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ABSTRACT

Available research on the manufacturing cell formation problem shows that most solution approaches
are either single- or multiple-solution-agent-based, with a fixed size of solution agents. Frequent prob-
lems encountered during the process of solving the cell formation problem include solutions being easily
trapped in local optima and bad solution efficiency. Yang and Wang [Yang, F.-C., Wang, Y.-P., 2007. Water
flow-like algorithm for object grouping problems. Journal of the Chinese Institute of Industrial Engineers,
24 (6), 475-488] proposed the water flow-like algorithm (WFA) to overcome the shortcomings of single-
and multiple-solution -agent-based algorithms. WFA has the features of multiple and dynamic numbers
of solution agents, and its mimicking of the natural behavior of water flowing from higher to lower levels
coincides exactly with the process of searching for optimal solutions. This paper therefore adopts the
WFA logic and designs a heuristic algorithm for solving the cell formation problem. Computational
results obtained from running a set of 37 test instances from the literature and newly created have shown
that the proposed algorithm has performed better than other benchmarking approaches both in solution
effectiveness and efficiency, especially in large-sized problems. The superiority of the proposed WFACF
over other approaches from the literature should be attributed to the collaboration of the WFA logic,
the proposed prior estimation of the cell size, and the insertion-move. The WFA is a novel heuristic
approach that deserves more attention. More attempts on adopting the WFA logic to solve many other

combinatorial optimization problems are highly recommended.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Manufacturing systems have become more efficient and pro-
ductive with the application of group technology (GT) within man-
ufacturing environments. GT groups parts with similar design
characteristics or manufacturing characteristics into part families.
One application of GT is cellular manufacturing (CM). By adopting
GT in CM, benefits such as reduced inventory, reduced capacity, re-
duced labor and overtime costs, shorter manufacturing lead times,
and faster response to internal and external changes including ma-
chine failures, product mix, and demand changes are realized. The
entire production system is decomposed into production cells
through CM. Machines are then assigned to these cells to process
one or more part families so that each cell operates independently
and intercellular movements are minimized or the number of part
flows processed within cells is maximized.

Cell formation (CF) is one of the most important steps in CM. It
becomes difficult to obtain optimal solutions in an acceptable
amount of time, especially for problems with large sizes. Extensive
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research has been devoted to CF problems, and various methods
have been proposed to identify machine cells and part families.
These methods fall into five categories: array-based, hierarchical/
non-hierarchical clustering, graph-based, mathematical program-
ming, and heuristics/meta-heuristics.

Array-based methods obtain visible groupings of machines and
parts until a satisfactory solution is found by repeatedly rearrang-
ing the rows and columns of the machine-part matrix. These
methods include the bond energy algorithm (BEA) by McCormick
et al. (1972), the rank order clustering (ROC) algorithm by King
(1980), the ROC2 by King and Nakornchai (1982), the direct clus-
tering algorithm (DCA) by Chan and Milner (1982), and the close
neighbor algorithm (CAN) by Boe and Cheng (1991). Hierarchical/
Non-hierarchical clustering methods in studies by McAuley
(1972), Mosier and Taube (1985b), Seifoddini and Wolfe (1987),
and Yasuda and Yin (2001) use a measure of similarity or dissimi-
larity for the grouping of machines or parts. Yin and Yasuda (2006)
discussed the similarity coefficients developed to date for use in
solving the CF problem. In graph-based approaches, the process
of forming manufacturing cells starts by collecting the problem
data and then converting them into a weighted graph representa-
tion. In these approaches, nodes represent machines and arcs rep-
resent their relationships, defined as the value of total part flow
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between machines. Complicated features of the CF problems have
been incorporated in models using mathematical programming ap-
proaches, but these usually become computationally intractable
especially for large-sized problems. Kusiak (1987) presented a p-
median model, while Boctor (1991) suggested a linear 0-1 formu-
lation for the CF problem. However, the classical p-median model
is limited to small-sized CF problems since it requires many binary
variables. Won and Lee (2004) hence proposed two modified p-
median formulations to resolve this difficulty. Chen and Heragu
(1999) proposed two stepwise decomposition approaches to solve
large-sized CF problems. Both approaches analyze the part-ma-
chine relation, decompose the original problem into several large
subsystems, and solve each subsystem using optimal solution
technique.

Meta-heuristic algorithms such as tabu search, genetic algo-
rithm (GA), simulated annealing (SA), and neural networks all
comprise another class of search methods that have been adopted
to solve the CF problem and its variants efficiently due to their
excellent performance in solving combinatorial optimization prob-
lems. Sun et al. (1995) presented a short-term tabu search-based
algorithm for solving the CF problem which aimed to minimize
the intercellular parts flows. Wu et al. (2004), on the other hand,
maximized the parts flow within cells using a long-term tabu
search-based algorithm. Cao and Chen (2004) developed a tabu
search considering cell setup cost to solve the CF problem. Cheng
et al. (1998) formulated a traveling salesman problem (TSP) to ad-
dress the CF problem and proposed a solution methodology based
on GA, while a hierarchical clustering approach based on genetic
programming was presented by Dimopoulos and Mort (2001).
Onwubulo and Mutingi (2001) developed a GA that accounts for
intercellular movements and cell-load variation. Gongalves and Re-
sende (2004) reported promising results with a hybrid algorithm
that combined a local search and a GA. Instead of the generally
used simple machine encoding, Filho and Tiberti (2006) proposed
a GA based on group encoding. The CF problem was addressed
by James et al. (2007) using a hybrid grouping GA that combines
a local search with a standard grouping GA to form machine-part
cells. Wu et al. (2008) proposed a simple yet effective simulated
annealing-based algorithm (SACF), for solving the CF problems
where singletons (cells having less than two parts or two ma-
chines) are allowed. Yang and Yang (2008) proposed a modified
ART1 neural learning algorithm, in which the vigilance parameter
can be simply estimated by the data so that it is more efficient
and reliable compared with previous neural network approaches.

Among the aforementioned heuristic algorithms, the SA and the
tabu search are single-solution-agent-based algorithms. A single-
agent-based heuristic algorithm searches the solution space step
by step through the usage of systematic or random neighborhood
exploration. Some of them employ adaptive memory, while some
of them are memoryless. The GA, however, belongs to the group
of multiple-solution-agent-based algorithms, which starts the opti-
mization with a set of possible solutions, not only one possible solu-
tion. The behavior of GAs is characterized by a balance between
exploitation and exploration in the search space. The balance is
strongly affected by strategy parameters such as maximum gener-
ation and population size, and GA’s performance depends very
much on details of the settings of these parameters. Fixed parame-
ters are usually used in most of the GA applications. Since the GA is
an intrinsically dynamic and adaptive process, the use of constant
parameters is thus in contrast to the general evolutionary spirit.
Therefore, it is natural to try to modify the values of parameters
during the run of the algorithm (Gen and Cheng, 2000). Yang and
Wang (2007) stated that neither the single nor the multiple agent
method is agile enough to conduct an efficient and effective solu-
tion search. They hence proposed a methodology using a dynamic
size of solution agents, the water flow-like algorithm (WFA).

The design of the WFA method was inspired by water flowing
from higher to lower levels, where a flow will split into multiple
subflows when it moves through uneven terrains. Conversely, sub-
flows merge when they meet at the same level. Water flow ceases
and stagnates at the lowest depressions, when momentum cannot
expel water out of the depressions. Water flowing is analogous to
problem solving. A flow is regarded as a solution agent, the solu-
tion space of a problem is the geographical terrain, and the altitude
of a flow represents the objective function value. Since the number
of flows dynamically changes in this method, it is an agent popula-
tion-varying method.

To our knowledge, the WFA has not been applied to solve any
other combinatorial optimization problems aside from the bin
packing problems studied in Yang and Wang (2007). Besides, the
solution process of searching for the optima is so analogous to
water moving to a lower position. The above two points motivate
our using WFA for solving the CF problem.

In this paper, we adopt the WFA logic and develop a heuristic
algorithm (WFACF) for the CF problem. This approach combines a
WEFA using specifically tailored operations with a similarity coeffi-
cient method constructed for generating quick initial solutions for
later improvement, and two solution improving strategies for find-
ing the best neighborhood solution. We test 37 problems from the
literature and newly created, and provide comparisons against sev-
eral algorithms from the literature. The WFACF is shown to per-
form better than other benchmarking approaches both in
solution effectiveness and efficiency, especially in large-sized prob-
lems. According to our knowledge, this is the first time WFA has
been used to successfully solve combinatorial optimization prob-
lems aside from the bin packing problems. Apart from the above
contribution, we further verify the effects of the two primary oper-
ations of the WFA, namely, the evaporation and the precipitation,
and conclude that they may not be as decisive as they were
claimed in the original WFA.

The remainder of the paper is organized as follows. Section 2
describes the problem definition while Section 3 details the pro-
posed solution algorithm for the CF problem. Section 4 shows the
computational results on test problems adopted from the literature
and includes thorough analyses and discussions. The conclusions
are laid out in Section 5.

2. Cell formation problem

CF in a given 0-1 machine-part incidence matrix involves a
rearrangement of rows and columns of the matrix to create part
families and machine cells. In this research, we attempt to deter-
mine a rearrangement minimizing intercellular movement and
maximizing the utilization of the machines within a cell. Fig. 1
gives a sample solution matrix for a CF problem, in which two
blocks can be observed along the diagonal of the solution matrix.

There have been several measures of goodness of machine-part
groups in CM in the literature. Two measures frequently used are
grouping efficiency (Chandrashekharan and Rajagopalan, 1986a)
and grouping efficacy (Kumar and Chandrasekharan, 1990). Group-
ing efficiency # is defined as follows:

M2 | 1 1 1 i 0 0
Celll |\ R L0 o

ML | 0 o o0 {1 1 |
Cell2 [ M3 | 0 1 0 ! 1 1

M5 | 0 0 0 i1 0

Fig. 1. Sample solution matrix.
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n=qn, + 1 -qn,,

where #, is the ratio of the number of 1s in the diagonal blocks to
the total number of elements in the diagonal blocks of the final ma-
trix, #, is the number of Os in the off-diagonal blocks to the total
number of elements in the off-diagonal blocks of the final matrix,
and q is a weight factor. Any 1s outside the diagonal blocks are
called “exceptional elements,” and any Os inside the diagonal blocks
are called “voids.”

Although grouping efficiency has been widely used, critics ar-
gue that in some cases, the size of the matrix impairs its discrimi-
nation ability. To overcome this problem, Kumar and
Chandrasekharan (1990) proposed another measure, grouping effi-
cacy I', which is defined as:

_9—60
Te+e,)’

where e is the total number of 1s in the matrix, ey is the total num-
ber of exceptional elements, and e, is the total number of voids.
Grouping efficacy ranges from 1 to 0, with 1 as the perfect grouping.
As grouping efficacy has been widely accepted in recent studies
regarding the CF problem, it is used as the performance measure
for the proposed algorithm in this study.

3. Water flow-like approach for the CF problem

This paper adopts the WFA logic and designs a heuristic algo-
rithm for solving the CF problem because the WFA has the features
of multiple and dynamic numbers of solution agents. Adopted
behaviors from fluid flows of the WFA are introduced in Section
3.1, followed by the proposed heuristic algorithm. Construction
of the initial solutions is given in Section 3.2, strategies and proce-
dures for improving the solutions through neighborhood searching
are presented in Section 3.3, while the complete algorithm of the
proposed WFACF is described in detail in Section 3.4.

3.1. Water flow-like algorithm

The design of the WFA method (Yang and Wang, 2007) was in-
spired by the natural behavior of water flowing from higher to low-
er levels. On the earth’s surface, a flow will split into multiple
subflows when rugged terrains are traversed. Subflows, however,
will merge when they arrive at the same location. Governed by
gravity and driven by fluid momentum, flows can run to higher
levels or run over bumps to navigate various terrains. Water flow-
ing will cease and stagnate at locally or globally lowest depres-
sions, when the momentum left cannot expel the water out of
the depressions. As the solution space of a problem can be mapped
to the geographical terrain, and the objective value is mapped to
the altitude, each flow can then be regarded as a solution agent.
Water moving to a lower position can be considered as a solution
searching for the optima. The solution search process is thus mod-
eled as water flowing.

Yang and Wang (2007) have adopted several natural behaviors
of water flow in presenting the WFA (Dougherty and Marryott,
1991). Their design ideas are summarized as follows:

1. Driven by gravity and governed by the energy conservation law,
water will constantly flow to lower altitudes. Therefore, the
solution search will recursively move from inferior to superior
solutions.

2. Fluid momentum drives water moving forward through rough
terrains. A flow will split into subflows when it encounters rug-
ged terrain and when its momentum exceeds a base amount for
splitting. WFA simulates this behavior as an agent forking oper-
ation; that is, more than two agents are derived from a single

agent. A flow with larger momentum will generate more
streams of subflows than one with less momentum. A flow with
limited momentum will yield to the landform and maintain a
single flow. Therefore, the fluid momentum of a flow is recalcu-
lated to determine the number of subflows that can be forked
after each move.

3. Water flows to lower altitudes and occasionally swells to higher
altitudes as long as the kinetic energy is larger than the required
potential energy. To avoid being trapped within a local mini-
mum, WFA allows the water to flow to a worse location to
broaden the exploration area, provided it has enough kinetic
energy.

4. A number of flows merge into a single flow when they meet at
the same location. WFA reduces the number of solution agents
when multiple agents result in the same objective value to
avoid redundant searches.

5. Water flows are subject to water evaporation in the atmo-
sphere. The evaporated water will return to the ground during
rainfall. In WFA, a part of the water flow is manually removed
to mimic water evaporation. After evaporation, a precipitation
operation is implemented in WFA to simulate natural rainfall
and explore a wider solution area.

On the basis of the above idea, the computational flow of the
WEFA consists of four primary operations: (1) flow splitting and
moving, (2) flow merging, (3) water evaporation, and (4) precipita-
tion. Before proceeding to the descriptions of these four operations,
we introduce some notations.

G iteration limit

Wo initial mass of original flow

W; mass of flow i

Vo initial velocity of original flow

Vi velocity of flow i

T base momentum

n upper limit on the number of subflows split from a flow
n; number of subflows forked from flow i

N total number of water flows in the current iteration

X; solution corresponding to flow i

Ui solution corresponding to subflow k split from flow i
Wi mass of subflow k split from flow i

ik velocity of subflow k split from flow i

ik altitude drop from flow i to its subflow k; equivalently,

changes in objective value from solution i to its neighbor-
hood solution k

g gravitational acceleration

t a prescribed number of iterations a flow will be removed
completely by evaporation

3.1.1. Flow splitting and moving operation

Itis assumed that there is only one water flow in the beginning of
the WFA, and that its location is randomly generated. Driven by fluid
momentum and potential energy, the flow starts to move to new
locations to explore the solution space for new and better solutions.
Yang and Wang (2007) used constant-step movement to the best
neighborhood solution when solving the object grouping problem
in their paper. However, various flow-moving strategies can be de-
signed and applied depending on the characteristics of different
optimization problems.

In the WFA, flow splitting results from capable momentum, and
a flow with higher momentum generates more subflows than a low-
er one. The locations of the split subflows are derived from the
neighboring locations of the original flow. When a flow does not
split, it goes on as a single stream to the best feasible neighboring
location. Let N be the number of water flows in the current iteration,
the number of subflows n; forked from flow i (i=1,2,...,N) is
determined by its momentum, W;V;. A flow with zero momentum
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stays where it is and is considered a stagnant solution. A flow can
split into subflows only when its momentum exceeds a predefined
base momentum T. The number of subflows is determined by divid-
ing its momentum by the base momentum T. If the momentum of a
flow is between 0 and T, it is treated as a single stream moving to a
new location without splitting. As the process of the WFA proceeds,
it is possible that the number of subflows grows exponentially and
exhausts the computational resource. Yang and Wang (2007) sug-
gests imposing an upper limit, 71, on the number of subflows forked
from a flow at each iteration. The number of subflows split from a
flow can thus be obtained through the formula below:

n; = min {max{l, int(wl’;v’)},ﬁ}. (1)

When the flow is split into subflows, its original mass has to be
accordingly distributed to subflows based on the rule designed.
Yang and Wang (2007) distribute the mass based on the ranks of
the subflows, as shown in Eq. (2)

n+1-k

Wik = Wi, k=12,....n. 2)

For instance, if W; =5 and n; = 3, then

W‘**B Euw'fi2 5W-*71 5
T \1+2+3)7 T \1+2+3)7 BT \1+2+3)7

The velocity of each subflow is computed from the equation of en-
ergy conservation. i, the velocity of subflow k split from flow i, is:

Ly = {0\/ Vlz + 2g5,~k, if V,z + 2g5,~k >0, (3)

otherwise,

where g is the gravitational acceleration, and dy is the altitude drop
from flow i to its subflow k, that is, the improvement of objective
value moving from current solution i to its neighborhood solution
k. When Vf +2g6y < 0, the momentum delivered to subflow k has
been used up, implying that this subflow will stagnate in its current
location (solutions trapped in local optima) with no splitting and
movement. Such stagnant flow will gradually evaporate into the
atmosphere, returning to the ground by precipitation later on.

At the end of the splitting and moving operation, the original
flow is hence discarded because subflows have been generated.
Information regarding the current number of subflows and solu-
tions sets will then be recorded.

3.1.2. Flow-merging operation

When more than two flows move to the same location, they will
merge into one flow with a bigger mass and momentum. Whether
a flow shares the same location with others in the WFA is thus sys-
tematically examined. If a flow does share the same location, the
latter flow is then merged into the former one. Assuming it is found
that flows i and j share the same location, then flow j will be de-
leted and the mass and velocity of flow i will be updated as
follows:

Wi = Wi + Wj, (4)
o WiV + WjVj (5)
l Wi+w;

Using the flow-merging operation, the WFA reduces the number of
solution agents when multiple agents result in the same objective
value to avoid redundant searches.

3.1.3. Water evaporation operation
It is natural that water evaporates and returns to the ground
through precipitation after possible movement from its original

location. Water evaporation and precipitation coincide with the
“escaping from local optima” mechanism many heuristic algo-
rithms nowadays use to avoid being trapped and to explore more
solution spaces.

Each flow in the WFA is subject to water evaporation, where
part of the water evaporates into the atmosphere. It is determined
that a flow will be completely removed after a prescribed number
of iterations, t; that is, the masses of all flows are decreased by the
ratio of 1/t as shown in Eq. (6), every time evaporation occurs.

w,-:(l_lt)w,-, i=1,2,...,N. (6)

3.1.4. Precipitation operation

When water vapor accumulates to a certain volume, it will re-
turn to the ground in some form such as rain. In the original
WFA, two types of precipitation are performed to simulate the nat-
ural cycle of water, enforced and regular precipitation.

Enforced precipitation is applied when all flows are grounded
with zero velocities. Under this circumstance, all flows are forced
to evaporate into the atmosphere and then returned to the ground
without changing the number of current flows. However, the loca-
tions of these returned flows are deviated stochastically from the
original ones. Mass of Wy is proportionally distributed to flows
based on their original mass with the same initial velocity. Conse-
quently, the mass assigned to flow i, W;, can be determined using
Eq. (7)

Wi
W, = ———— | W,. 7
i (Z;j]Wk) 0 ( )

Regular precipitation is applied periodically in balance with water
evaporation. The regular precipitation operation is performed every
t (same t value as in evaporation) iterations to pour down the evap-
orated water. Note that the cumulated mass of the evaporated
water is Wy — ZLW,(. Thus, instead of using Eq. (7), the mass as-
signed to flow i, W}, is determined using Eq. (8) when applying reg-
ular precipitation. The newly poured flow joins the current solution
set, thus increasing the number of current solutions. In addition,
both the enforced and regular precipitation might generate several
new flows on the same locations. A flow-merging operation will be
executed to eliminate possible redundant flows

Wi = : Wy — Wi |. (8)
Zgzl Wi k=1

WFA has the features of multiple and dynamic numbers of solu-
tion agents, and its mimicking of the natural behavior of water
flowing from higher to lower levels coincides exactly with our pro-
cess of searching for optimal solutions. This paper therefore adopts
the WFA logic and designs a heuristic algorithm for solving the CF
problem.

3.2. Construction of initial solutions

A large number of similarity coefficients methods (SCM) have
been proposed for the CF problem. In this study, due to their sim-
plicity and easy implementation, the SCM approach is used to gen-
erate quick initial solutions for later improvement by the proposed
algorithm. It is well known that decomposing an originally difficult
problem into several subproblems usually increases problem-solv-
ing efficiency. An intuitive solution approach is to decompose the
entire problem into two subproblems that deal with the assign-
ment of machines and parts, respectively, since the CF problem
considers the grouping of machines and parts. In our construction
of the initial solution, machines assignment is determined in the
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first stage, while the assignment of parts follows in the second
stage.

Our approach for generating initial solutions consists of three
steps: (1) compute similarity values between machine pairs and
construct a similarity matrix; (2) use a clustering rule to process
the values in the similarity matrix and form machine cells; and
(3) assign parts to machine cells using a parts assignment
procedure.

3.2.1. Machines assignment

As in McAuley’s research (McAuley, 1972), Jaccard’s similarity
measure is used to evaluate the similarity between machines as
an important index for assigning machines to cells in this subprob-

lem. The similarity measure, denoted Sy, is defined as S;; = aﬁ‘;ﬁ
where a; represents the number of parts processed by both ma-
chines i and j; while b is the number of parts processed by ma-
chine i but not by machine j, and c; is the number of parts
processed by machine j but not by machine i. After calculating
the similarity matrix for each pair of machines, we are able to gen-
erate the initial machines assignment by using the following gree-
dy rule: the higher the similarity measure a pair of machines has,
the higher the priority its machines have for placement in the same
cell. This process is repeated until all machines have been assigned
to cells.

Considering the sample machine-part matrix in Fig. 2a, the cor-
responding similarity matrix for machines is displayed in Fig. 2b.
Assuming that two cells are to be formed, the largest coefficient
in the matrix of Fig. 2b is 0.67, indicating that machines 2 and 4
must be assigned to the same cell, for instance cell 1. We proceed
with the second-largest coefficient in the matrix, 0.5, appearing in
pairs (1,3) and (1,5). As these three machines do not have any rela-
tionship with any machines in cell 1, together they should be as-
signed to the next cell, cell 2. Fig. 3 shows the machines
assignment using the proposed greedy rule.

3.2.2. Parts assignment

In this procedure, the parts are assigned to machine cells so that
the number of voids and exceptional elements — major compo-
nents comprising the formula of grouping efficacy - are explicitly
considered. It is summarized as follows:

Step 1.
Step 2.

Read the results of machines assignment.
For each part, find the cell to which a part assignment will
result in the least sum of number of exceptional elements
and the number of voids. If a tie happens, assign the part
to a cell with the least number of voids.
Step 3. Repeat Step 2 until all parts have been assigned to cells.
Results of machines assignment shown in Fig. 3 are used to
demonstrate the above procedure. After calculating the sum of
voids and exceptional elements for each part-cell combination, it
can be observed in Fig. 4 that parts 2, 3 and 5 are assigned to cell
1, while parts 1 and 4 are assigned to cell 2. The initial solution ma-
trix for this CF problem can thus be obtained.

Ml 1 0 0 1 0
M2| O 1 1 0 1
M3 1 0 0 0 0
M4 | O 1 1 0 0
M5| O 0 0 1 0

(a) machine-part matrix

m2[ o 1 1 0 1
Cllival o 1 1 0 o
Ml 1 o 0 1 0
Cll2 [M3| 1 0 0 0 0
M5 0 0 0 1 0

Fig. 3. Assignment of machines.

3.3. Searching neighborhood solutions (flow splitting and moving)

The initial solution just obtained can be considered as the start-
ing water flow, ready to split iteratively into subflows, traverse the
solution space, and move toward the optimal solution through the
WFA logic.

Among the four operations in the WFA, flow splitting and mov-
ing operation is endowed with the mission of searching for better
neighborhood solutions and ultimately, the optimal solution. In
solving the CF problem, we have designed two strategies, namely,
machine shifting and insertion-move, for finding the best neigh-
borhood solution of the current solution.

3.3.1. Machine shifting

In the WFA, the split subflows’ locations are derived from the
neighboring locations of the original flow. In terms of the CF prob-
lem, the initial solution matrix obtained in Section 3.2 is the origi-
nal water flow. Before designing a strategy for finding a good
neighborhood solution, it is crucial to identify and analyze factors
influencing solution efficiency and quality. In Section 3.2, after ma-
chines assignment has been determined, a simple procedure for
assigning parts follows. The procedure for assigning machines
actually leads the procedure for assigning parts in this study. The
solution quality of machines assignment thus plays a very critical
role in the success of the entire solution quality. Hence, a “machine
shifting” strategy is proposed to find a rough direction for the
neighborhood solutions in the first stage promptly; the exact loca-
tion for the best neighborhood solution is then obtained through
the “insertion-move” strategy in the second stage.

The machine-shifting strategy is implemented by reassigning a
machine to any cells other than the current one based on a pre-
scribed probability r. For each machine in the current solution, a
random number from (0,1) is first drawn. If the value is greater
than r, then the machine is assigned to other cells; otherwise, it
stays in the current cell. If singletons are not allowed, an additional
check is performed after the machine shifting. The procedure of
machine-shifting strategy in pseudo-code format is described in
Fig. 5.

3.3.2. Insertion-move

The machine-shifting strategy only gives a quick and rough
direction of the location of the neighborhood solutions. To assure
that high-quality neighborhood solutions can be found at each iter-
ation of the algorithm, a deliberate strategy has to be developed to

Ml M2 M3 M4 M5
M1 - 0 0.5 0 0.5
M2 - 0 067 O
M3 - 0 0
M4 - 0
M5 -

(b) similarity matrix for machines

Fig. 2. Machine-part matrix and corresponding similarity matrix for machines.
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M2 | 1 1 1 :0 0
celll |yl 0 1 oo o
MI| 0o 0o 0 i1 @1
Cell2 [M3[ 0 0 0 {1 0
M5/ 0 0 0 i 0 1

Fig. 4. Initial solution matrix obtained.

// Machine shifting procedure

/I x; : cell number to which machine i is assigned

// CS(d) : number of machines in cell d

/I C*: cell size

/I U: uniform distribution

/I M: number of machines considered in the CF problem

FOR each machine i
{
Let Xi= )C,'*
Generate a random number ue U (0, 1)
IF(u>r)
d=U(, C*¥)and d # x;
Let X = d
1

//Checking for singletons

FOR each cell d
{
Calculate CS(d).
WHILE CS(d) <2
it
Find machine i (i = U (1, M) and x;# d and CS(x;) >2)
CS(x)= CS(x)-1

Xi= d
CS(d)= CS(d)+1

Fig. 5. Machine shifting strategy.

find the best neighborhood solution. The neighborhood of a given
solution is defined as the set of all feasible solutions reachable by
a single move. This study implements an insertion-move, which
is an operation that moves a machine i from its current cell k
(source cell) to a new cell k' (destination cell). The new move is de-
noted (K, i). For the insertion-move, a move that results in the most
improvement in the objective function value from the current solu-
tion is selected, that is:

Z(K i) = max{obj“‘l"') — obj* kK € C,K # k, Vi e M},

where C and M are the sets for cells and machines, respectively.
Fig. 6 demonstrates the splitting and moving operation we pro-
posed for searching neighborhood solutions for the CF problem. As
flow i splits into subflows, and the number of subflows n; is deter-
mined by its momentum, say n; equals k. The machine-shifting
strategy is implemented to determine the rough directions for
the k subflows, that is, we now have the locations of
Xi1,Xi2, ..., Xi. The insertion-move is then performed to find the
best neighborhood solution around Xj;, that is, the Xj;. This is re-
peated until the best neighborhood solution for each of the sub-
flows has been found. Iteration by iteration, these newly
generated subflows may merge with others sharing the same loca-
tion, proceed in a single stream, further split into more subflows at

later iterations, or stagnate in the current location until the stop-
ping criteria of the algorithm is met.
The WFA procedure designed is described in detail as follows:

Procedure WFA
Step 1. Initial WFA parameter settings: G,N, Wy, Vo, T.
Step 2. For each flow i(i = 1,2,...,N), repeats Steps 3-6.
Step 3. Calculate number of subflows n; for each flow i based on
Eq. (1).

Step 4. For each subflow k of flow i, find the best neighborhood
solution through the machine-shifting and insertion-
move strategies described in Section 3.3.

Step 5. Distribute the mass of flow i to its subflows based on Eq.
(2).

Step 6. Calculate the improvement in objective values and
update the resulting velocity of subflow k split from flow
i based on Eq. (3).

Step 7. Merge subflows with the same objective values and
update the resulting mass and velocity based on Egs.
(4) and (5).

Step 8. Update the number of subflows for each flow i.

Step 9. Update the total number of water flow:N — >} n;.
Step 10. Perform evaporation operation and update the resulting
mass and velocity for each water flow based on Eq. (6).
Check whether precipitation condition(s) is/are met. If
yes, perform Steps 12, 13, and 14; otherwise, go to Step
15.

Perform machine-shifting strategy to the current best
solution to generate new solutions deviated from the
current ones.

Distribute the mass to flows poured based on Eq. (7) or
(8) depending on the type of precipitation.

Step 14. Check whether the new solution has the same objective
value as the other solutions. If yes, merge it and update
the resulting mass and velocity based on Egs. (4) and
(5), then update the total number of water flow N.
Check whether iteration limit G has been reached. If yes,
stop the algorithm; otherwise, increment the iteration
counter by 1 and return to Step 2.

Step 11.

Step 12.

Step 13.

Step 15.

Note that in the machine-shifting strategy, if the threshold
probability value is set at 0.7, it implies that each machine has a
30% probability of being assigned to other cells. In the above
WEFA procedure, the machine-shifting strategy is used in Steps 4
and 12, respectively, with different threshold probability values:
0.7 in Step 4 and 0.5 in Step 12. This is because the main purpose
of Step 4 is to find some neighborhoods of the current solution,
thus the probability of being assigned to other cells is set at a com-
paratively low value. The purpose of Step 12, on the other hand, is
to explore solutions of unvisited regions through the precipitation
operation; thus, it becomes necessary to increase the probability of
being assigned to other cells to find solutions more deviated from
the current best.

When implementing the four operations in the WFA proce-
dure, we made several changes based on our trials, experi-
ences, and observations. First, in the flow splitting and
moving operation, there is no upper limit on the number of
subflows forked from a flow at each iteration since these num-
bers are always within a controllable size during the problem-
solving process.

Second, the mass of the subflows is determined based solely on
the ranks of the subflows (as shown in the example of Section
3.1.1) without considering their respective performances in the
original WFA. We hence design a new formula shown in Eq. (9)
for assigning mass to each subflows based on the idea that sub-
flows should compete for their masses. That is, subflows with bet-
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Iteration 1 Iteration 2

Iteration 3

ecccee Iteration P

Fig. 6. Proposed flow splitting and moving operation for searching neighborhood solutions.

ter objective values should possess more masses and should stay
longer in the water-flowing process.

- E(Uik) " 9
Wik < Z‘_lE(Ulk)> iy ( )

where E(Uy,) is the objective value (the grouping efficacy values in
the CF problem) of solution Uy,.

Third, in addition to the fixed-ratio evaporation presented in
the original WFA, another way of evaporation is presented and
added in the procedure, the velocity-based evaporation. It can
be observed from Eq. (3) that the higher the altitude drop
(i.e., the larger improvement in objective value) of a subflow,
the larger the velocity it will be rendered to. We define an
evaporation ratio conversely related to improvement in velocity,
where flows with smaller velocities should be evaporated more
quickly than those with larger velocities. The formula is listed
below:

Wi = (l _pi)Wh (10)
17 ifluik:oa

where p; = ¢ 0, if G >1,
1-fe ifO<fE<t

Lastly, two types of precipitation are performed in the original WFA,
namely, enforced and regular precipitation. Enforced precipitation
is applied when all flows are grounded with zero velocities. How-

ever, this has never happened in our solution process of the CF
problem. Another precipitation is hence presented and added to
the procedure, that is, the moist precipitation. Moist precipitation
is used when the mass of the evaporated water flow reaches half
of its original total mass, W.

The proposed procedure WFA in pseudo-code format is shown
in Fig. 7.

3.4. Proposed algorithm WFACF for CF problem

Most of the algorithms designed to solve the CF problem at-
tempt to obtain the machine-part groupings so that some decision
objectives, such as the grouping efficiency or the grouping efficacy,
can be maximized. However, without the prior determination of
the “cell size,” the above objectives can hardly be achieved. It is gi-
ven beforehand in a few cases, but is left to be determined as part
of the decision in most. Usually, in the iterative solution process,
the initial cell size is set at two and is gradually increased by
one. These algorithms are then repeatedly applied until a cell size
resulting in the best grouping efficiency/efficacy value has been
found. Thus, many computational efforts have to be exerted in or-
der to obtain the optimal cell size. Instead of starting from a begin-
ning number, identifying a good intermediate point for the cell size
at the very beginning should save plenty of run time when design-
ing an algorithm to search for the optimal cell size.

Take a test problem from the literature (Carrie, 1973) as an
example. The relationship between the cell size and the resulting
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grouping efficacy is shown in Fig. 8. It is observed that the grouping
efficacy value increases as the cell size increases, and the optima is
found when cell size equals nine. After that, it starts to decrease as
the cell size increases. Similar observations can be found in other
test problems.

Hence, we propose a two-stage algorithm, WFACF, for solving
the CF problem in this study. In the first stage, feasible solutions
without an elaborate solution improvement are generated to de-
rive a cell size quickly, which is then used as input to the second
stage to search for the optimal/near-optimal solution through the
proposed WFA. We anticipate that the cell size obtained in stage
1 can serve as a good lower bound to start the solution process

in stage 2. Hence, a considerable amount of computational efforts
can be saved, especially when large-sized problems are solved. Be-
fore we explain the solution procedure, additional notations are
introduced.

NC number of cells (cell size)

Do initial solution of parts assignment

p* incumbent solution of parts assignment of current cell size

P best solution of parts assignment so far

mo initial solution of machines assignment

m* incumbent solution of machines assignment of current cell
size

m* best solution of machines assignment so far

//WFA procedure:

WFA parameter settings: the iteration limit G, the initial mass W, the initial velocity V), the base
momentum T and the initial branch number N=1, iteration counter Q =0 .
DO
{
FOR each flow i€ {1,2,....N}
{
Calculate the number of sub flow n; based on equation (1)
FOR each subflow ke {1,2,....n;}
{
Set machine shifting threshold r = 0.7.
Generate a neighborhood solution using machine shifting procedure.
Assign parts to machine cells using parts assignment procedure.
Calculate the grouping efficacy value of the resulting cell configuration.
DO
{
Find the best neighborhood solution by performing the insertion-move.
Assign parts to machine cells using parts assignment procedure.
Calculate the grouping efficacy value of the resulting cell configuration.
IF current solution is better than the best solution recorded so far,
Best = current solution.
}
WHILE the grouping efficacy value can still be improved
Calculate the velocity of subflowj split from flow i by using equation (3).
}
FOR each subflow k€ {1,2,....n;}
Calculate the mass of sub flow wy split from flow i using equation (9).
}
IF flows have the same solutions
THEN run flow merging operation and update W; and V; using equations (4) and (5).
Run water evaporation and update the mass of flow W; by equation (6) or equation (10) .
Update the total number of flow N by equation (1).
IF precipitation condition is met
{
FOR each flow i
{
Calculate the masses of the pour-downed flows W;” using equation (8) and let V;’= V.
Set machine shifting threshold r = 0.5.
Generate a neighborhood solution using machine shifting procedure.
Assign parts to machine cells using parts assignment procedure.
Calculate the grouping efficacy value of the resulting cell configuration.
IF flows have the same solutions
THEN run flow merging operation and update W;and V; using equations (4) and (5).
Update the total number of flow N.

}
Update the iteration counter O = Q + 1
} WHILE 0<=G

Fig. 7. Pseudocode of proposed WFA procedure.
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Eo
i
E**

grouping efficacy value of cell configuration (myg, py)
grouping efficacy value of cell configuration (m*, p*)
grouping efficacy value of cell configuration (m**, p**)

Procedures of both stages are described below.
Stage 1 of WFACF:

Step 1. Read machine-part incidence matrix of test problems,
and set NC=2,Eq =E =0.

Step 2. Compute the similarity values between machine pairs
and construct a similarity matrix.

Step 3. Generate initial machines assignment, my, by
performing the machines assignment procedure in
Section 3.2.1.

Step 4. Generate initial parts assignment, p,, based on m, in
Step 3, by performing the parts assignment procedure
in Section 3.2.2.

Step 5. Calculate the grouping efficacy value E, of the resulting
cell configuration (mg, p).

Step 6. If Ey > E*, then set (m*, p*) = (mo,py), E* = Eo, NC=NC+1,
go to Step 3; otherwise, report current cell configuration
(m*,p*) and E* and terminate stage 1.

The solution obtained at the end of stage 1, including the sug-

gested number of cells and cell configurations (m*, p*), is then used
as the input to stage 2 to search for the optimal/near-optimal solu-
tion through the proposed WFA procedure in Section 3.3.
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Stage 2 of WFACF:

Step 1. Read solutions from stage 1, including number of cells,
(m*,p*), and E". Set (m*,p*) = (m*,p*),E” = E".

Step 2. Perform the proposed WFA procedure in Section 3.3,
obtain solution (m*, p*) and the resulting grouping effi-
cacy value E".

Step3.If E">E”, then set E”=E" (m™,p*)=(m"p),
NC=NC+1, go to Step 2; otherwise, report the current
best cell configuration (m*,p**) and E™ and terminate
stage 2.

The procedures of stages 1 and 2 of the proposed WFACF in
pseudo-code format are given in Figs. 9 and 10, respectively. After

//Stage 2 of WFACF
SET NC=C*
READ results from Stage 1 of WFACF
DO
{
Run Procedure WFA
IF current solution is better then the best recorded so far,
best solution = current solution
C*¥=NC
Increment cell number by 1: NC = NC+1
} WHILE the grouping efficacy value can be improved
SHOW best solution

Fig. 10. Procedure of stage 2 of WFACF.

45

40

35

grouping efficacy (%)

30

25

cell size

Fig. 8. Relationship between grouping efficacy and cell size.

//Stage 1 of WFACF

Calculate machine similarity matrix
DO
{

READ machine-part incidence matrix and let cell number C*=NC=2

Create machine cells using machines assignment procedure
Assign parts to machine cells using parts assignment procedure
Calculate the grouping efficacy value of the cell configuration

If current solution is better than the best recorded so far, update C* = NC

Increment number of cell by 1: NC = NC+1

} WHILE the grouping efficacy value can be improved

Fig. 9. Procedure of stage 1 of WFACF.
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intensive testing, parameters of the WFA, iteration limit G, initial
mass Wy, initial velocity Vo, base momentum T and the number
of iterations for precipitation t are set at 100, 40, 15, 100, 20
respectively.

4. Computational results and discussion

Thirty-seven test instances from the literature and newly cre-
ated are used to evaluate the computational characteristics of the
proposed heuristic WFACF, the results of which are compared with
those of algorithms reported in the literature. Some studies allow
the existence of singletons in the solutions and some do not. We
follow the studies that do not allow singletons in this research.
The matrices of the test problems range from 5 x 7 to 50 x 100;
they comprise well-structured and unstructured matrices. The first
35 test problems are widely adopted as the test instances in many
studies (Gongalves and Resende, 2004; James et al., 2007; Wu et al.,
2008), while problems #36 and #37 are generated by this study.
The proposed algorithm WFACF was coded in C and implemented
on a Pentium I 933 MHz personal computer with 256 MB random
access memory (RAM).

4.1. Computational results

Thirty-five test problems from the literature and two test prob-
lems newly created by this study are used to examine the perfor-
mance of the proposed WFACF algorithm. The results were then
compared with the best results found in the literature, that is,
the Hybrid-GA of Gongalves and Resende (2004), where singletons
are not allowed. Wu et al. (2008) proposed a simple yet effective
simulated annealing-based algorithm (SACF), for solving the CF
problems where singletons are allowed. The corresponding results
are compared with several well-known algorithms published.
Their comparative study shows that the SACF algorithm improves
the grouping efficacy for 72% of the test problems. We adopted the
SACF as a target for comparison with minor modifications to the
program code of SACF to cope with the singletons restriction in this
study. Table 1 gives the computational results of these methods.
Ten independent runs were performed for each test instance due
to the stochastic features that SACF, Hybrid-GA, and WFACF might
have.

For the 35 test problems directly adopted from the literature,
Tables 1 and 2 show that WFACF produced the best solutions in
34 out of 35 problems, while Hybrid-GA found 26 and SACF found
20. Solution qualities of the initial solutions (solutions obtained at
the end of stage 1 of WFACF) are generally good. In 14 of 35 test
problems, the initial solutions are exactly equal to the best solu-
tions. In 25 out of 35 test problems, both the WFACF and the Hy-
brid-GA obtain the same results, while WFACF produced better
results than those of Hybrid-GA in nine problems (#16, #20, #21,
#26, #29, #30, #31, #33, and #34) and Hybrid-GA has better re-
sults than those of WFACF only in problem #19. It can thus be con-
cluded that WFACF performs better than Hybrid-GA and SACF,
especially in test problems with larger sizes. Similar conclusion
can be made for test problems #36 and #37. All three methods give
cell sizes resulting in the best grouping efficacy for each test
problem. Cell sizes from the three methods are the same in most
test instances, except in problems with larger sizes where minor
differences can be seen. Fig. 11 displays the error percentage to
the best solutions of the SACF, Hybrid-GA, and WFACF methods,
respectively, on 17 test instances, in which there are different
grouping efficacies. The result of Fig. 11 matches the observations
in Tables 1 and 2.

As for the comparison of run time, no significant difference is
observed between the SACF and the WFACF when small or

medium-sized problems are solved. The WFACF, however, per-
forms more efficiently than the SACF in large-sized test problems
(#31, #32, #33, #35, and #37). Although this study has a lower
computational environment (933 MHz) compared with the Hy-
brid-GA (1.333 GHz), both SACF and WFACF take only a fraction
of the run time of Hybrid-GA to obtain comparatively favorable
solutions. The superiority in computational efficiency can be easily
observed.

4.2. Analyses and discussion

One of the main objectives of this study is to examine in detail
the various mechanisms of the WFA and their corresponding ef-
fects to the overall solution efficiency and efficacy. Effects of sev-
eral strategies proposed in this study, together with the
evaporation and precipitation operations, are therefore further
analyzed in this section.

4.2.1. Effect of prior estimation of cell size

In the first stage of the proposed algorithm WFACF, feasible
solutions without an elaborate solution improvement are gener-
ated to derive a cell size quickly, which is then used as input to
the second stage to search for the optimal/near-optimal solution.
It is anticipated that the obtained cell size can serve as a good low-
er bound to start the solution process in stage 2, saving a consider-
able amount of computational efforts. An experiment without prior
estimation of cell size (skipping stage 1) in the algorithm is con-
ducted and compared with the WFACF. A comparison of results
is shown in Fig. 12. On average, the computer run time of WFACF
(with prior estimation of the cell size) is 44% less than the case
without prior estimation of the cell size. Additionally, the savings
are even more significant in large-sized test problems. This finding
justifies the effects of stage 1 of the proposed WFACF.

4.2.2. Effects of evaporation, precipitation, and insertion-move

The water evaporation and precipitation operations coincide
with the “escaping from local optima” mechanism many heuristic
algorithms nowadays possess to avoid being trapped and to ex-
plore more solution spaces. Additionally, the insertion-move pre-
sented assures that high-quality neighborhood solutions can be
found at each iteration of the algorithm. These three factors and
their effect on solution qualities are thus considered in an experi-
ment. The evaporation factor has three settings: no evaporation,
fixed-ratio evaporation, or velocity-based evaporation; the precip-
itation factor has three settings: no precipitation, regular precipita-
tion, or moist precipitation; while the insertion-move factor has
two options: with or without insertion-move. Legitimate combina-
tions of the above three factors comprise 10 testing scenarios listed
in Table 3. In each scenario, 35 test instances of Section 4.1 are
computed and the average grouping efficacies over the 35 in-
stances are recorded and analyzed in Fig. 13. The 10 scenarios have
been separated into two groups. Scenarios adopting the insertion-
move (scenarios #1, #3, #5, #7, and #9, same color in different line
types in Fig. 13) result in better objective values and obviously sur-
pass the other group (scenarios #2, #4, #6, #8, and #10, same color
in different line types in Fig. 13), which does not include the inser-
tion-move in the algorithm. As expected, Fig. 14 shows that the
group with the insertion-move spends more run time searching
for the best solutions, especially in large-sized problems (problems
#25-35). Insertion-move beats the other two factors and becomes
the most significant and dominant factor in terms of solution qual-
ity. This implies that the water evaporation and precipitation oper-
ations may not be as significant as they were supposed to be in the
solution process of CF problem, though considerable efforts have
been spent in designing the contents of both operations. The
importance of a good neighborhood-searching method, such as



Table 1

Performance of WFACF compared to SACF and Hybrid-GA.

Test instances

SACF (10 replicates)

Hybrid-GA (10 replicates)

WFACF (10 replicates)

No. Source Size Max Cell size CPU time (s) Max Cell size  CPU time Initial Max Initial cell Cell size  CPU time St. dev.
(s) size (s)

1 King and Nakornchai (1982) 5x7 73.68 2 0.00 73.68 2 0.53 73.68 73.68 2 2 0.01 0

2 Waghodekar and Sahu (1984) 5x7 62.50 2 0.00 62.50 2 047 52.00 62.50 2 2 0.00 0

3 Seifoddini (1989) 5x 18 79.59 2 0.01 79.59 2 0.85 79.59 79.59 2 2 0.01 0

4 Kusiak and Cho (1992) 6x8 76.92 2 0.00 76.92 2 0.66 76.92 76.92 2 2 0.01 0

5 Kusiak and Chow (1987) 7 x 11 53.13 3 0.00 53.13 3 1.09 51.52 53.13 3 3 0.01 0

6 Boctor (1991) 7 x 11 70.37 3 0.01 70.37 3 135 70.37 70.37 3 3 0.01 0

7 Seifoddini and Wolfe (1986) 8 x 12 68.29 3 0.01 68.29 3 1.44 68.29 68.29 3 3 0.03 0

8 Chandrashekharan and 8 x 20 85.25 3 0.02 85.25 3 1.68 85.25 85.25 3 3 0.04 0
Rajagopalan (1986a)

9 Chandrashekharan and 8 x 20 58.41 2 0.02 58.72 2 1.68 58.72 58.72 2 2 0.05 0
Rajagopalan (1986b)

10 Mosier and Taube (1985a) 10 x 10 70.59 3 0.01 70.59 3 1.82 70.59 70.59 3 3 0.07 0

11 Chan and Milner (1982) 10 x 15 92.00 3 0.02 92.00 3 2.19 92.00 92.00 3 3 0.08 0

12 Askin and Subramanian (1987) 14 x 24 67.61 6 0.29 69.86 5 6.05 67.12 69.86 5 5 0.25 0

13 Stanfel (1985) 14 x 24 69.33 5 0.19 69.33 5 6.24 69.33 69.33 5 5 0.26 0

14 McCormick et al. (1972) 16 x 24 51.96 6 0.28 51.96 6 7.85 40.94 51.96 3 6 0.95 0

15 Srinivasan et al. (1990) 16 x 30 67.83 4 0.23 67.83 4 10.24 61.33 67.83 4 4 0.69 0

16 King (1980) 16 x 43 55.76 6 1.63 54.86 5 13.92 53.93 55.90 6 6 1.01 0.21

17 Carrie (1973) 18 x 24 53.64 6 0.56 54.46 6 11.34 44.53 54.46 5 6 1.17 0.15

18 Mosier and Taube (1985b) 20 x 20 42.34 5 0.24 42.96 5 10.89 35.19 42.96 2 5 1.53 0.14

19 Kumar et al. (1986) 20 x 23 49.65 5 0.40 49.65 5 12.03 44.27 49.61 6 6 0.85 0.11

20 Carrie (1973) 20 x 35 76.14 4 1.01 76.22 4 15.61 76.14 76.54 4 5 1.59 0.06

21 Boe and Cheng (1991) 20 x 35 56.04 4 0.94 58.07 5 16.38 55.06 58.15 5 5 1.10 0.09

22 Chandrasekharan and 24 x 40 100.0 7 1.76 100.0 7 19.26 100.0 100.0 7 7 1.33 0
Rajagopalan (1989)

23 Chandrasekharan and 24 x 40 85.11 7 1.91 85.11 7 25.28 85.11 85.11 7 7 2.18 0
Rajagopalan (1989)

24 Chandrasekharan and 24 x 40 73.51 7 1.55 73.51 7 26.82 73.51 73.51 7 7 2.11 0
Rajagopalan (1989)

25 Chandrasekharan and 24 x 40 51.88 9 4.76 51.97 9 26.48 44.10 51.97 6 10 4.58 0.1
Rajagopalan (1989)

26 Chandrasekharan and 24 x 40 44.44 10 6.28 47.06 9 25.97 42.52 47.37 9 10 5.90 0.1
Rajagopalan (1989)

27 Chandrasekharan and 24 x 40 44.24 9 5.10 44.87 9 26.06 36.27 44.87 8 10 3.05 0.05
Rajagopalan (1989)

28 McCormick et al. (1972) 27 x 27 53.19 3 0.31 54.27 4 25.90 32.38 54.27 2 4 2.56 0

29 Carrie (1973) 28 x 46 40.97 6 4.05 44.62 9 43.78 39.34 46.06 6 9 23.36 0.11

30 Kumar and Vannelli (1987) 30 x 41 58.58 10 8.08 58.48 11 43.00 53.67 59.52 10 10 5.41 0.12

31 Stanfel (1985) 30 x 50 60.00 12 14.95 59.66 12 52.45 54.55 60.00 9 12 10.26 0

32 Stanfel (1985) 30 x 50 50.51 11 20.42 50.51 11 48.97 43.86 50.51 8 11 10.17 0

33 King and Nakornchai (1982) 36 x 90 39.95 11 185.7 42.64 9 81.46 33.70 46.15 6 12 31.80 0.1

34 McCormick et al. (1972) 37 x 53 58.23 2 1.15 56.42 2 87.66 35.06 59.85 2 3 17.35 0.02

35 Chandrasekharan and 40 x 100 84.03 10 161.0 84.03 10 152.1 84.03 84.03 10 10 19.20 0
Rajagopalan (1987)

36 This study 40 x 100 41.67 4 9.96 - - - 8.05 46.96 6 6 12.94 3.28

37 This study 50 x 100 43.89 7 65.07 - - - 5.08 44.20 7 7 22.58 0.53
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Table 2
Comparisons of solution ranking of three methods (for the first 35 test problems).

357

the insertion-move we proposed, can never be overemphasized.
This conclusion is applicable to any meta-heuristic algorithms.
Although the water evaporation and precipitation operations

Solutions ranking Ranked 1st Ranked 2nd Ranked 3rd
SACF 20 10 5 may not be critical in solving the CF problem in this study, we still
Hybrid-GA 26 6 3 believe that the water-flow-like logic, with proper design and col-
WFACF 34 1 0 laboration in its internal operations, can be applied to solve other
combinatorial optimization problems.
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Fig. 11. Comparisons of error percentage to best solutions of SACF, Hybrid-GA, and WFACF.
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Fig. 12. Run time comparisons of with and without prior estimation of cell size.

Table 3
Experimental testing scenarios.

Scenario # Evaporation setting Precipitation setting Insertion-move option Mean grouping efficacy (%)
1 Velocity based Moist With 64.2832
2 Velocity based Moist Without 59.1495
3 Velocity based Regular (t =20) With 64.2816
4 Velocity based Regular (t =20) Without 59.3005
5 Fixed ratio (0.05) Moist With 64.2954
6 Fixed ratio (0.05) Moist Without 59.3558
7 Fixed ratio (0.05) Regular (t =20) With 64.2625
8 Fixed ratio (0.05) Regular (t = 20) Without 59.2771
9 No evaporation No precipitation With 64.2664
10 No evaporation No precipitation Without 59.4040
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5. Conclusions

The WFA uses a dynamic size of solution agents and is able to
overcome the drawbacks of both single- and multiple-solution-
agent-based algorithms. The WFA is a very new meta-heuristic
algorithm, and to our knowledge, this is the first time the WFA is
applied to solve a combinatorial optimization problem aside from
the bin packing problems studied in the original paper of Yang and

Wang (2007). This research has adopted the WFA logic and pro-
posed a heuristic algorithm, WFACF, for solving the CF problem
to assure good solution quality while avoiding a heavy computa-
tional burden.

The similarity coefficients method, together with the proposed
machines assignment and parts assignment procedures, has been
used to generate quick initial solutions for later improvement by
the WFACF. Two strategies, the machine shifting and the
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insertion-move, have been presented for finding the best neighbor-
hood solution around the current solution in the flow splitting and
moving operations in the design of WFACF. In addition to the ori-
ginal evaporation and precipitation operation of the WFA, veloc-
ity-based evaporation and moist precipitation have been offered
in this study.

The proposed WFACF is composed of two stages. In the first
stage, feasible solutions without an elaborate solution improve-
ment are generated to derive a cell size quickly, which is then used
as input to the second stage in searching for the optimal/near-opti-
mal solution. It is anticipated that the cell size obtained in stage 1
can serve as a good lower bound to start the solution process in
stage 2, thus saving a considerable amount of computational ef-
forts especially when large-sized problems are solved. The effect
of this ingenious design has been justified through further experi-
ment and analysis.

Computational results obtained from running a set of 35 test in-
stances from the literature have shown that WFACF has produced
best solutions in 34 out of 35 problems, while Hybrid-GA has found
26, and SACF has found 20. The proposed WFACF has performed bet-
ter than the Hybrid-GA and the SACF, especially in test problems
with larger sizes. As for the comparison of run time, WFACF has ta-
ken only a small fraction of the run time of Hybrid-GA to obtain
comparatively favorable solutions. Apart from the performance in
solution effectiveness, the superiority of the proposed WFACF in
solution efficiency over other approaches from the literature can
be easily observed. Further analysis has been conducted to justify
the effect of prior estimation of cell size in stage 1 of the WFACF.
Computational result has demonstrated that the average run time
of WFACF (case with prior estimation of the cell size) is 44% less
than the case without prior estimation of the cell size. In addition,
the savings are even more significant in large-sized test problems.

We have further verified the effects of the evaporation, precip-
itation operation, and insertion-move in the WFACF. Legitimate
combinations of the above three factors have comprised 10 testing
scenarios. In each scenario, 35 test instances were computed and
the average grouping efficacies over the 35 instances were re-
corded and analyzed. The insertion-move has beaten the other
two factors and has become the most significant and dominant fac-
tor in terms of solution quality. This implies that the water evapo-
ration and precipitation operations may not be as decisive as they
were supposed to be in the WFACF solution process of CF problem,
though considerable efforts have been spent in designing the con-
tents of both operations.

The contributions of this paper are summarized as follows:

1. We have applied the WFA for solving the CF problem with both
solution efficiency and effectiveness outperforming other
benchmarking algorithms in the literature. This is the first time
WEFA has been used to solve combinatorial optimization prob-
lems aside from the bin packing problems studied in the origi-
nal paper.

2. Although the logic of WFA is adopted in this paper, we have
specifically designed tailor-made WFA operations for solving
the CF problems. For example, in the flow splitting and moving
operation, both machine shifting and insertion-move strategies
are proposed for finding the best neighborhood solution. In
addition, a new formula is presented for making subflows with
better objective values possess more masses and stay longer in
the water-flowing process. Moreover, in the evaporation opera-
tion, in addition to the fixed-ratio evaporation of the original
WFA, the velocity-based evaporation is presented and added
in the procedure. As for the precipitation operation, the moist
precipitation is presented and added to the procedure when
the mass of the evaporated water flow reaches half of its origi-
nal total mass.

3. We have designed a very efficient solution algorithm. In order
to find the best solution, the solution algorithms have to be
repeatedly applied until a cell size resulting in the best group-
ing efficiency/efficacy value has been found. Thus, many com-
putational efforts have to be exerted in order to obtain the
optimal cell size. In WFACF, prior estimation of cell size is
implemented in stage 1 to serve as a good lower bound to start
the solution process in stage 2, so that a considerable amount of
computational efforts can be saved. Computational result has
demonstrated that the average run time of WFACF (case with
prior estimation of the cell size) is 44% less than the case with-
out prior estimation of the cell size, and the savings are even
more significant in large-sized test problems.

In conclusion, the superiority of the proposed WFACF both in
solution effectiveness and efficiency over other approaches from
the literature should be attributed to the collaboration of the
WEFA logic, the proposed prior estimation of the cell size, and the
insertion-move. The WFA is a novel heuristic approach that de-
serves more attention. More attempts on adopting the WFA logic
to solve many other combinatorial optimization problems should
be a good direction of future research.
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