy, respectively. Here, the values of the location parameters
in S;, Sy, and S/ were all measured manually. The results
are summarized in Table II, in which the testing locations
are denoted as Pj; through Ps;3. From the table, we can see
that the largest distance error ratio in the X- and Y -directions
occurred at Pj;, which is about 6%, and the largest orientation
error occurred at Py, which is about 2.4°. The averages of
the distance error ratios in the X- and Y-directions as well
as that of the orientation error are 2.37%, 0.92%, and 0.8°,
respectively. The standard deviations of these error parameters
are 1.74%, 0.68%, and 0.7°, respectively. Again, these data
are all small in value. Accordingly, the maximum allowable
between-node vehicle traveling distance may be computed by
40 cm/ sin(0.8°) = 28.6 m, under the condition that the largest
deviation from the trajectory is set to be the reasonable value of
40 cm in the corridor of our experimental environment, whose
width is 2.5 m. Even in the worst case with an orientation error
of 2.4°, the distance is 40 cm/sin(2.4°) = 9.55 m, which is
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(2)

Fig. 8. Experimental results of object monitoring and path correction at four
selected path nodes. (a) Labels of monitored objects. (b) Vehicle monitoring the
objects at the nodes. (c) Matching results and the calibration lines used for path
correction. (d) Images of the learned objects.

still larger than the average between-node distance of 7.5 m
in our experimental environment mentioned previously. As a
summary, as these experiment results illustrate, the proposed
method is feasible for guiding the vehicle to accurately navigate
to the next path node in a normal corridor.

C. Indoor Security-Patrolling Navigation

We have also conducted many experiments of complete
security patrolling navigations in our M-shaped corridor envi-
ronment, all according to the learned navigation path, as shown
in Fig. 7. Whenever the vehicle was guided to arrive at a
learned node in front of an object, object image matching was
performed to check the existence of the object. If successful,
the deviation of the trajectory of the vehicle was computed ac-
cording to the matching result, and the proposed path correction
was preformed to continue its navigation on the path; otherwise,
a warning message was issued. Some results, together with
the acquired monitored object images, are shown in Fig. §,
where Fig. 8(b) shows a view of the vehicle arriving at a node
with a monitored object, Fig. 8(c) shows the matching result
and a computed calibration line in the image, and Fig. 8(d)
shows the object image taken in the learning stage. The average
navigation speed of the vehicle is 0.3 m/s or, equivalently,
1.08 km/h. The average navigation cycle, which includes the
five processes of image taking, object image matching, vehicle
localization, object monitoring, and path correction, is about
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TABLE III
RESULTS OF ACCURACY ANALYSIS OF THE NAVIGATION TRAJECTORIES
TRAVERSED BY THE VEHICLE WITH RESPECT TO THE REFERENCE
NAVIGATION PATH

Position (cm) Orientation (degree)

X % X Yo Dar Dr mD;.f(f) O O O

Ny 3850 447.0 380.7 4466 435 828.0 0.52% 895 887 0.7
Ny 2849 9443 2858 9431 148 600.5 0.25%(180.0 1806 0.6
N3 -426.4 9242 -4289 9242 255 711.6 036%|181.6 181.1 0.5
Ny -940.4 9485 -944.6 9483 425 5146 0.83%|177.3 1807 34
Ns -1842.6 928.8 -1843.6 926.1 2.87 9024 0.32%(181.3 1804 0.8
Ng  |-2274.1 1188.9 -2272.5 11873 221 6064 0.36%(90.0 908 0.8
N7 -3122.3 13242 -3120.5 13225 2.50 996.6 0.25%(180.7 1812 0.6
Ng -3758.6 1331.8 -3759.4 1330.1 1.83 6363 0.29%(179.3 1804 1.1
No -4636.0 1329.6 -4638.3 1330.0 2.34 8774 0.27%(180.1 177.6 2.6
1;1211;:1 4632.0 419.6 -4630.0 419.1 2.06 910.0 0.23%|-89.7 -90.8 1.1
Average 2.6 7584 0.37% 1.2
Jtandard 1.0 0.18% 1.0

4 s, in which the image-matching process takes about
2.3 s. Since there is no real-time requirement in the navigation
process from the viewpoint of security patrolling, this amount
of time required to monitor each node is considered to be
tolerable. In addition, if necessary, the implementation of the
proposed algorithms or the speed of the used personal computer
in the vehicle system can be improved to raise the overall
computation speed of the system.

To show the overall accuracy of the navigation trajectory
traversed by the vehicle with respect to the reference navigation
path, at each path node in a navigation session, which we con-
ducted in our experiments, we measured further both the refer-
ence location described by S, = (X,,Y;,0,) and the corrected
location by S, = (X, Y., 6..) after the path-correction process
was performed, followed by computations of the location errors
(Derrs Berr ), which are defined as the differences between the
parameters of the two locations. The computation results of
these errors and their error ratios with respect to the between-
node distances D, are summarized in Table III. In addition, the
measured reference and corrected positions of the vehicle at the
nine path nodes are illustrated in Fig. 9. The average errors
in position and orientation at each node are 2.6 cm and 1.2°
with standard deviations of 1.0 cm and 1.0°, respectively, and
the average error ratio is 0.37% with a standard deviation of
0.18%. These data are all small enough again. They, together
with Fig. 9, show that the errors resulting from mechanic and
vehicle-localization errors can be reset at each path node by the
proposed vehicle-localization and path-correction processes.
This fact shows that, with a sufficient number of nodes dis-
tributed along the navigation path, the vehicle can accurately
and smoothly navigate according to the learned path from a
viewpoint of the entire navigation path range.

We also compared our results both with those yielded by
the ceiling-based method proposed by Xu et al. [13] for robot
positioning, where the average position error ratio with respect
to a traversed distance of 8.742 m was 0.34%, and with those
yielded by the visual path-following method proposed by Achar
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Fig. 9. Results of accuracy analysis of visited spots in front of the objects
yielded by the proposed method. The blue line segments were the planned
reference path, and the red ones were the corrected navigation path.

and Jawahar [26], where the average position error ratio with
respect to a traversed distance of 80 m was 0.48%. Obviously,
our results with the average position error ratio of only 0.37%
for a traversed distance of 75.83 m have better accuracy.

VII. CONCLUSION

A novel method for vehicle localization utilizing images
of objects to be monitored has been proposed. The method
is based on the use of a SIFT-based object image-matching
process, a 2-D affine transformation scheme, and an analytic
3-D space transformation technique for vehicle-location es-
timation. The method can simultaneously perform vehicle-
location estimation and object monitoring. At first, a relative
transformation between each image taken in the learning stage
and a corresponding one taken in the navigation stage has been
derived by matching the SIFT feature vector pairs extracted
from the images and finding the best affine transform yielded
by the Hough transform. Next, it has been proposed to set up
a calibration line in the image of each object to be monitored
to compute the deviation of the vehicle trajectory utilizing the
found relative transformation and the aforementioned analytic
3-D space transformation newly proposed in this paper. Finally,
a path-correction scheme has been proposed to compute neces-
sary path adjustment according to the found vehicle trajectory
deviation and to accordingly guide the vehicle to move toward
the next path node.

An advantage of the proposed method over others is that
nearly any planar-surfaced objects can be used as a landmark
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for vehicle-location estimation, resulting in the improvement of
flexibility in choosing landmarks. By adopting the SIFT and the
Hough transform, as long as a sufficient number of feature pairs
are available, the vehicle can precisely estimate its location with
respect to every monitored object. The experimental results and
the accuracy analysis of the yielded data revealed the feasi-
bility and practicality of the proposed system for smooth and
accurate navigation and object-security monitoring in indoor
environments.

Since the SIFT process in the proposed system can be
substituted separately, more accurate and efficient feature-
matching techniques, like some recently proposed SIFT ac-
celerations and feature-transformation techniques [23]-[25],
may be fitted into the proposed method to yield better results.
Other future works may be directed to extending the proposed
method to deal with more types of objects in more complicated
environments.
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