
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 26, 1601-1617 (2010)

1601

FSM-Based Formal Compliance Verification
of Interface Protocols*

CHE-HUA SHIH+, YA-CHING YANG, CHIA-CHIH YEN, JUINN-DAR HUANG

AND JING-YANG JOU
Department of Electronics Engineering

National Chiao Tung University
Hsinchu, 300 Taiwan

+E-mail: matar@eda.ee.nctu.edu.tw

Verifying whether a building block conforms to a specific interface protocol is one

of the important steps in a platform-based system-on-a-chip design methodology. There
are limitations for most of the existing methods for interface protocol compliance verifi-
cation. Simulation-based methods have the false positive problem while formal property
checking methods may suffer from memory explosion and excessive runtime. In this pa-
per, we propose a novel approach for interface protocol compliance verification. The
properties of the interface protocol are first specified as a specification FSM. Then the
compliance of interface logic is formally verified at the higher FSM level so that the re-
quired memory and runtime can be greatly reduced. Finally, it is shown theoretically and
experimentally that the proposed algorithm possesses acceptably low time complexity for
practical applications.

Keywords: interface compliance verification, functional verification, formal verification,
platform-based design methodology, protocol modeling

1. INTRODUCTION

In modern system-on-a-chip (SoC) designs, some building blocks are reusable in-
tellectual property (IP) cores to accelerate the design process. The platform-based design
methodology [1], in which all IP cores are pre-verified, is commonly adopted to achieve an
even higher level of reusability. Fig. 1 illustrates how to reuse an IP core in typical plat-
form-based designs. An IP core is wrapped with the appropriate interface (I/F) logic com-
plying with certain I/F protocol so that it can concordantly communicate with other IP
cores within a system. When the IP core is desired in another platform with a different I/F
protocol, all a designer has to do is simply changing the I/F logic wrapper without altering
the core function logic. Thus, by separating the core function logic from the I/F logic, the
IP core can be easily and quickly integrated into different system platforms utilizing dif-
ferent I/F protocols [2]. In addition, even under a given I/F protocol, the I/F logic can still
vary significantly due to numerous legal configurations and options. Therefore, the inter-
face compliance must be verified thoroughly during SoC integration.

There are two major categories in the field of interface compliance verification: simu-
lation-based (dynamic) methods and formal (static) ones. The simulation-based verifica-
tion approach is age-old but popular. In [3], the authors use HDL monitors to represent the

Received October 17, 2008; revised March 9 & June 22, 2009; accepted July 17, 2009.
Communicated by Yao-Wen Chang.
* The previous version of this paper has been presented in the IEEE International Symposium on VLSI Design,

Automation, and Test, April 2005, pp. 12-15.

C. H. SHIH, Y. C. YANG, C. C. YEN, J. D. HUANG AND J. Y. JOU

1602

platform B

interface B

interface B

IP core 1

IP core 3

platform A

IP core 2

IP core 1

interface A

interface A

Fig. 1. An IP core reused in different system platforms.

properties of protocol specifications. These HDL monitors are simulated along with the
design under verification (DUV) to determine its correctness. In [4-7], methods of gener-
ating monitor circuits, coverage metrics, or verification patterns from high-level specifica-
tion styles are proposed. In [8], a commercial tool ACT is developed to facilitate AMBA
[9] compliance verification. In [10], Lin et al. specify properties of an I/F protocol as a
monitor FSM and then verify the compliance by simulation. All these works define certain
coverage metrics to measure the quality of a simulation trace. However, the compliance
can never be assured even if 100% coverage is achieved. In general, all simulation-based
approaches suffer from this false positive problem in common.

Formal verification can avoid such false positive problem. Model checking [11] tech-
niques are used for I/F protocol compliance verification in [12-14]. In these works, the
authors use CTL language to describe the properties of I/F protocols. Then the model
checker verifies the DUV against these properties. Once the model checker reports a
success, the design is fully compliant to these properties. However, properties in CTL are
not easily thorough and the process of extracting properties from a specification written
in natural languages is generally complicated and painful. It is very likely that some prop-
erties are actually implied by the specification but accidentally not extracted and thus ig-
nored during formal verification. Moreover, memory explosion and excessively long run-
time may be even serious problems as the design size increases.

Recently, the assertion-based verification (ABV) methodology is getting popular and
several property specification languages (such as PSL [15], OVL [16], OVA [17], and
SVA [18]) are developed to provide alternative ways to specify properties in addition to
CTL. These emerging languages are relatively more understandable than CTL at the
semantic and syntactic level. However, no matter which emerging property specification
language is selected, either the dynamic ABV or static ABV inherently suffers from the
same problems described earlier.

Our approach, unlike any of above, intends to formally verify whether the I/F logic
is compliant to the I/F protocol at the FSM level. The properties of the I/F protocol are
specified as a specification FSM. There are two reasons why we adopt a specification FSM
to represent the interface protocol. First, the FSM-based specification style is adequate for
interface protocols since the interface logic is mostly a control FSM. Second, most engi-
neers are familiar to the FSM model. Compared with many property specification lan-
guages, engineers can use the spec FSM with a smaller or almost no learning effort. We
believe that the FSM style is relatively more readable and systematic than rule-based
specification styles and thus enables thorough property extraction. The golden specifica-
tion FSM is only created once for a specific I/F protocol and then can be used to verify

FSM-BASED FORMAL INTERFACE COMPLIANCE VERIFICATION

1603

all designs claimed to be compliant. Developing the FSM of the I/F logic is generally
essential since it is one of the design steps (before the HDL coding) under a typical design
flow. Since the verification is done at the higher FSM level and only the separated I/F
logic is under verification, our approach can efficiently accomplish the verification even
if it is a formal method indeed.

The rest of this paper is organized as follows. Section 2 introduces necessary termi-
nology and concepts of compliance verification. In section 3, the problem formulation and
the proposed compliance checking algorithm are described in detail. Section 4 extends the
algorithm to handle the compliance verification in which the specification is modeled as
an extended FSM (EFSM). Section 5 shows the experimental results, and section 6 con-
cludes this paper.

2. PRELIMINARIES

The FSM model is a common representation for logic design. In this section, we in-
troduce the notations and the spec FSM model used in this paper.

2.1 Notations of Interface Signals

Typical I/O signals of bus interface logic are shown in Fig. 2.

Ibus: the set of input signals from bus to I/F
Obus: the set of output signals from I/F to bus
Icore: the set of input signals from core to I/F
Ocore: the set of output signals from I/F to core
Iext : the set of external input signals to core
Oext: the set of external output signals from core

interface

core

bus

bus component
(master or slave)

Ibus Obus

Ocore Icore
Iext Oext

Fig. 2. Notations of bus signals.

In addition,

Ictrl: Ictrl ⊆ Ibus, the subset of bus inputs that directly controls the bus behavior from the
protocol perspective

Octrl: Octrl ⊆ Obus, the subset of bus outputs that directly controls the bus behavior from
the protocol perspective

C. H. SHIH, Y. C. YANG, C. C. YEN, J. D. HUANG AND J. Y. JOU

1604

We use the AMBA AHB slave interface [9] as an example:

Ibus = {HSEL, HREADYin, HADDR, HWRITE, HTRANS, HSIZE, HBURST, HWDATA,
HMASTER, HMASTERLOCK}

Obus = {HREADY, HRESP, HRDATA, HSPLIT}
Ictrl = {HSEL, HREADYin, HTRANS}
Octrl = {HREADY, HRESP, HSPLIT}

It is common that just a small portion of bus I/F signals are classified into Ictrl and
Octrl. For example, what value the address/data bus exactly carries does not affect the bus
behavior at the protocol level. Also note that Icore, Ocore, Iext, and Oext may differ from de-
sign to design.

2.2 FSM

Definition 1 (FSM) An FSM is a quintuple M = (Q, Σ, Δ, σ, q0) where
Q: the set of symbols denoting states
Σ: the set of symbols denoting inputs
Δ: the set of symbols denoting outputs
σ: Q × BΣ → Q × BΔ, the state transition function
q0: q0 ∈ Q, the initial state

Additionally,

|eqi
|: the number of outgoing transition edges of the state qi

fqi,qj
: BΣ × BΔ → B, the Boolean function s.t. fqi,qj

(x, y) = 1 iff σ(qi, x) = (qj, y)

2.3 Specification FSM (Spec FSM)

A design specification defines two important attributes:

1. Input assumptions: the valid input space.
2. Output properties: the legal output behaviors in the valid input space.

In our approach, the protocol specification is represented with a specification FSM,
or spec FSM. Besides input assumptions, it specifies whether the output response of a spe-
cific implementation (DUV) is legal under a valid input sequence. In other words, the spec
FSM actually acts as a functional monitor of the DUV. An I/O sequence of DUV is classi-
fied into one of the following three categories:

1. Don’t-care: The behavior is not defined since the input sequence is not supposed to

appear.
2. Legal: The output sequence is allowed by the protocol under a valid input sequence.
3. Illegal: The output sequence is prohibited by the protocol under a valid input sequence.

Hence, in every spec FSM, two special states are defined: qvio and qdc. The spec FSM
moves to the state qdc if an invalid input sequence is applied to the DUV. If the DUV be-

FSM-BASED FORMAL INTERFACE COMPLIANCE VERIFICATION

1605

haves illegally under a valid input sequence, the spec FSM moves to the state qvio. If the
DUV behaves legally under a valid input sequence, the spec FSM moves among other
normal states excluding qdc and qvio. Accordingly, the spec FSM is a transformation based
on a typical FSM M = (Q, Σ, Δ, σ, q0) whose behavior is a monitor of certain I/F logic
where Q contains all normal states along with two extra special states qvio and qdc, Σ = Ictrl
∪ Octrl, and Δ = φ. Note that, unlike typical functional monitor designs, the output set Δ of
a spec FSM is empty since there is no need for extra outputs to indicate whether the DUV
behavior is legal, illegal, or don’t-care. Definition 2 shows the formal description of the
spec FSM. More details about how to systematically construct a spec FSM from an inter-
face specification can be found in [10].

Definition 2 (spec FSM) A spec FSM is a 6-tuple M = (Q, Σ, σ, q0, qvio, qdc) where
Q: the set of symbols denoting states
Σ: the set of symbols denoting inputs
σ: Q × BΣ → Q, the state transition function
q0: q0 ∈ Q, the initial state
qvio: qvio ∈ Q, the illegal state
qdc: qdc ∈ Q, the don’t-care state

e5

e6
e6

e7
e5

e8

e2

e1
e3

e4

e9

seq/
nseq

orig

idle/
busy

wait

e10
e5

e8
e6

e10

e7

e1: HSEL + HREADYin
e2: HSEL • HREADYin • (HTRANS = NSEQ)
e3: HSEL • HREADYin • (HTRANS = SEQ)
e4: HSEL • HREADYin • (HTRANS = IDLE||BUSY)
e5: HSEL • (HTRANS = IDLE||BUSY) • HREADY •

(HRESP = OKAY)
e6: HSEL • (HTRANS = SEQ||NSEQ) • HREADY •

(HRESP = OKAY)
e7: HSEL • HREADY • (HRESP = OKAY)
e8: HREADY • (HRESP ≠ OKAY)
e9: HREADY + (HRESP ≠ OKAY)
e10: HREADY • (HRESP = OKAY)

Fig. 3. The spec FSM of a simplified AMBA AHB slave protocol.

The spec FSM of a simplified AMBA AHB slave protocol is given in Fig. 3 as an

example. In the state idle/busy, if HREADY is not asserted or HRESP is not set to OKAY,
the spec FSM moves to the state vio through e9. This implies that a slave cannot respond
anything but OKAY to an IDLE or BUSY transfer, which is explicitly defined in the AMBA
specification. In addition, in the state orig, if a transfer is initiated by asserting HSEL
and HREADYin as well as setting HTRANS to SEQ, the spec FSM moves to the state dc
through e3. This infers that a master should never set HTRANS to SEQ for the first trans-
fer, which is an input constraint to a slave.

To translate an I/F protocol from a document into a spec FSM is relatively system-
atic than into rule-based properties. While building the spec FSM, all possible combina-
tions of Ictrl and Octrl are considered for each normal state, which means all possible tran-
sitions of each normal state are fully specified. For rule-based methods, however, it is
really hard to determine whether all properties have been completely identified or not.

C. H. SHIH, Y. C. YANG, C. C. YEN, J. D. HUANG AND J. Y. JOU

1606

By introducing the spec FSM, a DUV is compliant to the specification if and only if
there is no valid input sequence (of any arbitrary length) along with the corresponding
DUV output sequence that can drive the spec FSM into the state qvio.

2.4 Limitations of Expression Power

Although the spec FSM provides a systematic way for property specification, it is not
omnipotent. For example, a typical liveness property, which says “ack should always be
asserted at some time after req is asserted”, cannot be explicitly represented in the spec
FSM since it takes infinite states to represent the infinite future cycles. But if we are able
to set a bound for such liveness property, the spec FSM is capable of specifying the
bounded liveness property. For example, the property “ack should be asserted within 16
cycles after req is asserted” can be easily represented. This is the case for most interface
hardware designs since the hardware is hardly designed to respond in infinite future.

Despite this limitation, the FSM-based specification style is still promising. All other
specification languages have their own advantages and limitations. But our method is
adequate for interface protocols since the interface logic is mostly a control FSM.

3. OUR APPROACH

In this section, we describe the details of the proposed interface compliance verifi-
cation algorithm with FSM models.

3.1 Problem Formulation

The problem of interface compliance verification can be interpreted as the compli-
ance verification between the spec FSM and the DUV FSM. We formulate it as follows:

Given the spec FSM Ms = (Qs, Σs, σs, qs0, qvio, qdc) where Σs = Ictrl ∪ Octrl
and the DUV FSM Md = (Qd, Σd, Δd, σd, qd0) where Σd = Ibus ∪ Icore and Δd = Obus ∪ Ocore,

verify if the DUV FSM complies with the spec FSM.

Fig. 4 shows the DUV FSM of an AHB slave interface design. Its outputs in Fig. 4
from left to right are HREADY, HRESP[1], and HRESP[0]. When it receives a write re-
quest from a master, it moves to the state write and responds OKAY to indicate that the
write operation is done. When it receives a read request from a master, it first moves to
the state prep, and then moves to the state read along with an OKAY response to indicate
that the read operation can be done at the next cycle. Otherwise, it stays in the state sleep
when there is no request or the request is for an IDLE or BUSY transfer.

How do we verify if the FSM in Fig. 4 complies with the protocol in Fig. 3? Note
that this is not simply equivalence checking since these two FSMs are intrinsically dif-
ferent (with different I/O sets). Besides, there is neither a subset nor a superset relation
between these two FSMs. However, the states in these two FSMs do have some sort of
corresponding relations. For example, when the DUV FSM is in the state sleep, the spec
FSM may be in the state orig, because both of them mean the slave is not requested. We

FSM-BASED FORMAL INTERFACE COMPLIANCE VERIFICATION

1607

sleep

prep

read

write

eS/100

eW/100

eR/100

eR/000

eS/100

eW/100

eW/000

eS/000
eR/100

eR/100

eW/100

eS/100
eS: HSEL + HREADYin +

(HTRANS = IDLE||BUSY)
eR: HSEL • HWRITE • HREADYin •

(HTRANS = NSEQ||SEQ)
eW: HSEL • HWRITE • HREADYin •

(HTRANS = NSEQ||SEQ)

Fig. 4. The DUV FSM of an AHB slave interface design.

name these two states a corresponding state pair (or state pair in short). Definition 3 for-
mally defines the corresponding state pair.

Definition 3 (Corresponding state pair) Given a spec FSM Ms = (Qs, Σs, σs, qs0, qvio,
qdc) and a DUV FSM Md = (Qd, Σd, Δd, σd, qd0), (qs0 , qd0) is a native corresponding state
pair. Assume state qa ∈ Qs and qb ∈ Qd is a corresponding state pair. If there exist certain
I/O values such that the spec FSM moves from qa to qa′ ∈ Qs and the DUV FSM moves
from qb to qb′ ∈ Qd, then (qa′, qb′) is also a corresponding state pair.

The corresponding relation among states is not always 1-to-1. It can also be n-to-1
or 1-to-n. This is the reason why the DUV FSM is not simply a subset or superset of the
spec FSM. For example, the state orig and the state idle/busy in the spec FSM are both
able to correspond to the state sleep in the DUV FSM since the DUV responds identi-
cally when it is not requested or is requested for an IDLE or BUSY transfer. In addition,
the state seq/nseq in the spec FSM is able to correspond to the state read and write in the
DUV FSM because they both indicate the status of data transfer.

Since this compliance verification is neither equivalence checking nor subset/su-
perset checking, the problem must be solved by other methods. Property 1 shows that the
DUV is compliant to the spec FSM if and only if all possible state pairs do not include the
state qvio. Hence the issue becomes how to explore all possible state pairs for the given
FSM pair.

Property 1 Given a spec FSM Ms = (Qs, Σs, σs, qs0, qvio, qdc) and a DUV FSM Md = (Qd,
Σd, Δd, σd, qd0), Md is compliant to Ms if and only if all possible state pairs are examined
and none of them includes the state qvio.

Proof: (→) Within a spec FSM, the state qvio indicates a special status that the corre-
sponding design behavior is illegal. If Md is compliant to Ms, all states in Md must not
correspond to qvio in Ms. Thus there is no state pair that contains qvio.

(←) Now assume all possible state pairs of the two machines are exhaustively ex-
amined and none of them includes the state qvio, it means that all states in Md do not map
to the state qvio. That is, all state transitions in Md are either legal or don’t-care. Thus Md
is compliant to Ms.

C. H. SHIH, Y. C. YANG, C. C. YEN, J. D. HUANG AND J. Y. JOU

1608

3.2 Compliance Checking Algorithm

According to Property 1, the basic notion of our compliance checking algorithm for
the given two FSMs is to find all possible state pairs, and verify if there is any one con-
taining the state qvio. In the beginning, there is a native state pair, consisting of the initial
states from each of FSMs, respectively. This state pair is the root for further state pair
exploration. Based on Definition 3, new state pairs can be found from the known state
pairs repeatedly. Therefore, this process can completely collect all possible state pairs
which are reachable from the initial state pair.

seq/nseq, prep seq/nseq, write idle/busy, sleep orig, sleep

orig, sleep 1

2 3 4 5

 state A, state B

A corresponding state pair:
state A ∈ spec FSM
state B ∈ DUV FSM

Fig. 5. The state pair exploration process.

Fig. 5 illustrates the state pair exploration process. node1 is the state pair of the initial

states in Figs. 3 and 4. Consider the outgoing edge e2 of orig in Fig. 3 and the outgoing
edge eW/100 of sleep in Fig. 4, the intersection of the Boolean functions of these two edges
(forig,seq/nseq, fsleep,write) is non-empty, which implies there exist certain input values along
with the corresponding output values that can drive both transitions at the same time. For
example, the set of input values “HSEL = HWRITE = HREADYin = 1, HTRANS = NSEQ”,
which drives ew, along with the output 100, can drive e2 as well. Hence, node5 (seq/nseq,
write) is explored and represented as a child of node1. Similarly, all outgoing edges of
orig versus all outgoing edges of sleep have to be examined in the same manner. Then
we can get all children of node1 as shown in Fig. 5.

In this way, the exploration process recursively generates all descendants of the root
node. Eventually all possible state pairs are present as nodes in this tree.

Property 2 Given two state pairs, PA and PB, if PA and PB are identical, then the two sets
of state pairs, SA and SB, explored from PA and PB during the state pair exploration proc-
ess are also identical.

Proof: Assume there is a I/O sequence which makes PA move to another state pair PC.
Since PA and PB are identical, this sequence also makes PB move to PC. Thus the two sets
of states explored from PA and PB are always the same.

In Fig. 5, since the subtree rooted at node1 is identical to that rooted at node2 ac-
cording to Property 2, all possible state pairs explored from node2 can also be explored
from node1. Hence, exploring the subtree rooted at node2 is completely unnecessary.
Without losing any reachable state pairs, he exploration process can safely stop finding
children for a node if this node has been already visited. That is, the exploration process
becomes very effective by pruning the search tree without affecting the final result.

FSM-BASED FORMAL INTERFACE COMPLIANCE VERIFICATION

1609

S = φ;
explore_tree(qs0, qd0);
explore_tree(qs, qd) {

S = S ∪ (qs, qd);
for i = 1 to |eqs

|
for j = 1 to |eqd

|
if (fqs,qi

 • fqd,qj
 ≠ 0 && (qi, qj) ∉ S)

if (qi ≠ qdc && qi ≠ qvio)
explore_tree(qi, qj);

else if (qi == qvio)
give a counterexample and exit;

}
Fig. 6. The compliance checking algorithm for FSMs.

In summary, our algorithm starts constructing a search tree from the initial state pair.

It keeps exploring child nodes for each existing node unless the node has already ap-
peared in the search tree. The pseudo code of the algorithm, explore_tree, is shown in
Fig. 6.

3.3 Complexity Analysis

The time complexity of the proposed algorithm is estimated by the iteration count:

iteration count = , ,
1

(| | | |).
s d

N

q n q n
n

e e
=

×∑ (1)

In Eq. (1), |eqs,n| and |eqd,n| denote |eqs
| and |eqd

| at the nth recursion, and N denotes the re-
cursion depth. For the worst case,

N = |Qs| × |Qd|, (2)
|eqs,n| = |Qs|, (3)
|eqd,n| = |Qd|, (4)
Maximum iteration count = (|Qs| × |Qd|)2. (5)
Worst-case time complexity = O((|Qs|×|Qd|)2). (6)

Eq. (2) holds only when all combinations of states in two FSMs are state pairs. Eqs.

(3) and (4) hold only when the two FSMs are both complete graphs. However, these worst-
case conditions rarely occur. Actually, experimental results show that the iteration count
is typically far lower than this theoretical upper bound. Eq. (6) shows that the complexity
of the proposed method is polynomial to the product of the states sizes of spec FSM and
DUV FSM. To our knowledge, the state numbers of spec FSM and DUV FSM are under
an acceptable scale in interface compliance verification. That is, the proposed method can
work well in this specific application.

C. H. SHIH, Y. C. YANG, C. C. YEN, J. D. HUANG AND J. Y. JOU

1610

4. EXTENSION

To make the compliance checking method more flexible, we extend the proposed
algorithm with the EFSM-based modeling style. In this section, we introduce the spec
EFSM model and describe how to extend the original algorithm with it.

4.1 Spec EFSM

The EFSM model is an FSM extended with internal variables. It gives a more effi-
cient way to describe the behavior of a sequential circuit and relaxes the state explosion
problem suffered by traditional finite state machine models. The EFSM model has been
widely used in many research works [21-23].

Definition 4 (EFSM) An extended finite state machine is a 7-tuple M = (Q, Σ, Δ, x, T,
q0, x0) where
Q: the set of symbols denoting states
Σ: the set of symbols denoting inputs
Δ: the set of symbols denoting outputs
x: the set of symbols denoting variables
q0: q0 ∈ Q, the initial state
x0: the initial values of variables in x
T: the set of transitions, each transition t is a 6-tuple t = (st, qt, it, ot, Pt, At) where

st, qt, it, ot: current state, next state, set of input values, set of output values
Pt(x), At(x): the predicate and the action on current variables

Additionally, we further define:

Pqi,qj
(x): the predicate of the transition from the state qi to qj

Aqi,qj
(x): the action of the transition from the state qi to qj

s1

s2
s3

(v > 1, 0)/(v++ ,0)

(TRUE, 0)/(v = 0, 0)
(v == 0, 0)/(v = 1, 0)

(v ≠ 0, 0)/(v++, 0)

(v ≤ 1, 1)/(v--, 0)

(predicate, input value)/(action, output value)

Fig. 7. An EFSM example.

A transition t = (st, qt, it, ot, Pt, At) means if the input values are in it and the predicate

Pt(x) is evaluated true, then the EFSM outputs ot, performs the action At(x) and moves
from the current state st to the next state qt. Fig. 7 illustrates an EFSM example. The ini-
tial state s1 is the one in bold circle. This EFSM contains only one variable v. In the state
s1, if the input value is 0 and v > 1, the EFSM outputs 0, and increases v by 1 while mov-
ing to the next state s2.

To best fit our approach, we further define the spec EFSM as follows.

FSM-BASED FORMAL INTERFACE COMPLIANCE VERIFICATION

1611

Definition 5 (spec EFSM) A spec EFSM is an 8-tuple M = (Q, Σ, x, T, q0, x0, qvio, qdc)
where
Q: the set of symbols denoting states
Σ: the set of symbols denoting inputs
x: the set of symbols denoting variables
q0: q0 ∈ Q, the initial state
x0: the initial values of variables in x
qvio: qvio ∈ Q, the illegal state
qdc: qdc ∈ Q, the don’t-care state
T: the set of transitions, each transition t is a quintuple t = (st, qt, it, Pt, At) where

st, qt, it: current state, next state, set of input values
Pt(x), At(x): the predicate and the action on current variables

4.2 Extension with Spec EFSM

Timing constraints are common in interface protocols. However, it is sometimes te-
dious to specify them with a spec FSM. For example, a simple interface protocol, which
defines “ack must be asserted within 16 cycles after req is asserted”, is specified as the
spec FSM in Fig. 8 (a). It requires a large number of states to represent such a simple pro-
tocol. Instead, if we specify this protocol with an EFSM by introducing a variable count
as in Fig. 8 (b), the representation becomes much clearer and easier. The building process
of the spec EFSM is similar to that of the spec FSM described in section 2.3.

req ack

ack
ack

req
ack

ack

…

ack

vio

idle

ans1
ans2

ans16

req/count=15

ack

req

 ack,
count≠0
/count--

idle ans

vioack, count==0

(a) (b)

Fig. 8. Specify the same protocol in (a) FSM and (b) EFSM.

req/ack

Req/ack req/ack
req/ack

orig wait

…

idle,orig,15

idle,orig,15

ans,wait,15

ans,wait,0

vio,wait,0

ans,wait,14

(a) (b)

Fig. 9. (a) A wrong implementation of the protocol in Fig. 8; (b) The tree explored by the extended
algorithm.

C. H. SHIH, Y. C. YANG, C. C. YEN, J. D. HUANG AND J. Y. JOU

1612

Meanwhile, we extend the compliance checking algorithm in section 3 for handling
the spec EFSM. Similarly, the extended algorithm explores the subtree rooted at a node
unless that the tree has already contained the node. The only difference is that the node is
associated with not only a state pair but also the values of the corresponding variables. A
simple example is given in Fig. 9. Fig. 9 (a) gives an erroneous implementation of the
interface protocol in Fig. 8. This design violates the protocol because it may not assert ack
within 16 cycles if it sticks in the state wait. Fig. 9 (b) shows one possible scenario for
the exploration process to find the violation. The three columns in each node from left to
right denote the state of spec FSM, the state of DUV FSM, and the value of the variable
count. The nodes in the right branch demonstrate the difference between the original
algorithm and the extended one. As shown, the extended algorithm does not stop at the
node (ans, wait, 14) although this node has the same state pair as its parent node (ans,
wait, 15). The reason is that the extra variable count needs to be considered as well. That
is, the extended algorithm prunes the subtree rooted at a node only when there is already
an existing node associated with the identical state pair and variable values.

The extended algorithm extended_explore_tree is given in Fig. 10. The differences
between explore_tree and extended_explore_tree are highlighted (shaded). The worst-
case time complexity of extended_explore_tree is:

Maximum iteration count = |range(A(x))| × (|Qs| × |Qd|)2. (7)

The term range(A(x)) is the value range of the function A(x) and thus |range(A(x))|
is the number of possible values of x. By comparing Eq. (7) against Eq. (6), although the
two equations look different, the complexity represented by both equations are actually
the same. That is, the EFSM simply provides a more elegant way to represent a specifica-
tion. Fig. 8 exactly demonstrates the case.

Given a spec EFSM Ms = (Qs, Σs, x, T, qs0, x0, qvio, qdc) where Σs = Ictrl ∪ Octrl
and a DUV FSM Md = (Qd, Σd, Δd, σd, qd0) where Σd = Ibus ∪ Icore and Δd = Obus ∪ Ocore,
verify the compliance with the following algorithm:

S = φ;
extended_explore_tree(qs0, qd0, x0);
extended_explore_tree(qs, qd, x) {

S = S ∪ (qs, qd, x);
for i = 1 to |eqs

|
for j = 1 to |eqd

| {
x′ = Aqs,qi

(x);
if (fqs,qi

 • fqd,qj
 ≠ 0 && Pqs,qi

(x) == ture && (qi, qj, x′) ∉ S)
if (qi ≠ qdc && qi ≠ qvio)

extended_explore_tree(qi, qj, x′);
else if (qi == qvio)

give a counterexample and exit;
}

Fig. 10. The compliance checking algorithm for spec EFSM and DUV FSM.

FSM-BASED FORMAL INTERFACE COMPLIANCE VERIFICATION

1613

5. EXPERIMENTAL RESULTS

We implement the proposed algorithm in C language. The implementation can either
formally check that the given design is fully compliant to a certain interface protocol or
report an input sequence as a counterexample to show how the given design fails in the
compliance verification. The experiments are conducted over a set of real AMBA AHB-
compliant and WISHBONE-compliant designs [24]. The DUV FSMs are represented with
BLIF-KISS format [25] while the spec (E)FSMs are written in enhanced BLIF, which is
capable of describing predicates and actions required for the EFSM model. We build a
spec FSM for WISHBONE protocol and a spec EFSM for AMBA AHB protocol to com-
pletely represent the essential I/F specifications, respectively. To check whether the pro-
posed algorithm can find the design flaws as expected, we intentionally inject errors into
the design con7 and mac as two additional benchmark designs con7_err and mac_err.

Table 1 shows the experimental results. As shown, the DUVs utilize different func-
tional modes of the protocols, but the same (E)FSM can be used to verify all designs of
the same protocol without altering. Furthermore, the compliance verification algorithm can
successfully detect the injected errors. The error in the design con7_err is induced by a
self-loop of the state performing the WAIT operation. Thus the design may respond WAIT
more than 16 cycles, which is not recommended in the AHB protocol. This is an error that
designers are very likely to commit if they do not deal with the WAIT response carefully.
The other error in the design mac_err is about the two-cycle response behavior. An IDLE

Table 1. The DUVs and the verification results.
I/F protocol type DUV Result Utilized functional modes Violation cause

spi [26] Pass Normal & Error response − WISHBONE slave
(spec FSM) ac97 ctrl [26] Pass Normal response −

con7 Pass OKAY & WAIT response −
mac Pass OKAY & ERROR response −

remap Pass OKAY, ERROR, & RETRY
response −

con7_err Fail OKAY & WAIT response Wait > 16 cycles

AMBA AHB slave
(spec EFSM)

mac_err Fail OKAY & ERROR response Erroneous
2-cycle response

Table 2. Complexity comparison.

I/F protocol type DUV Result Number of
different nodes

Theoretical bound
|range(A(x))| × (|Qs| × |Qd|)2

spi Pass 180 (7 × 3)2 = 442 WISHBONE slave
(spec FSM) ac97 ctrl Pass 221 (7 × 5)2 = 1225

con7 Pass 204 16 × (7 × 4)2 = 12544

mac Pass 191 16 × (7 × 6)2 = 28224

remap Pass 136 16 × (7 × 6)2 = 28224

con7_err Fail 42 16 × (7 × 4)2 = 12544

AMBA AHB slave
(spec EFSM)

mac_err Fail 57 16 × (7 × 6)2 = 28224

C. H. SHIH, Y. C. YANG, C. C. YEN, J. D. HUANG AND J. Y. JOU

1614

transfer must be initiated after an ERROR response, the design does not respond OKAY
but respond ERROR instead, which is a violation of the AHB protocol. With our verifica-
tion approach, these errors and the reasons leading to them are clearly identified.

Table 2 displays the complexity comparison. The results indicate that the actual
number of nodes is far less than that in the worst case analysis. As a matter of fact, each
verification run listed in Table 1 finishes within few seconds on a 300MHz UltraSPARC
II workstation with 256MB RAM. It shows that our algorithm is capable of completing
the formal compliance verification of interface protocol in reasonable time.

6. CONCLUSIONS

In this paper, we introduce the spec FSM to systematically represent an interface
protocol specification. We further show how to formulate the interface compliance veri-
fication as the compliance checking between the spec FSM and DUV FSM. A state pair
exploration algorithm is then proposed to formally solve the FSM compliance problem.
The proposed algorithm is further extended to handle the spec EFSM, which is capable
of effectively modeling more sophisticated properties. Experimental results demonstrate
that our approach can effectively and efficiently verify the interface compliance over a
set of real designs.

In comparison with simulation-based methods, our method is formal thus does not
have the false positive problem. In comparison with other formal methods, our algorithm
hardly suffers from memory explosion and excessive runtime issues in practice. There-
fore, the proposed technique is extremely useful for interface compliance verification
broadly demanded by modern platform-based SoC design environment.

REFERENCES

1. K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli,
“System level design: Orthogonalization of concerns and platform-based design,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 19, 2000, pp. 1523-1543.

2. VSI Alliance, Virtual Component Interface (VCI) Standard − OCB 2 1.0, http://www.
vsia.org, 2000.

3. K. Shimuzu, D. L. Dill, and A. J. Hu, “Monitor-based formal specification of PCI,” in
Proceedings of the 3rd International Conference on Formal Methods in Computer-
Aided Design, 2000, pp. 335-353.

4. M. T. Oliviera and A. J. Hu, “High-level specification and automatic generation of
IP interface monitors,” in Proceedings of the 39th Design Automation Conference,
2002, pp. 129-134.

5. A. J. Hu, J. Casus, and J. Yang, “Efficient generation of monitor circuits for GSTE
assertion graphs,” in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, 2003, pp. 154-159.

6. J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz, “Modeling design constraints
and biasing in simulation using BDDs,” in Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 1999, pp. 584-589.

FSM-BASED FORMAL INTERFACE COMPLIANCE VERIFICATION

1615

7. K. Shimizu and D. L. Dill, “Deriving a simulation input generator and a coverage
metric from a formal specification,” in Proceedings of the 39th Design Automation
Conference, 2002, pp. 801-806.

8. A. Nightingale and J. Goodenough, “Testing for AMBATM compliance,” in Proceed-
ings of the 14th Annual IEEE International ASIC/SOC Conference, 2001, pp. 301-
305.

9. ARM Limited, AMBA Specification (Rev 2.0), 1999.
10. H. M. Lin, C. C. Yen, C. H. Shih, and J. Y. Jou, “On compliance test of on-chip bus

for SOC,” in Proceedings of the Asia and South Pacific Design Automation Confer-
ence, 2004, pp. 328-333.

11. K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, Norwell,
MA, 1993.

12. P. Chauhan, E. M. Clarke, Y. Lu, and D. Wang, “Verifying IP-Core based system-
on-chip designs,” in Proceedings of the 12th Annual IEEE International ASIC/SOC
Conference, 1999, pp. 27-31.

13. I. Beer, S. Ben-David, C. Eisner, Y. Engel, R. Gewitzman, and A. Landver, “Estab-
lishing PCI compliance using formal verification: a case study,” in Proceedings of
the 14th International Phoenix Conference on Computation and Communications,
1995, pp. 373-377.

14. A. Roychoudhury, T. Mitra, and S. R. Karri, “Using formal techniques to debug the
AMBA system-on-chip bus protocol,” in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, 2003, pp. 828-833.

15. http://www.eda.org/vfv/docs/psl_lrm-1.01.pdf/.
16. http://www.verificationlib.org/.
17. http://www.opervera.org/.
18. http://www.systemverilog.org/.
19. A. Bunker and G. Gopalakrishnan, “Using live sequence charts for hardware proto-

col specification and compliance verification,” in Proceedings of the IEEE Interna-
tional High Level Design Validation and Test Workshop, 2001, pp. 95-100.

20. A. Bunker, G. Gopalakrishnan, and S. A. McKee, “Formal hardware specification
languages for protocol compliance verification,” ACM Transactions on Design Auto-
mation of Electronic Systems, Vol. 9, 2004, pp. 1-32.

21. K. T. Cheng and A. S. Krishnakumar, “Automatic functional test generation using
the extended finite state machine model,” in Proceedings of the 30th Design Automa-
tion Conference, 1993, pp. 86-91.

22. D. Lee and M. Yannakakis, “Optimization problems from feature testing of commu-
nication protocols,” in Proceedings of the 4th International Conference on Network
Protocols , 1996, pp. 66-75.

23. C. Besse and A. Cavalli, “An automatic and optimized test generation technique ap-
plying to TCP/IP protocol,” in Proceedings of the 14th IEEE International Confer-
ence on Automated Software Engineering, 1999, pp. 73-80.

24. OpenCores Organization, Specification for the: WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores, Rev. B.3, 2002.

25. University of California Berkeley, Berkeley Logic Interchange Format (BLIF), Sept.
1996.

26. http://www.opencores.org/.

C. H. SHIH, Y. C. YANG, C. C. YEN, J. D. HUANG AND J. Y. JOU

1616

Che-Hua Shih (石哲華) received the B.S. degree in Elec-
trical Engineering from National Tsing Hua University and M.S.
degree in Electrical Engineering from National Chiao Tung Uni-
versity. He is currently working toward the Ph.D. degree at Na-
tional Chiao Tung University. His research interests include de-
sign verification and electronics design automation.

Ya-Ching Yang (楊雅菁) has a B.S. and an M.S. degree in
Department of Electronics Engineering at National Chiao Tung
University, Hsinchu, Taiwan. Her research interests include for-
mal verification and IC design flow.

Chia-Chih Yen (顏嘉志) is currently a principal R&D engi-
neer at SpringSoft Inc. His research interests include IC system
design, verification, testing, power optimization, and design clo-
sure techniques. Yen has a B.S. in Electrical Engineering from
National Taiwan University and an M.S. and Ph.D. in the Depart-
ment of Electronics Engineering at the National Chiao Tung Uni-
versity, Hsinchu, Taiwan.

Juinn-Dar Huang (黃俊達) received the B.S. and Ph.D. de-
grees in Electronics Engineering from National Chiao Tung Uni-
versity, Hsinchu, Taiwan, in 1992 and 1998, respectively. He is
currently an Assistant Professor in the Department of Electronics
Engineering and the Institute of Electronics, National Chiao Tung
University. His current research interests include high-level syn-
thesis, design verification, 3D IC architecture/CAD, and micro-
processor design. Dr. Huang is currently a Guest Editor of the In-
ternational Journal of Electrical Engineering (IJEE). He is also
serving on the Organizing Committee of IEEE/ACM ASP-DAC

FSM-BASED FORMAL INTERFACE COMPLIANCE VERIFICATION

1617

2010 and the Technical Program Committee of IEEE VLSI-DAT 2010. He has been the
Secretary General of Taiwan IC Design Society (TICD) from 2004 to 2008, the Technical
Program Committee Vice-Chair of VLSI Design/CAD Symposium 2008, the Technical
Program Committee member of IEEE/ACM DATE 2008, and the Organizing Committee
member of IEEE ICFPT 2008. He is a member of the IEEE, ACM, IEICE, and Phi Tau
Phi.

Jing-Yang Jou (周景揚) received the B.S. degree in Electri-
cal Engineering from National Taiwan University, Taiwan, R.O.C.,
and the M.S. and Ph.D. degrees in Computer science from the
University of Illinois at Urbana-Champaign, in 1979, 1983, and
1985, respectively. He is currently the Vice Chancellor, University
System of Taiwan. He is the Executive Director of National SoC
Program from April 2007. He was the Director General of Na-
tional Chip Implementation Center, National Applied Research
Laboratories in Taiwan from February 2004 to June 2007. He is a
full Professor and was Chairman of Electronics Engineering De-

partment from 2000 to 2003 at National Chiao Tung University, Hsinchu, Taiwan. Be-
fore joining Chiao Tung University, he was with GTE Laboratories from 1985 to 1986
and with AT&T Bell Laboratories at Murray Hill from 1986 to 1994.

He received the distinguished paper award of the IEEE International Conference
on Computer-Aided Design in 1990, the Outstanding Academy-Industry Cooperation
Achievement Award granted by Ministry of Education (MOE), Taiwan, in 2002, and the
Outstanding Electrical Engineering Professor Award from CIEE in 2006. His research
interests include logic and physical synthesis, design verification, CAD for low power
and Network on Chips. He has published more than 160 technical papers. Dr. Jou is a
Fellow of IEEE.

He was elected to the President of the Taiwan Integrated Circuit Design Society
(TICD) 2007-2008. He serves as Associate Editor for IEEE Transactions on Very Large
Scale Integration Systems. He was the Technical Program Chairs of 2007 VLSI-DAT, the
12th VLSI Design/CAD Symposium (2001), and the Asia-Pacific Conference on Hard-
ware Description Languages (APCHDL’97). He was the Conference Chair of 2008 VLSI-
DAT.

