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Based on the recent paper �Phys. Rev. Lett. 102, 216803 �2009��, we study the nonequilibrium occupation
number nd and charge susceptibility � of a resonance level close to dissipative quantum phase transition of the
Kosterlitz-Thouless �KT� type between a delocalized phase for weak dissipation and a localized phase for
strong dissipation. The resonance level is coupled to two spinless fermionic baths with a finite bias voltage and
an Ohmic bosonic bath representing the dissipative environment. The system is equivalent to an effective
anisotropic Kondo model out of equilibrium. Within the nonequilibrium renormalization-group approach, we
calculate nonequilibrium magnetization M and spin susceptibility � in the effective Kondo model, correspond-
ing to 2nd−1 and � of a resonance level, respectively. We demonstrate the smearing of the KT transition in the
nonequilibrium magnetization M as a function of the effective anisotropic Kondo couplings, in contrast to a
perfect jump in M at the transition in equilibrium. In the limit of large bias voltages, we find M and � at the
KT transition and in the localized phase show deviations from the equilibrium Curie-law behavior. As the
system gets deeper in the localized phase, both nd−1 /2 and � decrease more rapidly to zero with increasing
bias voltages.
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I. INTRODUCTION

Quantum phase transitions �QPTs� �Refs. 1 and 2� due to
competing quantum ground states in strongly correlated sys-
tems have been extensively investigated over the past de-
cades. Near the transitions, exotic quantum critical properties
are realized. In recent years, there has been a growing inter-
est in QPTs in nanosystems.3–11 Very recently, QPTs have
been extended to nonequilibrium correlated nanosystems12–14

where little is known regarding nonequilibrium transport
near the transitions. A generic example12 is the transport
through a dissipative resonance level �spinless quantum dot�
at a finite bias voltage where dissipative bosonic bath �noise�
coming from the environment in the leads gives rise to QPT
in transport between a conducting �delocalized� phase where
resonant tunneling dominates and an insulating �localized�
phase where the dissipation prevails. Though dissipative
QPTs have been investigated intensively in various
systems,3,4,7,8,12,15–18 much of the attention has been focused
on equilibrium properties while very little is known on the
nonequilibrium properties. The bias voltage V plays a very
different role as the temperature T in equilibrium systems as
the voltage-induced decoherence behaves very differently
from the decoherence at finite temperature,12–14,19,20 leading
to exotic transport properties near the QPT compared to that
in equilibrium at finite temperatures.

Based on the recent work in Ref. 12 on nonequilibrium
transport of a dissipative resonance level at the Kosterlitz-
Thouless �KT�-type delocalized-to-localized quantum transi-
tion, we study in this paper the nonequilibrium occupation
number and charge susceptibility of a resonance-level quan-
tum dot subjected to a noisy environment near the phase
transition. In equilibrium, it has been shown that the occupa-
tion number n��� of a dissipative resonance level shows a

jump at the Fermi energy at the KT transition and in the
localized phase, where � is an infinite small shift in the en-
ergy of the resonance level.3,6 At finite temperatures and in
equilibrium, a crossover in nd��� replaces the jump and in the
high-temperature limit it is determined by the thermal mag-
netization of a free spin; hence the Curie-law behavior is
expected. On the other hand, when a large bias voltage is
applied on the system at T=0, however, very little is known
about the nonequilibrium effects on the occupation number
and charge susceptibility. Specifically, we would like to in-
vestigate the crossover in nonequilibrium occupation number
nd��� and charge susceptibility ����=

dnd

d� close to the dissipa-
tive QPT. Since the distinct effect of the nonequilibrium de-
coherence rate on the transport of the resonant level, we
expect that these observables to show different crossover be-
haviors as those in equilibrium and at finite temperatures.

Following Ref. 12, we first map our system onto an effec-
tive anisotropic Kondo model with an effective magnetic
field and applying the recently developed frequency-
dependent renormalization-group �RG� approach20 to the
nonequilibrium Kondo effect of a quantum dot. We then
solve the self-consistent RG equations for the renormalized
effective Kondo couplings and calculate the occupation num-
ber and charge susceptibility of a resonance level based on
the renormalized perturbation theory. Near the transition, we
find the deviations of the nonequilibrium crossover behavior
of these quantities from the equilibrium Curie-law behavior.
We also identify the logarithmic and power-law corrections
of these two observables to the Curie-law behaviors. Finally
we discuss the relevance of our results in experiments.

II. MODEL HAMILTONIAN

The starting point is a spin-polarized quantum dot coupled
to two Fermi-liquid leads subjected to a noisy Ohmic envi-

PHYSICAL REVIEW B 82, 085120 �2010�

1098-0121/2010/82�8�/085120�8� ©2010 The American Physical Society085120-1

http://dx.doi.org/10.1103/PhysRevLett.102.216803
http://dx.doi.org/10.1103/PhysRevB.82.085120


ronment, which couples capacitively to the quantum dot.
The noisy environment here consists of a collection of
harmonic oscillators with the Ohmic correlation: G��i��
� ���i����−i��� =2�

R
Rk

����+ �2

�c
�−1 with R being the cir-

cuit resistance and Rk�2�	 /e2�25.8 k
 being the quan-
tum resistance. For a dissipative resonant-level �spinless
quantum dot� model, the QPT separating the conducting and
insulating phase for the level is solely driven by dissipation.
Our Hamiltonian is given by3,12

H = �
k,i=1,2

���k� − �i�cki
† cki + ticki

† d + H.c.

+ �
r

�r�d†d − 1/2��br + br
†� + �

r

�rbr
†br,+ h�d†d − 1/2� ,

�1�

where ti is the hopping amplitude between the lead i and the
quantum dot, cki and d are electron operators for the Fermi-
liquid leads and the quantum dot, respectively, �i= 
V /2 is
the chemical potential �bias voltage� applied on the lead i
while h is the energy level of the dot. We assume that the
electron spins have been polarized by a strong magnetic
field. Here, b� are the boson operators of the dissipative bath
with an ohmic spectral density:4 J���=�r�r

2���−�r�=��
with � being the strength of the dissipative boson bath.

First, through similar bosonization and refermionization
procedures as in equilibrium,3–6 we map our model to an
equivalent anisotropic Kondo model in an effective magnetic
field h with the effective left L and right R Fermi-liquid
leads.12 The effective Kondo model takes the form

HK = �
k,�=L,R,�=↑,↓

��k − ���ck��
† ck��

+ �J�
1 sLR

+ S− + J�
2 sRL

+ S− + H.c.� + �
�=L,R

Jzs��
z Sz + hSz,

�2�

where ckL�R��
† is the electron operator of the effective lead

L�R�, with spin �. Here, the spin operators are related to the
electron operators on the dot by S+=d†, S−=d, and
Sz=d†d−1 /2=nd−1 /2, where nd=d†d describes the charge
occupancy of the level. The spin operators for electrons in
the effective leads are s��


 =��,�,k,k�1 /2ck��
† ���


 ck���, the
transverse and longitudinal Kondo couplings are given by
J�

1�2�� t1�2� and Jz�1 /2�1−1 /	2��� respectively, and the ef-
fective bias voltage is ��= 


V
2
	1 / �2���, where 1 /��=1+�.

Note that ��→ 
V /2 near the transition ���→1 /2 or
�→1� where the above mapping is exact. Note that in Eq.
�2� the spin operators for the dot come directly from the
mapping between S+�−� and d†�d�, Sz and d†d−1 /2, which
can be easily verified by checking the commutation relation
relations of the spin operators with the use of the anticom-
mutation relations between the fermionic d operators.

Since Eq. �2� describes the effective Kondo model, the
above spin operator S� can equally well be represented by the
spinful pseudofermion operator f�, which has been shown to
be an appropriate but more useful representation in
treating the Kondo Hamiltonian �see Refs. 19 and 20�:

Si=x,y,z= f�
†�i=x,y,z

�� f�. In the Kondo limit where only the singly
occupied fermion states are physically relevant, a projection
onto the singly occupied states is necessary in the pseudof-
ermion representation, which can be achieved by introducing
the Lagrange multiplier � so that Q=��f�

† f�=1. �Note that
the single-occupancy constraint is absent in Eq. �2� as the
occupation number for the spinless local resonant level is not
fixed: it can be either 0 or 1. In fact, these two seemingly
different constraints are equivalent as one can identify the
spin-up �spin-down� pseudofermion as the empty �singly oc-
cupied resonant-level state�. An observable A in the pseudo-
fermion representation is defined as20


A�Q=1 = lim�→�


AQ��


Q��

. �3�

In equilibrium, the above anisotropic Kondo model exhibits
the Kosterlitz-Thouless transition from a delocalized phase
with a finite conductance G� 1

2�	 �e=	=1� for J�+Jz�0 to
a localized phase for J�+Jz�0 with vanishing conductance.
The nonequilibrium transport near the KT transition exhibits
distinct profile from that in equilibrium and it has been ad-
dressed in Ref. 12. We will focus here on the nonequilibrium
occupation number and charge susceptibility near the KT
transition. At the KT transition �J�=−Jz� and in the localized
phase, we expect in equilibrium a perfect jump in 
nd� �or

Sz��: 
nd�=1 for h�0 and 
nd�=0 for h�0.3 Similar perfect
�nonperfect� jump in occupation number is found theoreti-
cally in a quantum dot �a resonant level� coupled to a bulk
lead21 �a chiral Luttinger liquid lead6�, respectively. At a fi-
nite bias voltage, however, instead of a jump we expect 
nd�
shows a smooth crossover as a function of h /V.

III. NONEQUILIBRIUM RG FORMALISM

The nonequilibrium perturbative RG equations for the ef-
fective Kondo model in a magnetic field are obtained by
considering the generalized frequency-dependent Kondo
couplings in the Keldysh formulation followed Ref. 20:

�g�,z���
� ln D

= −
1

2 �
��=−1,1

�g��
�V + �h

2
��2

��+��h+��V/2��,

�g�,����
� ln D

= −
1

2 �
��=−1,1

g�,�
�V + �h

2
�

� g�,z
�V + �h

2
���+��V+�h/2�, �4�

where g�����=N�0�J��
1 =N�0�J��

2 , gz����=N�0�Jz� are
dimensionless frequency-dependent Kondo couplings with
N�0� being density of states per spin of the conduction
electrons �we assume symmetric hopping t1= t2= t�,
��=��D− ��+ i���, D�D0 is the running cutoff, and � is
the decoherence �dephasing� rate at finite bias which cuts off
the RG flow,20 given by
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� = �
�

�

4	
� d�f�

L�1 − f�
L��g�,z����2 + f�−�h/2

L �1 − f�+�h/2
R �

��g�����2 + �L → R� , �5�

where f� is the Fermi function given by
f���=�1 / �1+e�/kT��. Note that the Kondo couplings exhibit
the following symmetries: g�,����=g−�,����=g�,��−��
�g���� and g�,z���=g−�,z�−��. We have solved the RG
equations subject to Eq. �5� self-consistently. The solutions
for g���� and g�,z��� at the transition are shown in Fig. 1.
Similar behavior for gz�,���� is obtained in the localized
phase. The decoherence rate ��V /h� is plotted in Fig. 2. Note
that in our calculations we have properly taken into account
the qualitatively different behaviors between the intralead
scattering rate �the scattering from one lead off the impurity
level and back into the same lead� and the interlead scatter-

ing rate �scattering from one lead off the impurity and to the
other lead�. The former corresponds to the first �involving gz�
term in Eq. �5� which leads to a vanishing phase space at
T=0 �it is therefore not proportional to the bias voltage V�
while the latter corresponds to the second �involving g��
term in Eq. �5� which has a phase space linearly proportional
to the bias voltage V.

Note that, unlike the equilibrium RG at finite tempera-
tures where RG flows are cutoff by temperature T, here in
nonequilibrium the RG flows will be cutoff by the decoher-
ence rate �, a much lower energy scale than V, ��V. This
explains the dip �peak� structure in g��z���� in Figs. 1 and 3.
In contrast, the equilibrium RG will lead to approximately
frequency-independent couplings �or “flat” functions
g�����g�,z��=0��. In the absence of field h=0, g�,�z����
show dips �peaks� at �= 
V /2. In the presence of both bias
V and field h, g���� shows dips at �= 


V
h
2 while gz↑�↓�

show peaks at �=h
V /2 ��=−h
V /2�.20 At h=V, two
dips of g���� at �= V−h

2 and �= −V+h
2 merge into a large dip

at �=0. Note that in the localized phase the coupling
g���→0� should get renormalized to zero in the limit of
V=0 and T=0. As shown in Fig. 4, for a fixed effective
magnetic field, the values of g���� indeed get further sup-
pressed with decreasing bias voltage V, as expected. We use
the solutions of the frequency-dependent Kondo couplings
g�,z���� to compute occupation number and charge suscep-
tibility of the resonance level near the transition.

IV. OCCUPATION NUMBER AND MAGNETIZATION

From the mapping, the occupation number of the
resonance level nd=d†d is related to the magnetization
of the pseudofermion in the effective Kondo model by
Sz=nd−1 /2= M

2 , where M =n↑−n↓= f↑
†f↑− f↓

†f↓. Since the oc-
cupation number in the dissipative resonance level is related
to the pseudospin magnetization in the effective Kondo
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FIG. 1. �Color online� g�,z��� versus � �in unit of D0� at the KT
transition for �a� g���� and �b� gz����. Arrows indicate spin � of
the corresponding curve. The bare couplings are g�=−gz=0.1D0;
bias voltage is fixed at V=0.4D0; the effective magnetic fields are
fixed at h=0,0.3D0 ,0.4D0. Here, D0=1 for all the figures.
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FIG. 3. �Color online� g�,z��� versus � �in unit of D0� in the
localized phase. for �a� g���� and �b� gz����. Arrows indicate spin
� of the corresponding curve. The bare couplings are g�=0.05D0
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the figures.
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model by a simple linear relation, in the following we will
use the properties of the magnetization M to represent those
of the occupation number. The nonequilibrium occupation
number of the pseudofermion n↑�↓�= f↑�↓�

† f↑�↓� in the effective
model can be determined by solving the Keldysh component
of the Dyson equation for the pseudofermion self-energy,20

given by

n���� = �1 − ��
����/��

�����−1, �6�

Here, the nonequilibrium pseudofermion self-energies
��

������� are obtained via renormalized perturbation theory
up to second order in g���,

��
���� = �

�,��=L,R

i�n�
−
�h

2
�����

�,z
− � −
�h

2
�

+ n−�
�h

2
�����

�,�
− � +
�h

2
�� ,

��
���� = �

�,��=L,R

− i�����
�,z
− � −

�h

2
� + ����

�,�
− � +
�h

2
�� ,

�7�

where

����
�,z��� =� d��g���

z ����2����f������1 − f��� + ��� ,

����
�,���� =� d��g���

� ����2����
1 f������1 − f��� + ��� �8�

with �1 being the x component of the Pauli matrices. Simi-
larly, ����

�,z������ are obtained by interchanging f����� and
�1− f���+��� in ����

�,z������. The nonequilibrium occupation
number n↑��=− h

2 � is given by

n↑
−
h

2
� =

�
���

����
�,��h�

�
���

����
�,��h� + ����

�,��h�
. �9�

The nonequilibrium magnetization M is therefore given by

M =

�
���

����
�,��h� − ����

�,��h�

�
���

����
�,��h� + ����

�,��h�
�10�

We can further simplify M as

M =
A − B
A + B

,

A = �
���=L,R

� d�g����

2 ���f�−��
�1 − f�−���−h� ,

B = �
���=L,R

� d�g����

2 ���f�−��
�1 − f�−���+h� . �11�

At T=0, magnetization M takes the following simple form:

M =

�
V−h/2

V+h/2

d�g�
2 ��� + �

−V−h/2

−V+h/2

d�g�
2 ���

�
−V−h/2

V+h/2

d�g�
2 ��� + �

−V+h/2

V−h/2

d�g�
2 ���

. �12�

Note that occupation number n↑�↓� can also be determined by
the rate equation:20 �↑→↓=�↓→↑ or n↑A=n↓B, where �↓→↑ is
the spin-flip rate of pseudofermion from spin-down to
spin-up state.

We have calculated the magnetization M�h /V� numeri-
cally at the KT transition and in the localized phase for both
small bias limit V�h�D0 and large bias limit V�h where
we have fixed h at a small value. First, we demonstrate that
the nonequilibrium magnetization M with a fixed
h�9.6�10−8D0 for both fixed small �lower panel of Fig. 5�
and large �upper panel of Fig. 5� bias voltages shows a
smooth crossover as a function of g�+gz across the KT tran-
sition �g�+gz=0�, in contrast to a perfect jump in M at the
transition in equilibrium.3

To investigate further the crossover behavior of the mag-
netization M, we calculate M as a function of h /V with h
being fixed at a small value h�1.0�10−9D0. The result is
shown in Fig. 6. First, let us examine simple limits from the
numerical results. The spin of the quantum dot gets fully
polarized M =1 only when magnetic field h exceeds the bias
voltage, h�V while for h�V the magnetization is reduced
due to finite spin-flip decoherence rate. In the extreme large
bias limit, V�h, we find M gets further suppression.

To gain more understanding of the numerical results, we
obtain an analytic approximated form for M�h /V� for h�V.
For V→h, M→1 in the following approximated form:
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FIG. 4. �Color online� g�,z��� versus � �in unit of D0� in the
localized phase at a fixed effective magnetic field h=0.15D0 and at
two different bias voltages for �a� g���� and �b� gz

↑���+gz
↓���. The

bare couplings are g�=0.05D0 and gz=−0.15D0. Here, D0=1 for all
the figures.
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M �
h

�V − h�
g�

2 �0�
g�

2 �V/2�
+ h

�13�

while in the large bias limit, V /h�1, we find M�h /V� has
the following approximated form:

M �
hg�

2 �V/2�

�V − h���

4
g�

2 �0� + 
1 −
�

4
�g�

2 
V − h

2
�� + hg�

2 �V/2�

.

�14�

Here, we have treated g����2 within the interval
− V−h

2 ���
V−h

2 as a semiellipse. From Eqs. �13� and �14�, it

is clear that the behavior of the magnetization M�h /V� de-
pend sensitively on the dip-peak structure in g����, espe-
cially on the ratio g��0� /g��V /2�, and g�� V−h

2 � /g��V /2�. In
general, the analytical approximated forms for g���� at
�=0, V

2 , V−h
2 are rather complex. Nevertheless, the values of

g���� at these specific values of � can be obtained numeri-
cally �see, for example, Fig. 7�.

In the extremely large bias limit, h /V→0, M is well ap-
proximated by12

M �
hg�

2 �V/2�

V��

4
g�

2 �0� + 
1 −
�

4
�g�

2 
V

2
��

. �15�

In this limit, the explicit voltage dependence of
g�,cr��=0,V /2� at the KT transition are given by12

g�,cr�� = 0� �
1

2 ln�D/V�
,

g�,cr�� = V/2� � 1/ln
D2

�V
� , �16�

Similarly, g���=0,V /2�loc in the localized phase take the
following forms:

g�,loc�� = 0� − g�

�
A

2c
�
 V

D0
�2c	c2 + A2
 V

D0
�4c

− 	A2 + c2�
+

B

c
�
 V

2D0
�c	c2 + B2
 V

2D0
�2c

− 
 V

D0
�c	c2 + B2
 V

D0
�2c� , �17�
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FIG. 5. �Color online� Nonequilibrium magnetization M in the
effective Kondo model at fixed h�9.6�10−8D0 and fixed bias
voltage V �small bias with h /V�0.73 for lower panel and large bias
with h /V�1.1�10−3 for upper panel� versus the initial �bare�
Kondo couplings g�+gz across the KT transition between the de-
localized phase �g�+gz�0� and the localized phase �g�+gz�0�.
Here, the bare Kondo couplings g�,z are in units of D0 with
D0=1.
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g�,loc�� = V/2� − g�

�
A

2c
�
 V

D0
�2c	c2 + A2
 V

D0
�4c

− 	A2 + c2�
+

B

2c
�
 �

D0
�c	c2 + B2
 �

D0
�2c

− 
 V

D0
�c	c2 + B2
 V

D0
�2c� , �18�

where D=e1/�2g��, A=
g�

2 +
cg�

c+�gz�
, and B=AVc with

c=	gz
2−g�

2 . Here, we have neglected the subleading terms in
Eqs. �17� and �18� which depend logarithmically on V /D0.

We first look at the behavior of M�h /V� at the KT transi-
tion. At a general level one might expect the nonequilibrium
magnetization M�h /V� at T=0 in the delocalized phase be-
have in a similar way as the equilibrium thermal magnetiza-
tion M�h /T�=tanh h

2T with T being replaced by V, leading to
linear behavior in h /T at high temperatures. In equilibrium
and at finite temperatures, it has been shown that the mag-
netization of a closely related model—a resonance level with
Ohmic dissipation—exhibits linear behavior in h /T at the
KT transition. It is clear from Eq. �15� that the magnetization
M�h /V� in the equilibrium form based on the “flat approxi-
mation” �g�����g���=0�� always predicts a linear behav-
ior in h /V. At the KT transition, we find the nonequilibrium
magnetization M�h /V� for h�V also shows linear behavior,
M �h /V. This can be understood from Eq. �13� as at the KT
transition g��0� /g��V /2��1 for V�h�D0. The Curie-law
�linear� behavior in M�h /V� here is reminiscent of the equi-
librium thermal magnetization of a free spin in the high-
temperature regime. However, at the large bias voltages,
V�h, we find a logarithmic correction to this linear behavior
in M at the KT transition due to the nonequilibrium effect,

M �
h

V

1


1 −
�

4
� +

�

16� ln
D2

�V

ln
D
V
�

2 . �19�

This logarithmic suppression can be understood from Eq.
�15� as in this case g���=0� �g���=V /2�� becomes peak
�dip� and the ratio satisfies g��V /2� /g��0��1. We now dis-
cuss M�h /V� in the localized phase. First, in the limit of
small bias, V�h�D0, as the system gets deeper in the
localized phase, M�h /V� approaches to fully polarization
M =1 more rapidly than that at the KT transition. This is
expected as the system gets deeper in the localized phase, the
spin is more easily polarized upon applying a magnetic field.
This behavior can also be explained from Eq. �13� as in the
localized phase the ratio g��0� /g��V /2��1, and it only gets
smaller as the system gets deeper in the localized phase. In
fact, the same qualitative behavior is seen in a closely related
Bose-Fermi Kondo model3 which shows the KT transition
between the Kondo and local-moment ground states. In the
large bias limit V�h, however, M deviates from the linear
behavior due to nonequilibrium effects. The correction of M

to linear behavior is dominated by the ratio g��0� /g��V /2�
via Eq. �15�, where g���� shows deeper dips at �= 
V /2,
making g��0� /g��V /2� to rapidly increase with decreasing
h /V �see Fig. 7�. This gives rise to a further suppression of
M at large bias voltages compared to that at the KT transition
�see Fig. 8�.

Note that from Figs. 6 and 8, as the system goes deeper
into the localized phase �or with decrease in g�+gz�0�, we
find M for a fixed h�D0 increases for a fixed small bias
voltage �0.4�h /V�1� while it decreases for a fixed large
bias voltage �h /V�1�. This is in perfect agreement with the
crossover behavior for M shown in Fig. 5.

Notice that the linear behavior of M�h /V��h /V is ex-
pected in purely asymmetric gLR�0=gLL/RR but isotropic
�gLL/RR/LR,�=gLL/RR/LR,z� Kondo model.20 In a symmetric
Kondo model with g=gLL=gRR=gLR, the nonequilibrium
magnetization M�h /V� acquires an additional positive loga-
rithmic corrections M ��2h /V��1+2g ln�V /h��.19,20 In the
present case, however, the deviation from the linear behavior
of M�h /V� in the large bias limit has a different origin. It
comes from the fact that our effective Kondo model is not
only asymmetric �gLL/RR=0�gLR� but also highly aniso-
tropic �gLR,z�−�gLR,��� at the KT transition and in the local-
ized phase. Different corrections to the linear behavior are
expected.

V. SUSCEPTIBILITY �

The nonequilibrium charge susceptibility ��V��
�nd

�h in the
dissipative resonance level is obtained from the spin suscep-
tibility �= �M

�h in the effective Kondo model by the mapping
mentioned above. The susceptibility � of a Kondo dot in
equilibrium at finite temperatures is given by the Curie’s law
�= 1

2T . However, in our highly asymmetric and anisotropic
Kondo model, we find the nonequilibrium susceptibility de-
viates significantly from the Curie law. As shown in Fig. 9, at
the KT transition, as bias voltage is increased, ��V� first
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FIG. 8. �Color online� Nonequilibrium magnetization M�h /V� in
the effective Kondo model at the KT transition and in the localized
phase. The dotted-dashed �dot� lines are results via Eq. �14� and
�15�. Here, the bare Kondo couplings g�,z are in units of D0, and
h=10−9D0 with D0=1.
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shows 1 /V Curie-law behavior, followed by an increase and
a peak around h /V=0.1. In the large bias limit, ��V� gets a
logarithmic suppression �see Eq. �15��,

� �
1

V

1


1 −
�

4
� +

�

16� ln
D2

�V

ln
D
V
�

2 . �20�

Note that the rapid increase in ��h /V� at the KT transition
with decreasing h /V for 0.1�h /V�0.5 is reminiscent of the
spin susceptibility of a nonequilibrium Kondo dot in a mag-
netic field where ��h /V� acquires a logarithmic increase at
large bias voltages.20 On the other hand, the logarithmic de-
crease in ��h /V� here at large bias is a direct consequence of
the dip structure in g���� at the KT transition �see Eq. �16�
and Fig. 10�.

As the system gets deeper in the localized phase, ��h /V�
gets a more pronounced peak at h�0.7V. As bias is further
increased, ��h /V� shows a similar trend as that at the KT
transition—a peak around h /V=0.1 but smaller magnitudes
�see Fig. 9�. At large bias voltages, V�h, � gets a more
severe power-law suppression compared to the slower loga-
rithmic decrease at the KT transition �see Fig. 10 and Eqs.
�17� and �18��,

� �
1

V

1


1 −
�

4
� +

�

4

g�,loc
2 �0�

g�,loc
2 �V/2�

�21�

with g�,loc�0� ,g�,loc�V /2� given by Eqs. �17� and �18�. This
comes as a result of further decrease in Kondo coupling
g���� at �= 
V /2 in the localized phase under RG.

We may compare the behavior in ��V� in our model at
large bias voltages with that in different limit of the same
model or with different models. In the equilibrium limit
V→0 within our model where g�,z��� can be considered as
flat functions over − V+h

2 ���
V+h

2 , g���=0� /g���=V /2�
�1, a perfect Curie-law behavior is expected for ��V�. How-
ever, for isotropic Kondo model �gLL=gRR=gLR� for a simple
quantum dot in Kondo regime and at large bias voltages,
��V� shows Curie law with positive logarithmic correction,
�� 1

V �1+ 1

ln V
Tk

� with Tk being Kondo temperature for a single-

quantum dot. In our dissipative resonance-level model, the
suppression in ��h /V� at large bias voltages at the KT tran-
sition and in the localized phase comes from the dips at
g���= 
V /2�.

VI. DISCUSSIONS AND CONCLUSIONS

Before we conclude, let us discuss the relevance of our
results for the transport measurements in nanostructures.
First, the nonequilibrium occupation number �charge on the
quantum dot� nd�h /V�=M�h /V�+1 /2 can be detected by the
single-electron transistor �SET� connected to the dot by tun-
ing the gate voltage Vg on the dot via eN=VgCg with Cg been
the capacitance between gate and dot,22 and the effective
magnetic field h=Vg−e2 / �2Cg�� �N−1 /2� being the devia-
tions of N from the degeneracy point.3 Alternatively, the av-
erage charge on the dot can also be detected by the time-
resolved current and conductance measurement of the
quantum point-contact capacitively coupled to the dot.23 At a
finite bias, instead of a perfect Coulomb step, a smooth
crossover behavior for M�h /V� is expected near the KT tran-
sition. Second, the charge �impurity� susceptibility
��h�=dM /dh can be measured by the capacitance line shape
near the charge degeneracy point via the high sensitivity
charge sensor in the SET connected to the dot:
Cdot=dnd /dVg�dnd /dh=��h�.22,24,25 We believe in principle
it is possible to generalize the above setup to a dissipative
resonant-level dot. We have predicted specific crossover be-
haviors for M and � at the transition and in the localized
phase. In particular, in the large bias limit h /V�1, we find a
logarithmic and a power-law correction in V for M�h /V� and
��h /V� to the Curie-law behavior is predicted at the KT tran-
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FIG. 9. �Color online� ��h /V� versus h /V at the KT transition
and in the localized phase. Here, the bare Kondo couplings g�,z are
in units of D0, and h=10−9D0 with D0=1.
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sition and in the localized phase, respectively. These non-
equilibrium crossover behaviors at finite bias voltages near
the phase transition are fundamentally distinct from those in
equilibrium at finite temperatures.

In conclusion, we have investigated the nonequilibrium
occupation and charge susceptibility of a dissipative reso-
nance level with energy h. For h=0, the system exhibits the
Kosterlitz-Thouless-type quantum transition between a delo-
calized phase at small dissipation strength and a localized
phase with large dissipation. We first mapped our problem
onto an effective nonequilibrium anisotropic Kondo model in
the presence of a magnetic field h. The occupation number
and charge susceptibility correspond to magnetization M and
susceptibility � of the pseudospin in the effective Kondo
model, respectively. By nonequilibrium RG approach, we
solved for the frequency-dependent effective Kondo cou-
plings and calculated magnetization M�h /V� and ��h /V� at
finite bias voltages. We demonstrate the smearing of the KT
transition in the nonequilibrium magnetization M at a fixed h
as a function of the effective anisotropic Kondo couplings
for both small bias and large bias voltages as it exhibits a
smooth crossover at the KT transition, in contrast to a perfect

jump in M at the transition in equilibrium. For small bias V
and effective field h and h�V, we find the magnetization
M�h /V� at the KT transition shows linear behavior in h /V
while in the localized phase M increases more rapidly with V
approaching h from above, consistent with the behavior of
the equilibrium magnetization in the localized phase at finite
temperatures. In the large bias limit V�h, however, we find
corrections to equilibrium Curie-law behavior in M due to
nonequilibrium effects. At the KT transition, the corrections
are logarithmic, in V /D, while in the localized phase they are
power law in V /D0. Our results have direct relevance for
nonequilibrium charge fluctuations in quantum dots, and it is
of great interest to investigate further these nonequilibrium
crossovers in future experiments.
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