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a b s t r a c t

Dynamic bandwidth estimation serves as an important basis for performance optimization of real-time
distributed multimedia applications. The objective of this paper is to develop a TCP-friendly and fair con-
gestion control algorithm which regulates the sending rate robustly by inferring the end-to-end available
bandwidth. In addition to network stability, we also consider the characteristics of streaming applica-
tions, such as the bandwidth resolution in scalable video coding (SVC) which can achieve fine granularity
of scalability at bit level to fit the time-vary heterogeneous networks. The congestion control algorithm is
mainly composed of two phases: start phase and transmission phase to better utilize the network
resource by subscribing SVC layers. In the start phase, we analyze the relationship between the one-
way delay and the dispersion of packet trains, and then propose an available bandwidth inference algo-
rithm which makes use of these two features without requiring administrative access to the intermediate
routers along the network path. Instead of either binary search or fixed-rate bandwidth adjustment of the
probing data as proposed in literature, a top-down approach is proposed to infer the initial available band-
width robustly and much more efficiently. After acquiring the initial available bandwidth, the missions of
the transmission phase include the adaptation of the sending rate fairly by progressive probing and also
the accommodation of the network resource to TCP flows.

In case of the unavoidable network congestion, we unsubscribe scalable video layers according to the
packet loss rate instead of only dropping one layer at a time to rapidly accommodate the streaming ser-
vice to the channels and also to avoid persecuting the other flows at the same bottleneck. In addition, the
probing packets for the estimation of the available bandwidth are encapsulated with RTP/RTCP. The sim-
ulations show that the proposed congestion control algorithm for real-time applications fairly utilizes
network bandwidth without hampering the performance of the existing TCP applications.

Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.
1. Introduction

There has been explosive growth of emerging audio and video
streaming applications recently. Many applications of multimedia
communication over IP network, such as VoIP, multimedia on de-
mand, IPTV, and video blog, have been integrated into our daily life
rapidly. However, efficient delivery of media streams over the
Internet is confronted with many challenges. Congestion control
plays an important role to avoid congestive collapse by attempting
to avoid oversubscription of any network resource of the interme-
diate nodes in the growing demand of those multimedia services
over the Internet. TCP is a connection-oriented unicast protocol
that offers reliable data transfer as well as flow and congestion
control. However, multimedia streaming protocols have stricter
requirement of transfer latency rather than reliable delivery. Many
TCP-friendly congestion control protocols which are usually built
upon UDP (User Datagram Protocol) with some specified conges-
010 Published by Elsevier B.V. All
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tion control algorithm are being developed so that the multimedia
flows can behave fairly with respect to the coexistent TCP flows
that dominate the network traffic so as to avoid the starvation of
TCP traffic and to prevent the network from congestive collapse.
In addition, the RTT unfairness introduced by the AIMD scheme
of TCP leads to unequal bandwidth distribution among the com-
peting flows with different round-trip time under the same con-
gested links also should be taken into consideration. However,
most of the existing streaming protocols have no consideration
for the fairness and the characteristics of video streams which
might affect the quality of streaming services significantly.

According to the general rate distortion curve shown in Fig. 1,
the larger bit rate acquired, the better quality displayed. Some
works focus on optimizing rate-distortion by multipath routing
[28], or by active queue management and receiver feedback [27].
As to various video coding technologies, bit-stream scalability is
a desirable feature for many multimedia applications so that grace-
ful adaptation of transmission requirements can be achieved. Scal-
able Video Coding (SVC) [13], as an amendment G to the H.264/
MPEG-4 AVC standard created by Joint Video Team (JVT), intends
to encode a video sequence once and the encoded bit stream is able
rights reserved.
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Fig. 1. Rate-distortion relationship.
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to allow a diversity of different receivers to acquire and to decode a
subset of the encoded bit stream without the need for transcoding.
Scalable video coding enables not only efficient distribution of real-
time multimedia streaming over heterogeneous networks but also
a most promising solution for one-to-many congestion control
over multicast networks. To fulfill above requirements, a scalable
video bit stream contains a non-scalable base layer which is in
compliance with the H.264/MPEG-4 AVC and one or more
enhancement layers which may result from spatial, temporal or
fidelity scalabilities of the scalable tools. The third octet in a Net-
work Abstraction Layer (NAL) unit header records the layer identi-
fications, including temporal_level (3bits), dependency_id (3bits),
and quality_level (4bits). Thus, there can be 23 � 23 � 24 video lay-
ers. Besides, the layers are subscribed layer by layer and the bit rate
allocation between neighboring layers may vary significantly
according to the streaming applications.

Due to the large number of possible scalable video layers and
various bit rate allocation between layers, how to quickly converge
to the time-varying available bandwidth without violating the
existing flows under fairness competition becomes a critical factor
in real-time video streaming. As to the information of available
bandwidth, Multi-Router Traffic Grapher (MRTG) can use Simple
Network Management Protocol (SNMP) to obtain the information
from intermediate routers in the past. However, it is often difficult
if not impossible due to various technical difficulties and privacy
considerations or due to an insufficient level of measurement res-
olution [12]. One-way delay trend detection is utilized in Pathload
[3] to measure the end-to-end available bandwidth by sending
periodic packet trains. Since each packet train is used to determine
only one decision that if the probed bit rate is greater or smaller
than the available bandwidth, usually binary search is adopted to
adapt the probing rate to the available bandwidth gradually. In
contrast to acquiring initial available bandwidth over unicast net-
works, layered congestion control algorithm proposed in BIC [14],
similar to Pathload, generates periodic burst packet trains from
the upper layer over multicast network so that the probing periods
of each receiver can be synchronized. Each receiver uses one-way
delay trend detection to make the decision of joining one addi-
tional layer at a time and leaves a scalable video layer when packet
loss rate exceeds a specified threshold. As a result, it is not suitable
for receivers that might require joining or leaving several scalable
video layers in a short time, due to dramatically fluctuant channels.
In [11], a hierarchical sub-layer probing scheme which adopts
coarse to fine layer partitioning to improve the efficiency of the
probing interval was proposed. It might be helpful to reduce the
number of probing periods when compared to BIC, but on the other
hand, the probing packets might overshoot easily. Besides, net-
work-layer multicast is still not widely deployed due to cost and
management problems. Furthermore, it does not take TCP-friendly
into account because only one probing rate is allowed for each syn-
chronization point.

In this paper, we focus on TCP-friendly congestion control of fair
end-to-end video streaming by inferring available bandwidth. We
regulate the sending rate by using probing packets periodically
such that a client running SVC applications can subscribe video lay-
ers gradually. In addition, we also consider the fairness property of
both intra-protocol and inter-protocols, especially under different
RTTs. Furthermore, RTP/RTCP [16] which relies on additional pro-
tocols to provide congestion control and to guarantee QoS to
real-time multimedia steaming is integrated with the proposed
congestion control algorithm. The remainder of this paper is orga-
nized as follows. In Section 2, the background and related works
about bandwidth estimation and congestion control algorithm
are presented. In Section 3, we describe our TCP-friendly conges-
tion control algorithm with the consideration of RTT-fairness. In
Section 4, the performance of our proposed algorithm is evaluated
and the conclusion of this paper is given in Section 5.
2. Background and related works

In this section, we introduce the bandwidth estimation model
based on the one-way delay (OWD) and the packet dispersion by
sending probing packets. The selected TCP-friendly congestion
control protocols in the literature will also be presented.

2.1. Bandwidth estimation

Among the results of emerging research in bandwidth estima-
tion, link capacity and available bandwidth are of interest. The
prior is constrained by the underlying transmission bandwidth. Gi-
ven that packets are delivered from sender S to its receiver R
through a fixed network path P, which consists of a sequence of
store-and–forward links, the narrow link of a network path P is de-
fined as the link with minimum capacity along the path. Assuming
Ci is the link capacity of link i, and there are H hops in P, the capac-
ity C of the narrow link is:

C ¼ min
i¼1...H

Ci: ð1Þ

The technology of packet pair [1] with two back-to-back pack-
ets of packet size S is usually used to measure the capacity by
observing the dispersion d ðd ¼ S=CÞ passing through narrow link
if there is no background traffic.

On the other hand, available bandwidth depends on the traffic
load of the path and it is typically a time-varying random variable.
Assume ki(t) is the traffic load of link i at time t, the available band-
width Ai(t, T) of link i is the average unused bandwidth over some
time interval T as shown in (2).

Aiðt; TÞ ¼
1
T

Z Tþt

t
ðCi � kiðtÞÞdt: ð2Þ

The available bandwidth A(t,T) of the tight link which is defined
as the link with minimum available bandwidth along a path is:

Aðt; TÞ ¼ min
i¼1...H

Aiðt; TÞ: ð3Þ



Fig. 2. The relationship between OWD and packet dispersion.
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Several studies have been devoted to the research of available
bandwidth estimation in recent years. Except for the network
mathematic model which is based on the specified network behav-
ior or protocol [2], probing-based methods by means of packet
train [1] analysis are widely adopted to infer network utilization.
A packet train is a sequence of probing packets of equal packet size
arranged either back-to-back or with some specified inter-packet
dispersion. According to the analysis approaches, there are two
major types of packet train based algorithms: one-way delay
(OWD) based analysis model and dispersion based analysis model.

2.2. One-way delay based analysis model

Given that a sender transmits K packets of packet size S to its
receiver and assumed that the propagation delay can be ignored,
the OWD Dk of k-th packet can be modeled as the summation of
the transmission delay ðS=CiÞ, processing delay ðriÞ, and queuing
delay ðdk

i Þ of each and every link (i = 1 . . .H) along the path.

Dk ¼
XH

i¼1

S
Ci
þ ri þ dk

i

� �
: ð4Þ

The OWD difference between adjacent packets can be expressed as
the contribution from queuing delay as shown in (5).

DDk ¼ Dkþ1 � Dk ¼
XH

i¼1

ðDdk
i Þ: ð5Þ

The idea of OWD based model is from the following proposition [7]:

If Rp > A; DDk > 0;

If Rp5A; DDk ¼ 0:

Rp stands for the probing rate and A is the available bandwidth of a
given path. The proposition concludes that if the probing rate is
slower than the available bandwidth of the path, the arrival rate
at the receiver will match their probing rate at the sender. On the
other hand, if the probing rate is faster than the available band-
width, then network queues will build up and the probing packets
will be delayed ðDDk > 0Þ. By observing the delay trend of OWD,
many algorithms, such as Pathload [3], pathChirp [4], Pathbw [5],
TOPP [6] and SLoPS [7], search for the turning point at which the
sending rate and the receiving rate start to match.

2.2.1. Dispersion based analysis model
Dispersion based analysis model exploits the information of the

inter-arrival time between two successive probing packets at the
receiver. Let din and dout be the time dispersion of a packet pair be-
fore and after passing through a single hop, respectively. Assume
that the network queue will not be empty between the departure
time of the first probing packet of a packet pair and the arrival time
of the second probing packet in the joint queuing region (JQR) [8].
Given the network capacity of the tight link C, the available band-
width Að¼ C � kÞ can be estimated by solving the following equa-
tion for the traffic load k [9].

dout ¼
S
C
þ k

C
din: ð6Þ

However, if these two packets do not fall into the same period,
(i.e., in the disjoint queuing region (DQR)[8]), the packet dispersion
before and after passing through a hop will be equal ðdout ¼ dinÞ.
Bandwidth estimation tools such as IGI [8] and Spruce [10] are
two examples that benefit from this observation. We denote
Ri ¼ S=di as the departure rate after passing through hop i with
packet time dispersion di. For the probing packets passing through
hop i with the arrival rate Ri�1 to hop i and departure rate Ri from
the same hop, Ri�1 and Ri will have the following relationship:
Ri ¼ Ri�1 ¼
Ci

ki þmaxfRi�1;Aig
ð7Þ

ki is the traffic load of hop i.
Obviously, Ri is monotonically decreasing because the depar-

ture rate will be less than or equal to the arrival rate ðRi�1 P RiÞ,
depending on whether the arrival rate ðRi�1Þ is greater than the
available bandwidth ðAiÞ. In addition, the available bandwidth A
is the minimum of all Ai; thus we can induce that:

Rin P Rout P A: ð8Þ
2.2.2. One-way delay vs. packet dispersion
The relation between OWD and packet dispersion can be ex-

pressed briefly as in Fig. 2. When the probing rate is less than
the available bandwidth, we will most likely have DDk ¼ 0 and
Dd ¼ dout � din ¼ 0. In other words, it means that there is no delay
trend of OWD and the packet dispersion of the packet pair mea-
sured at the sender and the receiver would be the same. On the
other hand, when the probing rate is more than the available band-
width, the cross traffic can enlarge the dispersion, and will cause
the increasing of queuing delay. Assume that the start transmission
time for packet i and i + 1 is si and siþ1 and the arrival time at recei-
ver is ri and riþ1. We can infer the dispersion Ddi ¼ ðriþ1 � riÞ�
ðsiþ1 � siÞ ¼ ðriþ1 � siþ1Þ � ðri � siÞ ¼ DDi. If DDi is not equal to 0,
the OWD for a packet train will have increasing trend. Therefore,
Ddi can be viewed as an index of queuing delay. In summary, we
can conclude that the packet dispersion and OWD are two criteria
that can work together to estimate the available bandwidth more
precisely.

Available bandwidth can fluctuate dramatically and thus it is
very important for the bandwidth measurement to converge fast
and accurately. In the previous bandwidth estimation algorithms,
such as Pathload [3], which uses binary search to adjust the probing
rate for the next iteration, and IGI [8], which updates the probing
rate by some fixed step size to inspect whether the probing rate
matches the available bandwidth, they might be too inefficient to
infer the probing rate for the next iteration, especially in real-time
distributed applications, in addition to the possible resolution issue
of the estimated bandwidth.

2.3. Congestion control

For most unicast flows that require transferring data reliably
and as quickly as possible, one of the straightforward options is
to use TCP directly. However, TCP whose congestion control is
mainly based on AIMD scheme and slow start cannot utilize
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network resource efficiently, especially in the case of networks
with high bandwidth-RTT product. It might be too conservative
for the AIMD mechanism of TCP to increase the congestion window
linearly per RTT, while at the same time the reduction of conges-
tion window by a factor of half tends to be too drastic. This results
in inefficient link utilization. For some applications such as multi-
media streaming, they can tolerate data loss to some degree and
are usually highly delay sensitive.

Datagram Congestion Control Protocol (DCCP) [29] has been
proposed by the Internet Engineering Task Force (IETF) to imple-
ment connection setup, teardown, ECN, and feature negotiation,
and also to provide a framework to allow applications to choose
different TCP-friendly congestion control profile such as TCP-like
or TFRC by CCID. TCP-friendly congestion control algorithms built
upon UDP with suitable rate adaption mechanism for streaming
applications are designed to ensure that the coexisting TCP flows
will not be treated unfairly by non-TCP flows. Widmer [18] classi-
fied unicast TCP-friendly congestion control algorithms into win-
dow-based [20] and rate-based [17][21] algorithms. The
algorithms in window-based category use a congestion window
at the sender or at the receiver to ensure TCP friendliness. On the
other hand, rate-based congestion control achieves TCP friendli-
ness by adapting the transmission rate according to either Additive
Increase/Multiplicative Decrease (AIMD) scheme or model-based
congestion control algorithm. The AIMD scheme mimics the
behavior of TCP, while the model-based one follows Padhye’s TCP
throughput model [19] instead of TCP-like AIMD mechanism. The
analytical model of TCP-friendly available bandwidth is shown as
follows.

f ðpÞ ¼ S

tRTT

ffiffiffiffiffiffi
2bp

3

q
þ tRTO3

ffiffiffiffiffiffi
3bp

8

q
pð1þ 32p2Þ

ð9Þ

S is the packet size; p is the packet loss rate; tRTT is the Round Trip
Time; tRTO is the TCP RTO (Retransmission Time Out) which is usu-
ally set to be 4 � RTT in the experiments, and the number of packets
acknowledged by a single TCP acknowledgement is b.

TCP Friendly Rate Control (TFRC) [17], which is rate-based in-
stead of window-based congestion control, adjusts its sending
rate based on the equation according to packet loss rate and
RTT. The loss event rate p is measured as the inverse of the aver-
age loss intervals. According to TCP NewReno, all the lost packets
in the same congestion window are treated as a single loss event
and the reduction of congestion window is only triggered once.
The loss event may consist of several lost packets in the duration
of a round-trip time since the first occurred packet loss, and the
loss interval is defined as the number of packets between consec-
utive loss events. A certain number of loss intervals are averaged
using exponential decaying weights so that the older loss inter-
vals contribute less to the average. It prevents the loss rate from
reacting too strongly to the single loss event. If we take the recent
L loss event intervals into account and In is the nth loss event
interval, which is the number of packets sent between the nth
and the (n + 1)th loss event, the weighted average of loss event
intervals I~ can be obtained as follows and the loss event rate
equals 1/I~.

eI ¼XL

l¼1

wlIn�1

wl ¼ 1; if l < L=2

wl ¼ 1� l� L
2�1ð Þð Þ

L
2þ1ð Þ ; otherwise

8<: ð10Þ

Slow start is applied to the initialization phase and retransmission
timeout. Otherwise, congestion avoidance phase is applied to
detecting a loss and calculating the sending rate by the TCP
throughput model. However, earlier work [23] shows that the con-
vexity of 1/I~ (E[1/I~] – 1/E[I]) and different retransmission timeout
period (RTO) can be the reasons for TCP and TFRC to experience ini-
tially different sending rates. The difference of loss event rates due
to the different sending rates greatly amplifies the initial through-
put. In addition, since TFRC increases the sending rate per round-
trip time, it will lead to RTT unfairness. In other words, the flows
with shorter RTT will gain more bandwidth than the flows with lar-
ger RTT under the same bottleneck.
3. The proposed method

The queuing delay usually becomes severe before the event of
packet loss due to buffer overflow. Therefore, using queuing delay
as an indication of congestion can be more accurate to perform
estimation than using loss event rate. Different from the traditional
TCP which adjusts the congestion window by increasing one pack-
et per RTT (TCP Tahoe, NewReno, . . .,etc.) or by observing the
change of RTT (TCP Vegas, Fast TCP[26] . . .etc.), we determine
whether to increase one layer by observing the queuing delay of
packet trains.

RTP and RTCP are popular streaming protocols over the Internet.
In order to cooperate with SVC and RTP/RTCP, our proposed con-
gestion control algorithm consists of two phases: start phase and
transmission phase as illustrated in Fig. 3, compared to the slow
start and congestion avoidance status of TCP congestion control
algorithm. In the start phase, we focus on the precision aspect of
bandwidth estimation algorithm so that the bandwidth can be uti-
lized efficiently especially in the case of networks with high band-
width-RTT product. TCP-friendly and RTT-fairness will be taken
into account during the transmission phase.
3.1. Start phase

Before laying down the proposed algorithm, we use ns2 net-
work simulator to conduct simulations with the topology in
Fig. 4 for the observation of our analysis shown in the previous sec-
tion. The capacities along the path from sender to receiver are 100,
75, 55, 40, 60, and 80 Mbps, respectively. The link delay for each
link is 100 ms. Cross traffics are generated from 16 random sources
at each link. The inter-arrival time of those cross traffics from each
source follows Pareto distribution with exponential factor a ¼ 1:5.
A packet train transmitted by the sender consists of 10 packets of
packet size S = 1500 bytes with fixed packet dispersion din so that
the probing rate Rinð¼ S=din ¼ 40 MbpsÞ for these 10 packets is
greater than the available bandwidth. The receiver R will record
the dispersion dout of arrival packets under different network utili-
zations of the bottleneck (i.e., the tight link).

In Fig. 5 we show the dispersion distribution of received pack-
ets of the bottleneck link under various network utilizations. It is
obvious that the received dispersion dout is influenced by the uti-
lization of the tight link and has positive correlation with the net-
work utilization when the fixed probing rate ðRinÞ is greater than
the available bandwidth (A). The reason is that if the network
load gets heavier, there is a higher probability that packets of
cross traffic will be placed among the probing packets and they
will contribute to the packet dispersion of the probing traffic. In
addition, since the received probing rate Routð¼ S=doutÞ is inversely
proportional to the received dispersion dout and the available
bandwidth A is equal to C � k, the received probing rate at R will
have positive correlation with the available bandwidth. Under
this condition, the received probing rate is also an upper bound
of the available bandwidth as shown in Section 2, Part A. Based
on the inequality in (8), we can have a better ‘‘guess” of the prob-
ing rate for the next iteration.



Fig. 3. Schematic diagram of the proposed congestion control algorithm.

Fig. 4. Network topology used in the ns2 simulations.
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Fig. 5. The received packet dispersion of probing traffic at various traffic loads,
given that the probing rate is greater than the available bandwidth.
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In the beginning of the start phase, we rarely have a clue about
the information of available bandwidth, the probing sender
transmits a packet train with probing rate ðRinÞ which is equal to
the capacity of tight link. Or, the probing rate can also simply be
a packet train with back-to-back packets when the capacity of tight
link is not available, or the initial probing rate can be the bit rate of
the largest layer in SVC. After passing through the links, its receiver
observes the dispersions of the packet train and also the corre-
sponding rate ðRout¼S=doutÞ, and feeds back the information Rout to
the sender as the next probing rate. We continue above steps iter-
atively until the probing rate and the available bandwidth start to
match by means of performing the delay trend detection on the
OWD. The full search algorithm [11] is modified to detect the delay
trend. It is shown in [11] that full search algorithm is better than
the Pairwise Comparison Test (PCT) and Pairwise Difference Test
(PDT) of the delay trend detection in Pathload[3]. The block dia-
gram of the proposed algorithm for available bandwidth estima-
tion is showed in Fig. 6.

Instead of binary search in Pathload, we adapt the top-down ap-
proach to use the received probing rate as the next probing rate for
the sender due to the analysis that the received probing rate has
positive correlation with the available bandwidth and it is also
an upper bound of the available bandwidth. The estimation process
can converge faster as shown in the next section. In addition, we
use OWD as a criterion to decide whether the probing rate is less
than or equal to the available bandwidth. In other words, a packet
train is sent to examine whether the probing rate is greater than
the available bandwidth and the received rate is used as the next
probing rate iteratively until no delay trend is detected by (11).
Eq. (11) is used to calculate the probability whether the OWD of
the latter packets ðDkÞ is greater than the previous ones ðDlÞ for a
packet train of length M. Therefore, we can acquire the residual
bandwidth faster than the slow start of TCP and TFRC. As to thresh-
oldFS, if the probing rate is greater than 2 Mbps, the heuristic value



Fig. 6. System diagram for available bandwidth estimation in start phase.
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of the threshold is 0.7. Otherwise, the range of the threshold is
0.6–0.7.

FS ¼
PM

k¼2

Pk�1
l¼1 IðDk > DlÞ
MðM�1Þ

2

IðDk > DlÞ ¼ 1 if Dk > Dl;

IðDk > DlÞ ¼ 0; otherwise:

(
ð11Þ

Comparing with the other algorithms in literature, such as Path-
load [3] or IGI [8], our algorithm is more robust. For example, if the
available bandwidth suddenly drops down during the estimation
period, the Pathload or IGI may over estimate the available band-
width easily. Therefore, it is not appropriate for multimedia
streaming. However, our probing rate is based on the previous
receiving rate; it will not be influenced by the sudden decrease
of available bandwidth. On the other hand, when the available
bandwidth increases during the probing, the estimation might be
underestimated but it will not induce packets loss.
V P 1 CSRC 
count 1 Payload type Sequence number 

(16 bits)

Timestamp (32 bits)

Synchronization source (SSRC) id. (32 bits)

Contributing source (CSRC) id. (0~15 items, 32 bits each)

defined by profile

System clock

extension header length

Fig. 7. Modified RTP header for probing packet.

 V P subtype Payload 
type=APP length(16 bits)

SSRC/CSRC

Probe

Received Rate / Application Specified Data 

Fig. 8. Modified RTCP APP packet header for feedback packet.
3.2. Transmission phase

Once the initial sending rate is determined, we periodically
send probing packets to detect whether there is extra available
bandwidth to enhance the QoS of video streaming. Basically there
are normal periods and probing periods in this phase as shown in
Fig. 3. Therefore, we have to determine how long to perform the
probing and how to drop a video layer whenever congestion is de-
tected in this phase. In order to compete with TCP flows for the
network resource friendly, the probing period is dynamically
adapted based on the RTT and the bit rate between two layers.
Let current sending bit rate for layer i be ratei and the algorithm
will probe rateiþ1 next. The time interval t between two probing
events is determined as follows:

t ¼ rateiþ1 � ratei

s
RTTmin ð12Þ

The RTTmin is the minimal RTT recorded so far and it is updated
whenever smaller RTT is measured from the RTCP receiver report.
Fig. 9. The estimation error with different packet sizes under different network
utilizations.



Fig. 10. The estimation error with different packet numbers in a packet train under
different network utilizations.

Table 1
The MAD and probing number under different network conditions.

Network utilization (%) Binary search Proposed algorithm

MAD
(Mbps)

Probing
number

MAD
(Mbps)

Probing
number

20 1.98 4 1.19 2.25
40 2.231 4 1.82 2.7
60 3.62 4 2.27 3.05

Fig. 12. The throughput of TCP, TFRC, and the proposed algorithm under different
background traffics.

5Mb/10ms

5Mb/10ms 5Mb/10ms

5Mb/10ms
3Mb/10ms

 

Fig. 13. Dumbbell network topology for TCP-friendly simulation.
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In addition, whenever the probing fails to increase a video layer, the
next probing period will be postponed by time interval t as indi-
cated in (13). Assuming there are N video layers and layeri is the
bit rate of current layer i, thresholdt is the upper bound of time
interval between two probing. According to the experiments,
thresholdt = 10 s is selected. In this way, the sending rate of the low-
er layer has better opportunities to catch up with the higher layer
because of the shorter probing period when there is extra available
bandwidth. Furthermore, this rule can also reduce the influence of
different RTTs under the same bottleneck on the receiving rate.

t ¼ min thresholdt; t � 1þ layeri

layerN

� �� �
ð13Þ

As usual, the packet loss rate (p) is also the indicator to detect con-
gestion occurrence during normal periods. Due to the characteristic
of multimedia streaming which allows tolerable degree of quality
deterioration, if the packet loss rate is greater than thresholdPLR,
we drop layers and reset the time interval of two probing periods,
according to (12) immediately. In order to respond to the packet
Fig. 11. The estimated available bandwidth at network utilization 60% (average
available bandwidth is 16 Mbps).

Fig. 14. Throughput for TCP (Tahoe) and the proposed algorithm to compete under
the same network condition.
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loss rate, we also take sending rate multiplied by the factor
1� ffiffiffi

p
p� �

into account, since the throughput is roughly inverse pro-
portion to

ffiffiffi
p
p

according to the equation model of TCP throughput.
Therefore, our transmission rate will be adjusted to the correspond-
ing layer of ratei � 1� ffiffiffi

p
p� �

.
For the avoidance of the introduction of unnecessary noise and

also for better robustness over a wide range of time scales, thresh-
oldPLR used in normal periods needs to be determined carefully.
When the damage of a layer is greater than what we can tolerate,
we have to consider dropping layers. The determination of the
threshold of packet loss rate (thresholdPLR) is related to the bit rate
of the current sending layer as shown in (14) so that the transmis-
sion of lower layer would have higher probability than the trans-
mission of the higher one to increase one additional layer.

threshold PLR ¼ a� ððratei � ratei�1Þ=rateiÞ
a 2 ð0;1�:

ð14Þ

In additon, if the packet loss rate in normal periods is less than the
thresholdPLR and the RTT demonstrates obvious decrement and it is
close to RTTmin, it implies that there can be extra available band-
width. We also launch probing mechanism immediately to examine
if one more layer is appropriate. The condition for additional prob-
ing according to RTT is as follows:

RTTmeasure � RTTmin: ð15Þ
3.3. Integration of RTP/RTCP and congestion control algorithm

Realtime Transport Protocol (RTP) provides end-to-end delivery
services for real-time traffic and RTCP (Realtime Transport Control
Protocol) conveys the statistic information about the participants
and also the QoS-related information. In RTP, the field sequence
number can be used to detect packet loss and timestamp is used
to reflect sampling instant of the first byte of data where clock fre-
quency is specified by the profile of payload format documents of
the application. In order to use existing RTP data packets as prob-
ing packets so that the probing overhead can be kept at minimal,
the header extension of RTP is updated to include the system clock
information. Besides, the marker bit is also set so as to bypass the
non-probing data efficiently. Fig. 7 shows the values of the corre-
sponding fields. RTCP provides feedback on the quality of data dis-
tribution by five packet types, including Sender Report (SR),
Fig. 15. Throughput for TCP (NewReno) and the proposed algorithm to compete
under the same network condition.
Receiver Report (RR), Source Description (SDES), BYE, and Applica-
tion (APP), to generate compound packets. The APP packet is se-
lected as the control message for the probing results. The control
message contains the received rate and the corresponding values
are shown in Fig. 8.
4. Simulations and experimental results

We use ns2 to simulate and evaluate the performance of the
proposed algorithms. As mentioned in the previous section, part
of the normal data packets are utilized as probing packets so as
to eliminate the cost of probing overhead. At first, we examine
the precision and the efficiency of the proposed bandwidth estima-
tion algorithm in the start phase. Furthermore, we present experi-
ments and discussions from the aspects of available bandwidth
utilization, TCP friendliness, and fairness, respectively. Besides,
slow start in TCP or TFRC is inefficient especially for high speed
networks. In order to verify whether the proposed algorithms
can work well in various bottleneck capacities, simulations with
different capacities are conducted in bandwidth estimation and
congestion control.

4.1. Bandwidth estimation

We consider the simulation in case of large bandwidth-delay
product topology in Fig. 4 where the capacities from the sender
to its receivers are 100, 75, 55, 40, 60, 80 Mbps with 100 ms link
delay for each link. For all the following simulations, if the param-
eters are not mentioned explicitly, the default settings are as flows.
The length of a packet train is 30 packets and the probing packet
size is 1500 bytes. The link with capacity 40 Mbps is the tight
and narrow link and the queue length is 20 packets. Cross traffic
is generated from 16 random sources at each link with Pareto dis-
tribution as stated earlier. To mimic the traffic in the real world,
the flows are set as follows: 40% are 40 bytes, 50% are 550 bytes,
and 10% are 1500 bytes. The thresholdFS in Fig. 6 is 0.7 and e is
2 Mbps. We discuss the parameters of probing packet train, size
and length and compare with binary-search as follows.

4.1.1. Packet size
In this section, we observe the influence of the packet size

under different network utilizations because the packet size has
Fig. 16. Throughput for two flows with the proposed algorithm to compete under
the same network condition.



Fig. 17. The large scale network topology generated by Brite.
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impact on transmission delay and packet dispersion according to
(6). If the packet size is larger, the time interval between two con-
secutive packets in a packet train will increase at a fixed probing
rate. Therefore, the delay trend detection will not be disturbed eas-
ily by the transient variation of cross traffic. The mean absolute dif-
ference (MAD) between the average real available bandwidth and
the estimated bandwidth is used to measure the estimation error.
From Fig. 9, when the packet size is greater than 800 bytes, the
estimation error is smaller as well as the MAD variation.

4.1.2. The length of packet train
The length of packet train means the sampling rate to detect de-

lay trend. If the sample rate is not frequent enough like 10 packets
under 20% utility in Fig. 10, the estimation error will be larger.
However, too many probing packets with higher sending rate than
the available bandwidth will easily lead to queue overflow and it is
intrusive to the existing cross traffic like the result of 60 packets
under 60% utility. It is a tradeoff between the precision of estima-
tion and the amount of network traffic causing by probing packets.
Therefore, the length of packet train has to be sufficiently large to
accommodate various situations and it needs to be not intrusive.
As shown in Fig. 10, 30 or 50 packets in a packet train is the better
choice. In order to reduce the burden of the network load, we
choose 30 packets in the following simulations.

4.1.3. Comparison
We compare our algorithm to binary-search based algorithm in

[11]. The available bandwidth is estimated every 20 s, and the
spots in Fig. 11 show the starting time of each estimation and
the corresponding estimated available bandwidth. From Fig. 10,
it is shown that our algorithm keeps much closer to the curve of
real available bandwidth.

Table 1 shows the MAD between the estimated and the true
bandwidths. The required average number of packet trains to com-
plete bandwidth estimation under different network utilizations is
also shown. Our algorithm outperforms binary-search based algo-
rithm, especially in the case of heavy traffic load.

Using binary-search to infer the available bandwidth is unstable
with only one threshold, because once the probing rate falls in the
gray region [3], the results may be inconsistent. Even though Path-
load uses two thresholds to detect delay trend, it is still easy to
misjudge in the fast fluctuant network. Our proposed algorithm
utilizes the features of OWD and dispersion to avoid above prob-
lems and the accuracy and convergence speed of probing can be
improved.

4.2. Congestion control

As to the performance evaluation of congestion control algo-
rithms, we present the discussion from the aspects of available
bandwidth utilization, friendliness, and fairness, respectively. Sim-
ulations over Brite-generated network topology are also shown.
Our simulation parameters are set as follows if they are not espe-
cially mentioned. The threshold of full search algorithm is 0.63. As
to the various scalabilities of SVC, we assume the maximum bit
rate is 2 Mbps and the maximum bit rate is equally divided into
20 layers. The accumulative bit rates for all layers are 100, 200,
300, . . ., 2000 kbps. The parameter a of thresholdPLR is set to 0.3
heuristically. The version of TCP flows is Tahoe and the packet sizes
for TFRC and TCP flows are also 1000 bytes.

4.2.1. Available bandwidth utilization
In this section we evaluate the available bandwidth utilization

of the proposed congestion control algorithm compared to the
algorithms in TFRC [22] and TCP. We use ns2 network simulator
to conduct simulations with the topology shown in Fig. 4. The
length of a packet train is 30 packets of packet size 1000 bytes.
The capacities along the path are 10, 7.5, 5.5, 2, 6, and 8 Mbps,
respectively. The link with capacity 2 Mbps is the tight and narrow
link and the queue length is 30 packets. The cross traffic consisting
of constant-bit-rate flows (CBR) of packet size 550 bytes is gener-
ated for each link to alter the available bandwidth so that the avail-
able bandwidth can exhibit large fluctuation over a period of time.

From the experiment results shown in Fig. 12, the sawtooth-like
rate shape of TCP shows the worst utilization. The proposed con-
gestion control algorithm has better performance than TFRC not
only in the start phase but also in the transmission phase. During
the start phase, our algorithm can converge to the available band-
width by top-down approach faster than the slow-start in the
TFRC/TCP. During the transmission phase, our proposed algorithm
fast converges to the available bandwidth under TCP-friendly con-
dition because our proposed algorithm estimates the available
bandwidth by probing instead of TCP throughput model. In our
proposed algorithm, the efficiency to converge to the available
bandwidth depends on the time interval between two probing
periods. In order to be friendly with TCP, we mimic the congestion
avoidance status in TCP to dynamically adapt the time scale be-
tween two probing periods. The simulation results of the proposed
algorithms show steady throughput without overestimating the
shared bandwidth which is a critical property of video streaming.

4.2.2. Friendliness
We simulate the proposed algorithm with different versions of

TCP protocols over a basic dumbbell network topology depicted in
Fig. 13. The capacity of the bottleneck is 3 Mbps, and the proposed
algorithm starts behind the TCP flows by 2 s. As for calculating the
average throughput, the first 200 s are considered as a transient
phase and they are not taken into account. In Fig. 14, the average
throughputs of TCP Tahoe and the proposed algorithm are
1327.63 and 1599.5 kbps, respectively. In Fig. 15, the average
throughputs of TCP NewReno and the proposed algorithm are
1537.24 and 1462.75 kbps. Tahoe and NewReno are aggressive
congestion control algorithms that send packet continuously until
pocket loss occurs. According to Jain’s fairness index [24], the cor-
responding indices of Tahoe and NewReno with our proposed algo-
rithm are 0.991 and 0.999. The main difference between Tahoe and
NewReno is the fast retransmission mechanism where NewReno
sets the congestion window to one half of the previous window



Table 2
Peer size and fairness index under different protocols.

4 peers 8 peers 16 peers 16 peers (20 Mbps)

Proposed 0.941021 0.919904 0.916501 0.994578466
TFRC 0.437532 0.610675 0.999736 0.520080428
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size and Tachoe sets to one after receiving three duplicate
acknowledgements. Therefore, NewReno has better throughput
than Tahoe. The throughput of the proposed algorithm depends
on thresholdPLR because our proposed algorithm only considers
dropping video layers when the packet loss rate is greater than
thresholdPLR. Due to the imitation of the TCP behavior to adapt
the probing period and also the usage of queuing delay trend as
congestion index in the transmission period, our proposed algo-
rithm will not lead to congestion collapse and starvation of TCP
traffic. In addition, the step size between video layers is also one
of the factors affecting the throughput. If TCP and the proposed
algorithm are in the congestion avoidance status and compete for
the residual bandwidth at the same time, our proposed algorithm
will occupy enough bandwidth for a layer by probing. If the resid-
Fig. 18. Fairness index over time with respect to d
ual bandwidth is not enough for a layer, the proposed algorithm
will not change the sending rate. On the other hand, the average
throughputs of TCP Tahoe/TFRC and TCP NewReno/TFRC are
1189.26/1755.06 and 1411.63/1587.99, respectively. The corre-
sponding fairness indices are 0.964 and 0.997, respectively.

We run two instances of the proposed congestion control algo-
rithm over topology as shown in Fig. 13 and the difference of the
start time between two flows is 2 s. The average throughputs for
each are 1500.06 and 1499.93. Form Fig. 16, the throughput of
two instances will converge after 50 s, because our congestion con-
trol algorithm takes the residual bandwidth and esteems the exist-
ing traffic until packet loss reaches the threshold.

4.2.3. Fairness over larger network topology
In order to be close to the real network topology further, we use

Brite [25] topology generator to generate the network topology as
shown in Fig. 17 which is composed of 50 nodes. 33 nodes (the red
ones in Fig. 17) among those 50 nodes are in the core network. The
minimum degree for each node is 2 and the capacity for each link is
10 Mbps. We observe the fairness index between the number of
peers and different protocols. From Table 2, our proposed algo-
rithm seems to have better performance in 4 and 8 peers. However,
ifferent peer numbers and shared bandwidths.



Table 3
Throughput and fairness index under different RTT.

Proposed TFRC

1RTT 0.983293973 0.781547055
2RTT 0.948974893 0.686864937
3RTT 0.945894628 0.626919711
4RTT 0.931168674 0.594973221
5RTT 0.928647422 0.569126743
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the fairness performance of our algorithm is a little bit worse than
the performance of TFRC when there are 16 peers, due to the band-
width resolution (100 kbps) of the video layers which also deter-
mines the sending rate resolution in the proposed algorithm. The
fair throughput is 625kbps and the sending rate just can be 600
or 700kbps for decision so as to unfavorable in calculating fairness
index. However, when the link capacity becomes larger (20 Mbps
as shown in Table 2), the fairness index of TFRC suffers a lot.

Fig. 18 shows the fairness index over time with respect to differ-
ent peer numbers and different shared bandwidths. Obviously, the
proposed algorithm is more stable than TFRC no matter in which
condition. When one of TFRC flows is suppressed by the other
flows, it is rather difficult for it to grow up again.
4.2.4. Fairness over various RTT values
TCP flows usually show different end-to-end throughputs at

different RTTs even under the same bottleneck. In the following
simulations, we change the link delay of the last segment of
one path in Fig. 13 so that there will be different RTTs between
two flows and compare the proposed algorithm with TFRC. Each
simulation lasts for 1000 s and the RTT of the flow varies from
1 to 5 times with respect to the other one, respectively. The aver-
age performance of 10 times of simulations with random start
time is shown in Table 3. The proposed congestion control is
based on the queuing delay, and the back-off time of the probing
periods is related to the transmitted video layers according to
(13) whenever a probing fails. The lower layer has better oppor-
tunities to catch up with the higher layer because of the shorter
probing period when there is extra available bandwidth. There-
fore, the unfairness of different RTT on our proposed algorithm
is much less than that on the TFRC, obviously. Because TFRC does
not emphasize on the inter-session fairness; as a result, one of the
TFRC flows usually suppresses the other one and dominates the
whole bandwidth resource after a long period of time.
5. Conclusion

In this paper, we propose a bandwidth estimation algorithm
using top-down scheme that combines the features of OWD and
packet dispersion, and further present a congestion control algo-
rithm for SVC based streaming through the tool of bandwidth
inference by periodical probing. In order to compete with TCP con-
gestion control algorithm and not to hamper the existing TCP
flows, we dynamically adapt probing periods according to the
RTT and the bit rate of video layers to mimic TCP congestion avoid-
ance status. When the packet loss rate is greater than thresholdPLR,
we drop transmission rate according to the sending rate and packet
loss rate. In addition, we also observe the changes of RTT to deter-
mine whether probing one layer is beneficial. As shown in the sim-
ulation results, the proposed algorithm demonstrates better
performance than TFRC and it can coexist with TCP flows friendly.
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