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IMAGE TRACKING OF MOTORCYCLES AND VEHICLES ON

URBAN ROADS AND ITS APPLICATION TO TRAFFIC

MONITORING AND ENFORCEMENT

Jen-Chao Tai and Kai-Tai Song*

ABSTRACT

Image tracking has increasingly gained attention for use in vision-based traffic
monitoring and surveillance applications.  For many cities in Asia countries, it is de-
sirable to detect multiple motorcycles as well as cars for urban traffic monitoring and
enforcement.  In this paper, a novel contour initialization and tracking algorithm is
presented to track multiple motorcycles and vehicles at any position on the roadway.
This method has the capability to detect moving vehicles of various sizes and to gen-
erate their initial contours for image tracking.  The proposed method is not constrained
by lane boundaries or vehicle size.  To track vehicles on roadways, dynamic models
are designed to predict the horizontal and vertical positions of vehicle contours.  A
Kalman filter is designed to update the prediction based on real-time image measure-
ment.  Practical experimental studies using video clips are presented to evaluate the
performance of the proposed method.  Traffic parameters such as traffic flow, vehicle
speeds and traffic density are obtained with satisfactory accuracy.
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I. INTRODUCTION

In recent years, CCTV cameras have been
widely used on urban roads for surveillance and traf-
fic monitoring applications.  Many machine vision
techniques have been developed to derive useful in-
formation from the acquired images.  The informa-
tion obtained from image sequences allows precise
vehicle tracking and classification.  Useful traffic pa-
rameters including vehicle speeds, traffic flow, etc.
can be obtained (Faro et al., 2008; Wu et al., 2007;
Lin et al., 2006; Lan et al., 2003; Hsu et al., 2004;
Tai et al., 2004; Pece and Worrall, 2002; Lim et al.,
2002).  In practical applications, various types of ve-
hicles on a multi-lane road need to be segmented and

tracked simultaneously.  Further, for many cities in
Asia countries, it is desirable to detect multiple mo-
torcycles as well as cars in urban traffic monitoring
and enforcement applications.  This paper aims to
study a timely and precise tracking initialization pro-
cedure in image tracking of multiple vehicles on a
roadway.  After contour initialization, a robust tracker
can be applied for vehicle tracking.

Many powerful tools for real-time contour ini-
tialization and tracking have been reported for im-
age-based traffic monitoring and enforcement.  Pece
and Worrall (2002) proposed an expectation-maximi-
zation (EM) contour algorithm to track vehicles.  Their
method used cluster analysis of image difference to
accomplish tracking initialization.  Lim et al. (2002)
presented a feature-based algorithm to obtain vehicle
states.  Loop detectors were used to initialize image
tracking for vehicle speed estimation in their design.
Masoud et al. (2001) employed sets of blobs and rect-
angular patches to track vehicles.  Their method es-
tablished the correspondence among blobs and tracked
vehicles for tracking initialization.  Kamijo et al. (2000)
proposed a spatio-temporal Markov random field model
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to obtain the state of each pixel for tracking purposes.
They employed a slit at each entrance to examine
entering vehicles.  Hsu et al. (2004) used the concept
of detection zone and entropy to monitor similar-sized
cars.  Lai et al. (2000) proposed the idea of virtual
loop and direction-based motion estimation to clas-
sify and track vehicles, assigning virtual loops to each
lane for tracking.  Tai et al. (2004) presented an ini-
tialization method exploiting the concept of detec-
tion line and contour growing.  Their algorithm
achieves reliable vehicle tracking at road intersections.
However, one drawback of their method is that it simply
uses fixed-size models for all vehicles.  Such a method
does not have the capacity to detect and to track ve-
hicles of various dimensions simultaneously.  Thus,
it is desirable to develop a tracking algorithm for
general traffic imagery with vehicles of various dimen-
sions, including cars and motorcycles.  Further, pre-
vious methods cannot handle vehicles that travel across
lane boundaries in the initialization stage of image
tracking.  Urgent attention is required to develop an
initialization and tracking algorithm for all moving
vehicles in any position on a multi-lane road.

In this study, a vision-based traffic monitoring
system (VTMS) is developed to automatically detect
and track multiple vehicles on a multi-lane road.  The
image size and shape of a moving vehicle often vary
in an image sequence due to vehicle motion in the
camera’s field of view.  The VTMS needs to segment
and exactly recognize the same vehicle under such
conditions.  To do so, an active contour model is
adopted to represent a vehicle and cope with the ro-
bustness problems of vehicle tracking (Vard et al.,
2008; Yilmaz et al., 2006; Koschan et al., 2002;
Iannizzotto and Vita, 2000).

The rest of this paper is organized as follows.
Section II gives an overview of the VTMS.  An im-
age measurement algorithm for active contour repre-
sentation will be described.  Section III presents the
proposed contour initialization method and the im-
age tracking system.  Experimental results of traffic
parameter estimation of the proposed method will be
presented in Section IV.  Section V summarizes the
contribution of this work.

II. SYSTEM OVERVIEW

Figure 1 shows the block diagram of the pro-
posed vehicle contour initialization and tracking system
for traffic monitoring and enforcement.  This image
tracking system consists of four parts: foreground
segmentation, contour initialization, vehicle tracking
and traffic parameter estimation. In foreground seg-
mentation the binary images of moving vehicles are
determined from image sequences.  The contour ini-
tialization part detects a vehicle using a specially

designed detection window for generating initial ve-
hicle contours.  Once initialized, the vehicle contour
will be tracked and updated in the image sequence.
The vehicle tracking module employs a dynamic model
to predict the vehicle contour from its previous states.
The contour of a targeted vehicle is iteratively ob-
tained by using image measurement and Kalman
filtering.  The proposed contour initialization and
detailed tracking algorithms will be described in Sec-
tion III.  In the traffic parameter estimation module,
useful parameters are calculated and transmitted to
the traffic management center.  The procedure of find-
ing a vehicle binary image, including foreground
segmentation, active contour model, and image
measurement, is presented below.

1. Foreground Segmentation

For an image sequence captured by a static camera,
pixel values may have complex distributions.  There
exist various noisy fluctuations and shadows in the im-
agery (Song and Tai, 2007), However, for most cases,
the intensity of a background pixel dominates the largest
Gaussian.  For the foreground moving vehicle
segmentation, we first apply Gaussian mixture mod-
els (GMMs) to generate the background image.  GMM
approaches to obtaining reliable background images
have been widely adopted for many applications (Stauffer
and Grimson, 1999).  GMM models provide effective
background estimation under environmental variations
through a mixture of Gaussians for each pixel in an

Traffic image

Foreground
segmentation Foreground

segmentation
module

Binary image

Vehicle
detection
module

Traffic
parameter
estimation

module

Traffic
parameters

Vehicle tracking module

Delay
unit

Kalman
filter

Best estimated
state

Previous
state

Initial state

Image
measurement

Dynamic
model

Predicted
state

Measured
state

Fig. 1  Block diagram of the system architecture
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image sequence.  To reduce the computation time, we
represent each pixel by using three Gaussian models:
one Gaussian for background intensity, one for mov-
ing foreground and the other Gaussian for noise.  In-
coming intensity is checked against the existing Gaussian
distributions, until a matching is found.  If none of the
Gaussian distributions matches the current intensity,
the least probable distribution is replaced by a distri-
bution with the current value as its mean, with an ini-
tially high variance, and low prior weight.

If a Gaussian matches the current pixel value xt

at time t, the mean µt and the variance σ 2
t of Gaussian

is updated such that

µt = µt – 1 + β(xt – µt – 1), (1)

σ 2
t = (1 – β)σ 2

t + β(xt – µt – 1)T(xt – µt – 1),     (2)

where β is the learning rate.  The mean and the vari-
ance parameters for unmatched distribution remain
the same.  Further, all weights are updated by

ω*
t = ωt –1  + β(Mt – ωt –1 ), (3)

where Mt is 1 for a matched Gaussian, otherwise, Mt

is 0.  All weights are reprocessed by ωt = ωt*
Sω

 for

normalization, where Sω is Σω*
t and the result ωt is

equivalent to the probability of intensity based on past
values.  The intensity of a background object is most
frequently recorded in the image sequence.  The
Gaussian that has the largest weight is considered as
the background model.  The Gaussian generated by
moving objects has the second largest weight.  Fore-
ground pixels can be found if they match the distri-
bution of the foreground Gaussian.  Accordingly, a
binary image of moving vehicles can be effectively
generated using the GMMs model.

Windshields of vehicles might be erroneously
recognized as background, because both gray inten-
sities might be very similar.  This situation can be
improved in foreground segmentation by using mor-
phological hole-filling.  Favorable results are obtained
as the image of a windshield usually lies inside of a
vehicle image after closing operations.  The fore-
ground pixels are then grouped into different regions
using connected components labeling algorithm for
image measurement (Bovik et al., 2001).  In traffic
imagery, shadows attached to their respective mov-
ing vehicles introduce distortions and cause problems
in image segmentation.  Interested readers refer to
(Song and Tai, 2007) for a discussion and a statisti-
cal method for shadow suppression in traffic imagery.

2. Active Contour Model

Active contour modeling is a powerful tool for

model-based image segmentation and tracking
(Yilmaz et al., 2006; Koschan et al., 2002; Lim et
al., 2002).  Based on the active contour concept, an
image measurement method for obtaining the best-
fit vehicle contour curve for image tracking is pre-
sented below.  In this work, B-spline functions are
adopted to represent vehicle contours in image frames.
The vehicle contour (x(s), y(s)) is represented using
NB B-spline functions:

x(s) = Bn(s)qn
xΣ

n = 0

NB – 1

= B(s)Qx  for  0 ≤ s ≤ NB   (4)

and

y(s) = Bn(s)qn
yΣ

n = 0

NB – 1

= B(s)Qy  for  0 ≤ s ≤ NB,  (5)

where

B(s) = (B0(s), B1(s), ..., BNB –1 (s))T,

B0(s) =

s2/2 if 0 ≤ s < 1
3
4 – (s – 3

2)2 if 1 ≤ s < 2

(s – 3)2/2 if 2 ≤ s < 3

0 if otherwise

,

Bn(s) = B0(s – n),

Qx =

q0
x

q1
x

qNB – 1
x

and Qy =

q0
y

q1
y

qNB – 1
y

.

The contour r(s) is represented by a vector Q

(=
Qx

Qy ) and Q contains the X-Y coordinates of the

control points of the B-spline curve, such that

r(s) = x(s)
y(s) = I2 ⊗ B(s)TQ =

B(s)T 0′
0′ B(s)T Q

= U(s)Q , (6)

where I2 denotes a 2 ×2 identity matrix, ⊗ is the Kro-
necker product denotation of two matrices and 0′ is
(0, 0, 0, 0, 0, 0, 0, 0)T.  In this design, a control point
vector Q containing eight control points is used to
represent the vehicle contour, as shown in Fig. 2.  The
control points are indicated by circles in the figure.

3. Shape Space Transformation

In a traffic image sequence, the contour of a moving
vehicle changes due to its motion and the projective
effect of camera view angle.  Within a reasonable view
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angle, it can be assumed that the variation of vehicle
contour is linear in traffic imagery.  The vehicle con-
tour can then be described by a shape-space planar
affine transformation in the image plane.  The boundary
curve r(s) of each vehicle is expressed using a tem-
plate curve r0(s) (Iannizzotto and Vita, 2000).

r(s) = ut + Mr0(s), (7)

where ut = (ux, uy)T is a two-dimensional translation
vector and M is a 2 ×2 affine-matrix comprising one
rotation and three deformation (horizontal, vertical,
and diagonal) elements.  Subtracting r0(s) from Eq.
(7), one obtains:

r(s) – r0(s) = ut + (M – I)U(s)Q0

= U(s) 1′ 0′ Q0
x 0′ 0′ Q0

y

0′ 1′ 0′ Q0
y Q0

x 0′
X = U(s)WX ,

(8)

where is 1′ is (1, 1, 1, 1, 1, 1, 1, 1)T, Q x
0, Qy

0 are X-Y
coordinates of the control points of the template curve
Q0 and the shape-space vector is

X = (ux  uy  M11 – 1  M12  M21  M22 – 1)T.

Subtracting r0(s) from Eq. (6), Eq. (8) can be rewrit-
ten as

r(s) – r0(s) = U(s)(Q – Q0). (9)

Comparing Eq. (8) and Eq. (9), one obtains a linear
transformation:

Q = WX + Q0.  (10)

Using Eq. (10), one can transform a vehicle contour

to a shape-space vector X.  This simplifies the post-
processing of contour tracking in the image plane and
the vehicle contour will be restricted to varying
steadily by the shape-space vector.

4. Image Measurement

The image measurement procedure is respon-
sible for obtaining the best-fit curve of the vehicle
contour in an image according to a predicted vehicle
contour generated from a predicted shape-space vec-
tor 

~X, a template curve Q0 and its shape matrix W.
The binary image of a traveling vehicle is segmented
from traffic imagery by using GMM (see Section
III.1).  The contour feature rf (s) is obtained by ap-
plying one-dimensional (1-D) image processing along
the normal direction of a predicted curve.  Curve-fit-
ting method of the detected features is employed to
obtain the best-fit curve of the vehicle contour –r(s)
(Blake and Isard, 1998).  In carrying out the curve
fitting of contour features, one has to increase the
tolerance for image disturbance and eliminate pos-
sible interference from features of other objects in
the background.  A contour shape-space vector  

~X and
a regularization constant α are used to stand for the
relative effect of the shape in the curve fitting and
meet the criteria mentioned above.

Figure 3 depicts the flowchart of the procedure
for finding the shape-space vector of the best fitting
curve.  Introducing the concepts of information ma-
trix Si and information weight sum Zi, the algorithm
for finding shape-space vector of the best fitting curve
can be summarized as follows:

1) Select N regularly equal-spaced samples si, i = 1,
2, 3, ..., N and s1 = h, si + 1 = si + h, sN = Nh = NB.

2) For each i, find the position of rf(si) by applying
one-dimensional (1-D) image processing along the

1

2

3
4

5

6

7
8

Fig. 2  Active contour of a vehicle

++
++

Predicted
states X

~ Shape-space vector

B-spline
~

Q = WX + Q0

Image
input

Image
processing

Best-fit
states X

–

–r(si) = U(si)Q

Normal direction

Feature measuringBinary image

Delay

Delay

Curve fitting

n(si)=
y'(si)
x'(si)

–

vi = (rf (si) – r (si)) . n(si)

h(si)vi

– –

h(si)
T = n(si)

TU(si)W
–

X = X + (S + S)Z

Z = ZN

S = SN

– –~ NB

1

h(si)h(si)
T

NB

1

Fig. 3 Flowchart of the procedure for finding shape-space vector
of the best fitting curve
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normal line passing through –r(s) (–r(s) is the con-
tour of  

~X) at s = si.
3) Initialize

Z0 = 0, S0 = 0.

Iterate, for i = 1, 2, 3, ..., N

vi = (rf(si) – –r(si)) . –n(si) (11)

h(si)T = –n(si)TU(si)W (12)

Si = Si – 1 + 1
σ i

2 h(si)h(si)
T (13)

Zi = Zi – 1 + 1
σ i

2 h(si)vi (14)

where –n(si) is the normal unit vector of curve  –r(s) at
s = si and σ2

i = NB.

4) The aggregated observation vector is

Z = ZN with the associated statistical information

S = SN

5) The best-fit curve is expressed as a shape-space
vector (Blake and Isard 1998)

 
–X =  

~X + ( 
–S + S)–1Z, (15)

where  
–S = αWT( 1

NB
(

0

NB

I2 ⊗ B(s)T)T(I2 ⊗ B(s)T)ds)W.

III. THE PROPOSED INITIALIZATION
ALGORITHM

The contour initialization step detects the moving
vehicle and generates an initial contour for track-
ing. This step is important for successfully tracking a
vehicle in the image sequence.  To track multiple ve-
hicles of various sizes on a multi-lane road, we propose
a contour initialization algorithm to generate initial con-
tours for image tracking by using a detection window.

1. Contour Initialization

A novel concept of detection window is proposed

in this work to handle contour initialization. As shown
in Fig. 4, depending on current traffic imagery, there
can be multiple detection regions and initialization re-
gions in the detection window. In the beginning, the
entire detection window is categorized as a detection
region.  The system works to check whether there is
any vehicle entering the detection region.  As a ve-
hicle is detected, the related detection region will change
into an initialization region.  The rest of the detection
region remains unchanged.  If the detected vehicle leaves
the initialization region, this region will be released
and become a detection region again.  Thus, the detec-
tion region and the initialization region are automati-
cally adjusted according to the current traffic image
sequence.

(i) Detection Window

To facilitate vehicle detection, we divide the de-
tection region into several 1-pixel-width sub-regions.
An empty sub-region transfers to a filled sub-region
if a moving object appears in this sub-region.  When
the front part of a vehicle, such as a vehicle’s bumper,
enters the detection window, a cluster of filled sub-
regions appears and it grows gradually as the vehicle
moves forward.  Finally the number of filled sub-re-
gions will be fixed and can be used to find the width
of the vehicle in the image plane.  In our design, if a
related detection region contains enough cluster filled
sub-regions (according to an assigned threshold), it
will change into an initialization region as mentioned
in the previous paragraph.  Fig. 5 shows a test ex-
ample where a car and a motorcycle appear in the de-
tection window simultaneously.  Both the car and the
motorcycle are detected; two initialization regions are
automatically generated in this case.

(ii) Contour Generation

The result of contour initialization is the

Vehicle
moving

direction
Width

H
ei

gh
t

Initialization region
Detection region
Roadway side

Fig. 4 A detection window consists of initialization regions and
detection regions

Detection region

Initialization region

Fig. 5  Detection of a car and a motorcycle
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generation of an initial contour of the detected ve-
hicle as it leaves the detection window.  Fig. 6 de-
picts the design of initial contour generation.  First,
an estimated contour is automatically generated by
using geometrical information obtained from the ini-
tialization region.  The width of the estimated con-
tour is the width w of the initialization region.  The
length L2 of the estimated contour is assigned to Rw,
R is an empirical ratio of the length to the width of
vehicle in the captured image frame. The location of
the estimated contour is assigned at the exit of the
initialization region, as shown in Fig. 6.  It is clear
that the estimated contour is generated via simple geo-
metrical relationships in the initialization region; it
may not perfectly match the actual situation of the
vehicle image.  However, the estimated contour will
be corrected by subsequent image measurement, as
described below.

The dimension and location of the estimated
contour are corrected to derive an estimation contour
by analyzing the actual vehicle image.  The length L2

and the location of the estimated vehicle contour can
deviate from the generated initial contour.  The width
w of the vehicle image was previously estimated by
the detection window when the vehicle entered the
detection window.  The length and the position of ve-
hicle image, however, should be corrected to actual
values.  In the current design, we analyze the projec-
tion information to estimate the size and position of
the vehicle image.  The binary image is projected to
two one-dimensional arrays and the projection is used
to measure the occupancy of the vehicle image for
obtaining the size and position of the vehicle in the
image frame.  The projection values are the sum of
vehicle pixels along vertical and horizontal directions,
respectively.  Fig. 7 illustrates the method of esti-
mating the size and position of a vehicle in the image
plane.  In this case, the vertical projection reveals that
the corner point Pt of the initial contour should shift
to the point P3, and the horizontal projection reveals

that the length L2 should be corrected to L1, as shown
in Fig. 6.  The control points and center point of the
initial contour are then generated according to w, L1,
P3.  The initial contour is employed to obtain the tem-
plate Q0 and the shape-space vector X for image
tracking:

Q0
x =

u1 – uc
u2 – uc

u8 – uc

, Q0
y =

v1 – vc
v2 – vc

v8 – vc

and X =

uc
vc
0
0
0
0

,

where (u1, v1), (u2, v2), ..., (u8, v8) and (uc, vc) are
pixel-based coordinates of points P1, P2, ..., P8 and
Ct.

The sizes and positions of moving vehicles can
be detected by using the proposed detection window.
Accordingly, a proper contour of each vehicle can be
initialized to represent individual vehicles on an un-
confined roadway.

2. Kalman Filtering

The vehicle contour is represented by a shape-
space vector X with six elements.  The first two ele-
ments of X are position coordinates of the template
curve and the rest of the elements are shape scaling
elements, as described in Section II.3.  The vehicle
tracking module employs two dynamic models (see
later) to predict the horizontal and vertical position
from their historical position states.  The predicted
states are provided to the information fusion stage
for tracking a vehicle.  As for the shape scaling elements,
because the change of vehicle contour is very small
within two consecutive image frames; it is not neces-
sary to employ complex dynamic models to predict
the shape scaling elements.  Thus the predicted states
of these elements can be simply predicted using the

Estimated contour

Initial contour

Initialization region

Control point

Center point

W2

Ct

P1

P2

P3

Pt P4 P5
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20 40 60 80
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Fig. 6  Generation of an initial contour

Fig. 7  The projection profile of an estimated contour
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previous measured state 
–X obtained from the image

measurement, as described in Section II.4.
Below is the design of our dynamic model for

contour prediction.  The state of horizontal or verti-
cal position can be governed by

xk + 1 = xk + (xk – xk – 1) + εk, (16)

where xk +1  is the position state and εk is the system

noise.  Let Xk = xk – 1
xk

, then the dynamical model is

Xk + 1 = AXk + ΓεΓεk , (17)

where A = 0 1
– 1 2

 and ΓΓ = 0
m .  The observation

model is

ok + 1 = CXk + ηηk , (18)

where ok +1  is the measurement state, C = [0  1] and
ηηk is observation noise.  Let {εk} and {ηηk} be the zero-
mean Gaussian white noises such that Var(εk) = Yk

and Var(ηk) = Rk are positive definite matrices and
E(εεkηηl) = 0 for all k and l.  Eqs. (17) and (18) are the
state space description of a linear stochastic system.
A Kalman filter is designed to combine the informa-
tion from the predicted states and the best-fit states
obtained from Eq. (15) (Bozic, 1994).  The tracking
procedure over one time-step is summarized as follows:

1) Predict the a priori estimate 
{{{{{X–

k + 1 according to the
previous state  

{{{{{Xk:

 {{
{{{X–

k + 1 = A 
{{{{{Xk.  (19)

2) Determine the a priori estimate error covariance
ahead,

Pk + 1
– = APkAT + ΓΓYΓΓ T .  (20)

3) Compute the Kalman gain,

Kk + 1 = P–
k + 1CT(CP–

k + 1CT + R)–1. (21)

4) Use a Kalman filter to obtain the a posteriori esti-
mate by incorporating the measurement state ok + 1:

  
{{{{{Xk + 1 =  

{{{{{X–
k + 1 + Kk + 1(ok + 1 – C{{{{{X–

k + 1), (22)

5) Update the a posteriori error covariance

Pk + 1 = (I – Kk + 1C)P–
k + 1; (23)

then go to step 1 for next iteration.
At each procedure, the process is repeated with the
previous a posteriori estimates used to predict the new

a priori estimates.

3. Vehicle Speed Estimation

As vehicles in an image sequence are success-
fully tracked, traffic parameters such as traffic flow,
vehicle speeds and traffic density can be obtained.
The traffic flow can be derived as the ratio of de-
tected vehicle numbers to elapsed time.  Traffic den-
sity D (car/km) is calculated as follows

D =
q

Vavg
, (24)

where q is the traffic flow (car/hr) and Vavg is the av-
erage travel speed (km/hr).

Vehicle speed can be obtained from two re-
corded positions of vehicle image and the elapsed time
between these two positions.  The center of the bot-
tom edge of a vehicle image is taken as the reference
point of the vehicle position.  This point can be eas-
ily obtained from the control vectors of the vehicle
contour.  Assuming the vehicles lie on a flat plane
and the camera has been calibrated, we can transform
the image coordinate (uI, vI) into the world (Xw, Yw)
coordinate as shown below (Schoepflin and Dailey,
2003):

Xw = h
f sinφ

uv0
(v0 – vI)

(25)

and

Yw = h
f sin2φ

v0vI
(v0 – vI)

, (26)

where f is the focal length of the camera, φ is the tilt
angle of the camera, h is the height of the camera and
(u0, v0) is the vanishing point of parallel lanes.

From the tracking result of a tracked vehicle,
the reference point Pa (tracking operation is ini-
tialized) at time ta and Pb (as the vehicle attains a
predefined region, tracking operation terminates) at
time tb are recorded.  Using Eqs. (25) and (26), posi-
tions Pa and Pb are transformed to world coordinates
to calculate the traveling distance L between Pa and
Pb.  The vehicle speed Vs can be calculated by

Vs = L
(tb – ta) . (27)

IV. EXPERIMENTAL RESULTS

Practical experiments of traffic parameter ex-
traction have been conducted to evaluate the track-
ing performance of the proposed method by using two
video clips of traffic taken in Hsinchu city.  The frame
rate adopted in both experiments is 15 frame/s.  The
pixel resolution of each test frame is 352 × 240 pixels.
Fig. 8 illustrates an example of image tracking of cars
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and motorcycles.  In Fig. 8(a), two motorcycles are
tracked and another motorcycle is detected in the de-
tection window.  Fig. 8(b) shows that the motorcycle
leaves the detection window and an initial contour is
generated accordingly in the initialization region.  In
Fig. 8(c), two motorcycles are tracked and another
motorcycle has not yet entered the detection window.
In Fig. 8(d) a motorcycle is detected in the detection
window.  The motorcycle leaves the detection win-
dow and an initial contour is generated accordingly
as shown in Fig. 8(e).  Another motorcycle is detected
in Fig. 8(f).  Two motorcycles are simultaneously de-
tected in Fig. 8(g).  One motorcycle leaves the detec-
tion window and an initial contour is generated in Fig.
8(h).  A car is detected in Fig. 8(i).  The car leaves
the detection window and an initial contour is gener-
ated for tracking in Fig. 8(j).  The car is tracked while
another car is detected in Fig. 8(k).  The car is tracked
as expected and the other two cars are detected si-
multaneously in Fig. 8(l).  The experimental results
demonstrate that the proposed contour initialization
procedure successfully provides initial contours for
vehicle contour tracking.  Moreover, this experiment
indicates that cars and motorcycles are detected and
tracked simultaneously in any position of a multi-lane
road by the proposed method.  A video clip of ex-
perimental results can be found at http://isci.cn.nctu.
edu.tw/video/ItsTracking/Tracking1.wmv.

The second experiment was conducted using

traffic recorded by a surveillance camera installed at
the main gate of the Hsinchu Science Park, Taiwan,
where a traffic monitoring system has been installed
for evaluation.  Fig. 9 shows the experimental results
of vehicle tracking for traffic parameters estimation.
In Fig. 9(a), a car is detected in the detection window.
The first detected car leaves the detection window
and an initial contour is generated accordingly in Fig.
9(b).  In Fig. 9(c), two cars are tracked and another
detected car passes through the detection window.  Fig.
9(d) shows that the detection window detects a ve-
hicle in the left lane.  Two cars simultaneously cross
the detection window and are detected in Fig. 9(e).
Cars leave the detection window and are tracked in
Fig. 9(f).  It is interesting to note that two tracked
cars are close to each other and still have been tracked
precisely in Fig. 9(g).  In Fig. 9(h), a car traveling
between two lanes is detected in the detection window.

In this example, useful traffic parameters are
estimated using the proposed method.  In a time
duration of 20 minutes, a total of 335 vehicles are
detected (the ground truth is 334 vehicles).  The ac-
curacy of vehicle number estimation is quite satisfac-
tory.  This is mainly due to the detection window
being able to handle vehicles that travel across lane
boundaries.  Table 1 shows the experimental results
of traffic parameter estimation.  In the table, ground
truth was manually measured from image sequences.
The estimated parameters include average speed:

(a)

(e)

(i)

(b)

(f)

(j)

(c)

(g)

(k)

(d)

(h)

(l)

Frame no = 056 Car No. = 1
Motorcycle No. = 3

Frame no = 082 Car No. = 1
Motorcycle No. = 5

Frame no = 060 Car No. = 1
Motorcycle No. = 3

Frame no = 126 Car No. = 1
Motorcycle No. = 7

Frame no = 076 Car No. = 1
Motorcycle No. = 4

Frame no = 128 Car No. = 1
Motorcycle No. = 8

Frame no = 078 Car No. = 1
Motorcycle No. = 5

Frame no = 130 Car No. = 1
Motorcycle No. = 8

Frame no = 186 Car No. = 2
Motorcycle No. = 10

Frame no = 202 Car No. = 3
Motorcycle No. = 10

Frame no = 218 Car No. = 4
Motorcycle No. = 10

Frame no = 220 Car No. = 5
Motorcycle No. = 10

Fig. 8  Experimental results of image tracking of cars and motorcycles
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42.87 km/hr (the ground truth is 42.88 km/hr), the
traffic flow rate : 1002 car/hr (the ground truth is 1005
car/hr) and the density is 23.37 car/km (the ground
truth is 23.44 car/km).  The error of average speed
estimation is within 5%.  A video clip of experimen-
tal results can be found at http://isci.cn.nctu.edu.tw/
video/ItsTracking/Tracking2.wmv.

V. CONCLUSIONS

An automatic contour initialization and tracking

method have been developed for image tracking of
multiple vehicles based on active contour and
image measurement.  A novel detection window im-
age processing scheme has been proposed to detect mov-
ing vehicles of various dimensions and generate their
initial contours for image tracking on a multi-lane road.
The proposed contour initialization and tracking schemes
have been tested for traffic monitoring and enforce-
ment applications.  Experimental results show that the
proposed method successfully tracks motorcycles as
well as multiple cars on an urban multi-lane road.  Traffic

Fig. 9  Traffic monitoring results in Hsinchu Science Park

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Frame no = 028 Car No. = 1

Car No. = 7Frame no = 0298

Frame no = 044 Car No. = 1

Car No. = 7Frame no = 312

Frame no = 118 Car No. = 3

Car No. = 8Frame no = 338

Frame no = 204 Car No. = 5

Frame no = 748 Car No. = 13

Table 1 Experimental results of traffic parameter estimation

Time
Vehicle number Traffic flow rate Average speed Traffic density

index
(car) (car/hr) (km/hr) (car/km)

Ground Ground Ground Error Ground(min) Estimated Estimated Estimated Estimated
truth truth truth truth

1 13 14 780 840 36.9 35.6 3.51% 21.1 23.6
2 38 38 2280 2280 44.0 42.2 4.00% 51.9 54.0
3 6 6 360 360 53.3 51.1 4.17% 6.8 7.0
4 2 2 120 120 43.1 42.9 0.47% 2.8 2.8
5 38 37 2280 2220 42.5 41.7 2.03% 53.6 53.3
6 12 12 720 720 43.5 43.2 0.82% 16.5 16.7
7 15 15 900 900 41.2 41.8 -1.47% 21.9 21.6
8 21 21 1260 1260 43.0 43.8 -1.84% 29.3 28.8
9 5 5 300 300 49.8 50.8 -2.16% 6.0 5.9

10 23 23 1380 1380 36.9 35.6 3.51% 37.4 38.8
11 4 4 240 240 45.6 46.0 -0.80% 5.3 5.2
12 23 23 1380 1380 38.7 38.4 0.77% 35.7 36.0
13 26 27 1560 1620 40.2 40.2 0.01% 38.8 40.3
14 5 5 300 300 48.8 49.6 -1.67% 6.2 6.1
15 30 30 1800 1800 41.6 42.1 -1.28% 43.3 42.7
16 22 22 1320 1320 46.2 47.0 -1.59% 28.6 28.1
17 1 1 60 60 44.6 44.5 0.24% 1.3 1.3
18 27 28 1620 1680 39.3 39.9 -1.48% 41.2 42.1
19 12 12 720 720 45.7 46.8 -2.27% 15.7 15.4
20 11 10 660 600 32.8 34.4 -4.69% 20.1 17.5
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parameters are successfully extracted by using the de-
veloped method.  The error of average vehicle speed
estimation is less than 5%.

Several directions are interesting for further study.
One interesting topic is to investigate the issue of
occlusion in vehicle images. Image occlusion greatly
influences the accuracy of image measurement.  Me-
thods need to be developed to identify individual ve-
hicles for traffic monitoring and enforcement
applications.  Color information of individual tracked
cars can be beneficial for solving this problem (Hu et
al., 2004).  On the other hand, in order to increase
the accuracy of foreground segmentation, it will be
interesting to select adaptive thresholds for handling
the change of environment illumination on the road.
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NOMENCLATURE

B0(s), B1(s), ..., BNB – 1(s)     B-spline functions
B(s) matrix of B-spline functions
D traffic density
f focal length of camera,
h height of camera
I2 2 ×2 identity matrix
L1 length of estimated vehicle contour
L2 predicted length of estimated vehicle

contour
M 2 ×2 affine-matrix
Mt matching index
N number of regularly equal-spaced samples
NB number of B-spline functions
–n(si) normal unit vector of curve  –r(s)
ok + 1 measurement state
Pk + 1 a posteriori error covariance
P–

k + 1 a priori estimate error covariance
Q control point vector
Q0 control point vector of template curve
Qx X coordinates vector of control points
Qy Y coordinates vector of control points
Q0

x X coordinates vector of the control points
Q0

y Y coordinates vector of the control points
qn

x X coordinate of nth control point
qn

y Y coordinate of nth control point
Rk variance of ηk

r(s) coordinates vector of the control points
r0(s) coordinates vector of template-curve

control points
–r(s) best-fit curve of the vehicle contour
 –r(s) contour of  

~X

 rf(s) contour feature
S associated statistical information
Si information matrix
Sω summation of ω*

t

t time
ut translation vector
(u0, v0) vanishing point of parallel lanes in im-

age plane
(uI, vI) image coordinate
Vavg average travel speed
Vs vehicle speed
W shape matrix
w width of vehicle image
X shape-space vector
 
~X contour shape-space vector

 
~X predicted shape-space vector

 

–X shape-space vector of best-fit curve
Xk vector of position state
 
{{{{{Xk previous state

 
{{{{{Xk + 1 a posteriori estimate

xt current pixel value
xk + 1 position state
(Xw, Yw) world coordinate
(x(s), y(s)) vehicle contour
Yk variance of εk

Z aggregated observation vector
Zi information weight sum
α regularization constant
β learning rate
εk system noise
ηηk observation noise
φ tilt angle of camera
µt mean of Gaussian
σt standard deviation of Gaussian
ωt weight of Gaussian
ω*

t updated weight of Gaussian
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