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We study the interference between the Fano and Kondo effects in a side-coupled double quantum dot system
where one of the quantum dots couples to conduction-electron bath while the other dot only side couples to the
first dot via antiferromagnetic �AF� spin-exchange coupling. We apply both the perturbative renormalization-
group �RG� and numerical renormalization-group �NRG� approaches to study the effect of AF coupling on the
Fano line shape in the conduction leads. With particle-hole symmetry, the AF spin-exchange coupling com-
petes with the Kondo effect and leads to a local spin-singlet ground state for arbitrary small coupling, so-called
“two-stage Kondo effect.” As a result, via NRG we find the spectral properties of the Fano line shape in the
tunneling density of states �c��� of conduction-electron leads shows double dip-peak features at the energy
scale around the Kondo temperature and the one much below it, corresponding to the two-stage Kondo effect;
it also shows an universal scaling behavior at very low energies. We find the qualitative agreement between the
NRG and the perturbative RG approaches. Relevance of our work to the experiments is discussed.
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I. INTRODUCTION

Fano resonance is the quantum interference effect be-
tween a localized state with finite width and a conduction
band.1 The hallmark of the Fano resonance is the asymmetric
line shape in tunneling density of states �TDOS� of the con-
duction band. One example of Fano resonance is the trans-
port through low-dimensional electronic �Fermi� system with
local impurities. The Kondo effect2 plays an important role if
these impurities carry unpaired spins. Recently, there has
been growing interest both theoretically and experimentally
in the Fano resonance associated with the Kondo effect via
the scanning tunnel microscope �STM� measurements of
noble-metal surfaces3–9 as well as in quantum dot
devices.10,11 The Fano resonance in these systems in general
arises from two quantum interference effects: �1� between
the broadened local level and the continuum conduction
band and �2� between the Kondo resonance in the local level
and the conduction band. The combined two effects give rise
to rather complicated line shape in STM measurement of the
TDOS. The Fano resonance in TDOS of conduction elec-
trons in such systems can be served as an alternative ap-
proach to study the Kondo effect in addition to the local
density of states �LDOS� of the quantum dot. The Fano line
shape in TDOS of conduction electrons in the leads of a
single Kondo dot system has been extensively studied, and it
is sensitive to both the spatial phase of the free-conduction
electrons and the scattering phase shift associated with the
Kondo effect.

Very recently, the Fano resonance has been extended
experimentally12 and theoretically13–15 to the side-coupled
double quantum dot system where the competition between
Kondo and Fano effects gives rise to change in conductance
profile. In this paper, we investigate the Fano-Kondo inter-
ference in the side-coupled double quantum dot systems
where only one of the two dots �dot 1� connects to the leads
while the other isolated dot �dot 2� is side coupled to

dot 1.16,17 In the Kondo limit where charging energy on each
dot is large, an antiferromagnetic �AF� spin-exchange cou-
pling is generated via the second-order hopping between two
dots competes with the Kondo effect, leading to local spin-
singlet ground state for arbitrary finite values of J, so-called
“two-stage Kondo effect.”16–18 Previous studies on the side-
coupled double dot systems have been mostly focused on the
dip of LDOS on dot 1 upon applying the AF spin-exchange
coupling. However, little is known about the feedback effect
of the two-stage Kondo effect mentioned above on the TDOS
of conduction electrons in the leads. In this paper, we gener-
alize the Fano line shape in TDOS of electrons in the leads as
a result of the two-stage Kondo effect in side-coupled double
quantum dot system. The systematic perturbative and nu-
merical renormalization-group �NRG� approaches are ap-
plied here in the cases both with and without particle-hole
symmetries. We find as a consequence of the two-stage
Kondo effect, the spectral property of the Fano line shape in
TDOS of the leads develops an asymmetrical double dip/
peak structure; it also shows an universal scaling behavior at
very low energies. We compare our NRG results with the
perturbative RG analysis.

II. MODEL HAMILTONIAN

Our starting Hamiltonian for the side-coupled double dot
system is the single-impurity Anderson model for dot 1 with
additional antiferromagnetic spin-exchange coupling be-
tween dot 1 and the isolated dot 2 which side coupled to it.16

H = �
k,�=L,R

�kck��
† ck�� + �

�=L,R
�
k,�

�t�ck��
† d1,� + H.c.�

+ �
i�

�didi�
† di� + �

i=1,2
Uini

↑ni
↓ + JS1S2, �1�

where tL and tR denote the tunneling amplitudes to the left
and right leads, respectively, and ck��

† creates an electron in
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lead �=L ,R with spin �. This tunnel coupling leads to a
broadening of the level on dot 1, the width of which is given
by �=�L+�R=2��tL

2�L+ tR
2�R�, with �L/R the density of

states in the leads. Here, i=1,2 labels the two dots and Si
= �1 /2�����di�

† ����di�� is their spin. Each dot is subject to a
charging energy, U1�U2=U=EC. In the presence of
particle-hole symmetry, we have �di=−

Ui

2 . Note that in the
Kondo limit where the charging energy EC is large, the direct
hopping between the two dots are strongly suppressed and an
antiferromagnetic spin-exchange coupling J�0 is generated
via the second-order hopping processes.

The physical observables of our interest are �i� LDOS of
impurity on dot 1: �d1���= −1

� Im Gd1��� and �ii� the TDOS
of the conduction electron �c���: �c���=�0+	�c���, where
�0=�L/R is the constant density of states of the bare
conduction-electron leads �here we assume symmetrical
leads �L=�R�: �0= −1

� Im Gc
0��=0� with Gc

0��− i
� being the
bare conduction-electron Green’s function, and 	�c��� is the
correction to the LDOS of the conduction electron due to the
coupling between leads and the quantum dot system:
	�c���= −1

� Im 	Gc��− i
�. Here, the correction to the
conduction-electron Green’s function 	Gc��− i
� is given by

	Gc�� − i
� =
�

��0
Gc

0�� − i
�Gd1�� − i
�Gc
0�� − i
� .

�2�

Using Eq. �2�, we have4

	�c��� = − ��0 � ��qc
2 − 1�Im Gd1�� − i
�

− 2qc Re Gd1�� − i
�� �3�

with qc being defined as

qc = −
Re Gc

0�� − i
�
Im Gc

0�� − i
�
�4�

and it can be treated approximately as a frequency-
independent constant.3,4 Following Ref. 16, below we apply
both perturbative RG and NRG approaches to calculate these
quantities in the presence of particle-hole symmetry. Though
the LDOS on dot 1 �or equivalently the imaginary part of the
Green’s function on dot 1, Im Gd1���� at finite AF spin-
exchange coupling J via both RG and NRG has been com-
puted in Ref. 16, the real part of Gd1���, Re Gd1���, which is
also needed to analyze the spectral property of the Fano line
shape in the TDOS of the conduction-electron leads ��c����,
has not yet been calculated by either perturbative RG or
NRG approach. In the following, we provide a numerical and
analytical analysis on the Fano line shape for �c��� by ana-
lyzing both the real and the imaginary parts of Gd1��� at
finite J via NRG and compare them with those via perturba-
tive RG approach.

First, we discuss the case for J=0. For J=0 and in the
presence of particle-hole symmetry ��di=−Ui /2�, it has been
known that in the Kondo regime ��TK with TK
�D0e−�U1/� being the Kondo temperature for dot 1, Gd1���
is well approximated by the single Lorentzian,16

Gd1��� � Td1
0 �� − i
� =

z

� + iT̃K + i

�5�

with z=c
TK

� being the quasiparticle weight at the Fermi en-

ergy, and T̃K=z�=cTK being an energy on the order of the
Kondo temperature, TK. The precise value of the universal

constant c relating TK and T̃K depends on the definition of
TK. Here, we define TK as the half width of the transmission
T����−� Im Gd1���. From fitting Gd1��� with the NRG
data, we get c�0.5. Note that by Fermi-liquid theory and
principles of renormalization group, the AF spin-exchange
interaction also gets renormalized by the same z factor: J

→ J̃
z .16 Here, J̃ is slightly different from J due to the large

logarithmic tail in Im Gd1���. The value of J̃ is obtained

from the fit of Im Gd1��� to NRG data: J̃�1.1J.16 However,
for �
TK, the above simple Lorentzian approximation fails
to account for the large logarithmic tail in Im Gd1���. There-
fore, corrections to the single Lorentzian approximation are
needed in this case to more accurately describe Gd1���. Via
the Dyson equation approach, taking into account the inter-
ference between the Kondo resonance and the broadened im-
purity level, we obtain a more accurate description for the
Green’s function of the dot 1 �Ref. 3�

Gd1��� = Gd1
0 ��� + Gd1

0 ���T̃d1���Gd1
0 ��� , �6�

where the bare Green’s function on dot 1, Gd1
0 ���, describing

a local impurity level with a level broadening � and LDOS
�d0� −1

� Im Gd1
0 ��=0�, is given by

Gd1
0 =

1 − n/2
� − �d1 + i�

+
n/2

� − �d1 − U1 + i�
�7�

with n= �nd1
↑ +nd1

↓ 	 being the average occupation number on

dot 1 and T̃d1��� is the scattering T—matrix corresponding
to the Kondo resonance, given approximately by3

T̃d1�� − i
� �
bei2	

� − �K + iT̃K + i

�8�

with b being a fitting parameter to be fitted with the NRG
data for Im Gd1���. In the presence of particle-hole symme-
try, we have n=1 and �K=0. Here, 	 in Eq. �8� corresponds
to the phase shift associated with the Kondo resonance scat-
tering, and it gives 	=� /2 in the case of particle-hole sym-
metry. By fitting Eq. �6� with the NRG data, we find b
�z / ���d0�2, which is in good agreement with the known
result: −Im Gd1��=0�=1 /� for a single impurity Anderson
model.2 In the Kondo regime ���TK and Ec��� of our
system and for J=0, the bare Green’s function on dot 1,
Gd1

0 ���, are approximately given by Re Gd1
0 ����0 and

−Im Gd1
0 ���

� ��d0. The above approximations lead to the follow-
ing approximated expressions for Gd1��� after including the
interference between the Kondo resonance and the broad-
ened impurity �dot 1� level via Eq. �6�:

Re Gd1��� � ���d0�2 b�

�2 + T̃K
2
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Im Gd1��� � − ��d0 − ���d0�2 bT̃K

�2 + T̃K
2

�9�

with �d0=− 1
� Im Gd1

0 ��=0� being the LDOS of dot 1 at �
=0. From Eqs. �3� and �9�, in the Kondo limit the correction
to conduction-electron density of states can therefore be ex-
pressed in terms of the well-known Fano line shape,3,4

	�c��,J = 0� � �0
qc
2 + 2qc� − 1

�2 + 1
+ �� , �10�

where �=
�−�K

T̃K
and �=��d0��qc

2−1�. Note that in general the

Dyson equation approach in Eq. �6� is also valid for both
��TK and ��TK in the presence of large particle-hole
asymmetry: ��d1−�F��� �with �F being the Fermi energy of
the leads� where the the interference between the Kondo and
broadened impurity levels plays an important role in
Gd1���.3

III. PERTURBATIVE RENORMALIZATION-GROUP
ANALYSIS

Now, we turn on a finite AF spin-exchange coupling J.
Following Ref. 16, to gain an analytical understanding we
employing the perturbative renormalization-group analysis in
the limit of J→0. We restrict ourselves the case with
particle-hole symmetry. Though some of the aspects in this
case has been studied in Ref. 16, it proves to be useful to
summarize its key results for further calculations on the Fano
line shape for �c��� in the presence of AF spin-exchange
coupling J. In the limit J→0, “two-stage Kondo screening”
takes place:16–18 the spin of dot 1 first gets Kondo screened
below Kondo temperature TK�D0e−�U1/�, the first stage
Kondo effect. Then for energy scale much below TK, the
second stage Kondo effect occurs at ��T��TK between
dots 1 and 2 via the AF spin-exchange coupling J where the
spin on the dot 2 gets Kondo screened. Here, the Kondo
resonance peak in electron density of states on dot 1 plays
the effective fermionic bath for the second stage Kondo ef-
fect. We will discuss how the Fano line shape for �c��� is
affected in the presence of the antiferromagnetic spin-
exchange coupling. Summing up all leading logarithmic ver-
tex diagrams leads to the following scaling equation for the
dimensionless vertex function:16

d����,T̃K��
dl

�
d��̂���J̃�

dl
= ��̂���J̃�2 �11�

with the scaling variable defined as l� log�T̃K / T̃K� �. Here,
�̂�������� /z= −1

�z Im Gd1��� is the rescaled effective den-
sity of states of dot 1. Integrating this differential equation up

to l� log�T̃K /��, one obtains the dimensionless vertex func-
tion in the leading logarithmic approximation,16

���,T̃K� =
1

�2

T̃K
2

log
T̃K

T�
+ log

���
T�

�12�

with the second scale T� defined as

T� = T̃K exp�− �T̃K/J̃� . �13�

The second-order self-energy correction to the retarded
Green’s function Gd1

0 simply gives the expression16

���� = S�S + 1�
J̃2

4z2Gd1��� �14�

where S=1 /2. The Green’s function of dot 1 after including
self-energy and vertex correction is given by16

Gd1
J ��� =

z

zGd1
−1��� −

J̃2���S�S + 1�
4z

Gd1���

, �15�

where J̃��� is replaced by ���� / �̂���, and Gd1��� is given
by either Eq. �5� �the Dyson equation approach� or Eq. �6�
�the single Lorentzian approximation�. Note that due to the
logarithmic corrections in �, the spectral density of dot 1
develops a dip at energies �
T��TK for any infinitesmall
J, which suppresses the low-energy transmission coefficient
through dot 1. Physically, this comes from as a consequence
of the fact that electrons of energy ��T� are not energetic
enough to break up the local spin singlet and therefore their
transport is suppressed. For a finite AF spin-exchange cou-
pling J�0, the real and imaginary parts of Gd1

J ��� obtained
in Eq. �15� via perturbative RG approach lead to an analyti-
cal expression for the correction to the LDOS on dot 1,
	�c

J���,

	�c
J��� = − ��0��qc

2 − 1�Im Gd1
J ��� − 2qc Re Gd1

J ���� .

�16�

Below we present the results via NRG with fits by the
perturbative RG calculations.

IV. COMPARISON TO THE NRG ANALYSIS

We have performed the NRG calculations on the system
in the presence of particle-hole symmetry. The NRG param-
eters we used are U1=U2=D0=1, �d1=�d2=−0.5, �=2, and
�L=�R=0.1 with D0 being the bandwidth of the conduction-
electron baths. �Here, we set D0=1 as the unit of all param-
eters.� Within each NRG iteration, we keep the lowest 1000
states. For J=0, we find TK�0.005D0. As AF spin-exchange
coupling is increased, both real and imaginary parts of
Gd1��� get splitted at �=0. First, as shown in Ref. 16, the
imaginary part of Gd1��� �proportional to DOS of dot 1� at
finite J shows a dip below the characteristic energy scale T�

for any arbitrary J�0 �see Fig. 1�a��. For small AF spin-
exchange coupling J, the NRG results for Im Gd1��� can be
fitted reasonably well by the perturbative RG approach over
an intermediate energy range T����TK. Furthermore, a
clear universal scaling behavior of the Kosterlitz-Thouless
�KT� type is observed from the NRG results of Im Gd1���
for ��T�: Im Gd1����g0g�� /T�� �see Fig. 1�b��.16 With
particle-hole symmetry, the scaling function g�� /T�� is com-
pletely universal. As pointed out in Ref. 16, the ground state
of the system at any finite J is a local spin singlet �a Fermi

TUNABLE FANO-KONDO RESONANCE IN SIDE-COUPLED… PHYSICAL REVIEW B 82, 085325 �2010�

085325-3



liquid�, the very low-energy crossover of Im Gd1��� for �
�TK vanishes as �� /T��2, following the Fermi-liquid behav-
ior:

− � Im Gd1��� � a1
 �

T��2

, �17�

where a1�3.0 from the fit to the NRG data �see Fig. 1�b��.16

Note that we find the perturbative RG approach via Eq. �6�
leads to a better fit to the NRG results for Im Gd1��� than
that via Eq. �5�, as expected.

We now discuss the real part of Gd1���. For J=0,
Re Gd1��� is antisymmetric with respect to �=0 and it
shows a peak/dip at �� �TK, signature of the first Kondo
effect. As the AF spin-exchange coupling J is increased, the
magnitude of the peak/dip in Re Gd1��� for ��TK de-
creases, indicating the Kondo effect is suppressed. At a much
lower energy scale, T����TK, the Kondo dip-peak struc-
ture in Re Gd1��� gets a further split with a width D�2T�: it
develops a negative-valued dip for ��T� while it shows a
positive-valued peak for ��−T�. In the �→0 limit, both
positive and negative branches of Re Gd1��� vanish �see
Figs. 2 and 3�. We can get an analytical understanding of this
behavior as follows: in the Kondo regime ��TK, the real
part of Gd1

J ��� is approximately given by �see Eq. �15��

Re Gd1
J ��� �

z�
1 −
3J̃2���

16T̃K
2 �

�2
1 −
3J̃2���

16T̃K
2 �2

+ T̃K
2
1 −

3J̃2���

16T̃K
2 �2 .

�18�

From the perturbative RG results, as �→T�, J̃��� di-
verges, leading to the vanishing LDOS. As � decreases to T�

from above, the factor 1− 3J̃2���
16T̃K

2
in Eq. �18� first becomes

negative then it approaches 0 as � further approaches 0. This
explains the additional dip-peak structure seen for ���→T� in
the NRG results. This qualitative feature can be captured by
the perturbative RG approach. However, the magnitudes of
the dip-peak features via perturbative RG are much smaller
than those obtained from NRG. We believe the reasons for
the deviation are twofolds: first, the overall shape of
Re Gd1��� predicted via RG is shifted toward the smaller ���
region compared to the NRG results. This leads to a smaller
value for �0�0 �compared to that via NRG� where
Re Gd1������0� changes its sign from positive �negative� to
negative �positive� for 0����0 �−�0���0�. This makes
the magnitudes of these additional dips and peaks smaller as
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FIG. 1. �Color online� �a� Im Gd1��� �normalized to Im Gd1��
=0,J=0��−1 /�� of dot 1 with particle-hole symmetry for differ-
ent AF spin-exchange couplings J calculated by NRG �solid lines�
and perturbative RG �dashed lines� via Eqs. �6� and �15� �dashed
lines�. Dotted lines are RG fits via Eqs. �5� and �15�. The NRG
parameters are U1=U2=D0, �d1=�d2=−0.5D0, and �=0.2D0 with
D0=1. For J=0, we find TK�0.005D0. The fitting parameters c

�0.5 and J̃�1.1. �b� Im Gd1�� /T�� �normalized to Im Gd1

��=0,J=0��−1 /�� shows an universal scaling behavior for �
�T�. The dotted-dashed line is the power-law �� /T��2 fit to the
crossover function of Im Gd1�� /T�� for ��T�, see Eq. �17�.
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FIG. 2. �Color online� Re Gd1��� �normalized to −Im Gd1

��=0,J=0�� of dot 1 for different antiferromagnetic spin-exchange
couplings J by NRG �solid lines�. The dashed line is a fit to the
NRG data for J=0 via Eq. �6�. The other parameters are the same as
in Fig. 1.
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FIG. 3. �Color online� Re Gd1��� �normalized to −Im Gd1

��=0,J=0�� on a logarithmic scale of � /TK for different antiferro-
magnetic spin-exchange couplings J by NRG �solid lines� and per-
turbative RG via Eqs. �6� and �15� �dashed lines�. Dotted lines are
RG fits via Eqs. �5� and �15�. The other parameters are the same as
in Fig. 1.
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J̃��� diverges even further �see Eq. �18��. As J is further
increased, the deviations between RG and NRG become
more transparent. This is expected as the perturbation theory
becomes uncontrolled once the system moves away from the
weak-coupling regime. Nevertheless, the perturbative RG
approach can still capture the qualitative features of
Re Gd1��� for T�� ����TK �see Figs. 2 and 3�. Note that the
perturbative RG approach via Eq. �6� �the Dyson’s equation�
can fit the NRG result for Re Gd1��� better than that via Eq.
�5� for �
TK, as expected. Similar to the KT scaling behav-
ior for Im Gd1���, the NRG results for Re Gd1��� also show
a scaling behavior for ��T�: Re Gd1����g0�g��� /T�� �see
Fig. 4�. Here, the scaling function g��� /T�� is again com-
pletely universal in the case of particle-hole symmetry.
Based on the Fermi-liquid theory, the very low-energy
���T�� crossover function for Re Gd1��� is linear in � /T�

�see, for example, Eq. �9��,

� Re Gd1��� � − a2
 �

T�� , �19�

where we find a2�1.5 from the fit to the NRG result �see
Fig. 4�.

Finally, we discuss the behavior for the Fano line shape
for �c���. As indicated in Eq. �16�, the Fano line shape for
	�c��� is effectively a linear combination of the asymmetric
real part and symmetric imaginary part of the Gd1���. The
parameter qc in Eq. �16� depends on the conduction-electron
reservoir. Following Refs. 3 and 4, qc can be reasonably
treated as a constant. We take a realistic value qc�1.4 here,
corresponding to the Co/Au system studied in Refs. 3 and 7.
We find �c��� is asymmetric with respect to �=0 with a
larger magnitude for ��0 than that for ��0. As shown in
Figs. 6 and 7, �c��� shows a dips at ��−TK and ��T� as
well as peaks at ��TK and ��−T�. The peak �dip� at �
� �TK correspond to the first stage Kondo effect while the

dip �peak� at �� �T� correspond to the second stage Kondo
effect via spin-exchange coupling. We find a reasonably
good agreement between the NRG results and the fit via the
perturbative RG approach for TK���T�. �The fit via Eq.
�6� is somewhat better than that via Eq. �5� as the former
gives a better fit to the NRG result for Re Gd1���.� The
above dip-peak structure in the Fano line shape for �c��� in
the presence of AF spin-exchange coupling can be detected
in the STM measurement of the conduction-electron leads as
the signature of the two-stage Kondo effect in side-coupled
double quantum dot. Note that the � /T� scaling in the NRG
results for �c��� is observed �see Figs. 5 and 6�, which
comes naturally from the scaling behaviors for both real and
imaginary parts of Gd1��� �see Eq. �3� and Fig. 7�. In the
low-energy limit ��T� where the system approaches to the
Fermi liquid of local spin singlet, we have the following
approximated power-law scaling behavior for 	�c���:
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FIG. 4. �Color online� Re Gd1��� �normalized to −Im Gd1

��=0,J=0�� on a logarithmic scale of � /T� for different antiferro-
magnetic spin-exchange couplings J by NRG. The other parameters
are the same as in Fig. 1. The dotted-dashed lines are power-law
�� /T�� fits to the universal crossover function of Re Gd1��� for �
�T�, see Eq. �19�.
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FIG. 5. �Color online� The Fano line shape for �c��� �in unit of
�0� for different antiferromagnetic spin-exchange couplings J by
NRG. The dashed line is a fit to the Fano line shape forms Eq. �10�
for J=0. The other parameters are the same as in Fig. 1.
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FIG. 6. �Color online� The Fano line shape for �c��� �in unit of
�0� on a logarithmic scale of � /TK for different antiferromagnetic
spin-exchange couplings J by NRG �solid lines� and perturbative
RG via Eqs. �6� and �15� �dashed lines�. The dotted-dashed lines are
fits to the Fano line shape form via Eq. �10� for J=0. The dotted
lines are the RG fits via Eqs. �5� and �15�. The other parameters are
the same as in Fig. 1.
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	�c���
�0

� − ��1 − qc
2�a1
 �

T��2

+ 2a2qc
�

T�� . �20�

For ��TK, we find the single Lorentzian approximation Eq.
�5� can very well describe Gd1���; however, for ��TK, we
expect a finite contribution to Gd1��� from interference be-
tween the Kondo resonance and the broadened impurity level
at dot 1. We find indeed a better agreement between the
analytic fits and the NRG results for Gd1��� and �c��� via
perturbative RG approach based on the Dyson’s equation Eq.
�6� than those from the single Lorentzian fit via Eq. �5�.

We would like to make a side remark here. The “bare”
resonance width � of dot 1 �corresponding to the resonance
width of an impurity in a noninteracting resonance-level
model� is proportional to the bare constant density of states
in the leads �0. Nevertheless, we find the correction in TDOS
in the leads 	�c���, which comes as a result of the Fano-
Kondo interference and AF spin-exchange coupling, does not
lead to a sizable feedback effect on � within our parameter
range. We have checked this numerically via NRG as well as
analytically via Eqs. �6� and �15� �combined with the fit to
NRG data� where these effects in the leads and on the dots
have been properly taken into account. Though this correc-
tion exists in principle, we found that it is negligible as the
resonance width of dot 1 at �=�d1 almost remains un-
changed before and after the electron-electron interaction
U1=1 and/or the small AF spin-exchange couplings J�1 �in
unit of D0=1� are introduced. This comes as a result of the
fact that the energy of the dot 1, �d1=−U1 /2�0, lies well
below the Fermi level �or the peak/dip associated with the
Kondo effect and AF spin-exchange coupling at energy �
�TK is well separated from the resonance charge peak of dot
1 with width �, ��d1��TK�T��. Some details are as follows:
the bare resonance width of dot 1 is given by �assuming
symmetrical hoppings between leads and dot 1: t= tL= tR� �
=−1 / Im Gd1

0 ��=�d1�=4�t2�0. The ratio between the cor-
rected resonance width �� and the bare one is given by

�� /�= 1
��Im Gd1

J ��=�d1�� �see Eq. �15��. Since ��d1�=U1 /2�TK

�T�, the frequency-dependent AF spin-exchange coupling is

negligible at �=�d1, J̃��=�d1�→0 �see Eq. �12��. We have
therefore Im Gd1

J ��d1�� Im Gd1��d1�. Meanwhile, since the
energy of dot 1 is well below the Fermi energy, �d1
=−U1 /2�0 and ��d1��TK. Via Eq. �6� we have, therefore,
1 /��=−Im Gd1

J ��d1��−Im Gd1��d1��−Im Gd1
0 ��d1�=1 /�.

Hence, the correction to � is negligible: �� /��1.

V. CONCLUSIONS

We have studied the Fano resonance in a side-coupled
double quantum dot system in the Kondo regime in the pres-
ence of particle-hole symmetry. In the range where the en-
ergy of the dot 1 is on the order of the broadening of its
energy level, quantum interference between the Kondo effect
and the broadened energy level of the dot 1 gives rise to
modification of the Green’s function on dot 1. We apply the
perturbative and numerical renormalization-group ap-
proaches to describe the Fano line shape in TDOS of the
conduction electrons, which depend on both the real and
imaginary parts of the Green’s function Gd1��� of the dot 1.
At J=0, Im Gd1��� shows the Kondo peak for ��TK while
Re Gd1��� exhibits a peak �dip� for ��TK ���−TK�. As a
result of the Kondo effect, the Fano line shape in TDOS of
the conduction-electron leads shows a peak �dip� around �
�TK ���−TK�. At a finite antiferromagnetic spin-exchange
coupling between the two dots, the two-stage Kondo effect
leads to the suppression of the density of states on dot 1 as
well as an additional dip �peak� structure in the real part of
Gd1��� at �� �T� from the NRG results. This leads to an
additional dip �peak� around ��T� ���−T�� in the
conduction-electron LDOS. The splitting between dip and
peak in LDOS at �� �T� becomes more pronounced as the
AF spin-exchange coupling J is increased. At finite values of
J and for ��T�, the NRG results for Re Gd1���, Im Gd1���,
and �c��� all show distinct universal scaling behaviors in
� /T�. Analytically, we find the perturbative RG approach
can qualitatively capture the above behaviors for T���
�TK. In particular, compare to the simple Lorentzian ap-
proximation for Gd1���, we find a better fit to the NRG re-
sults for the Fano line shape for �c��� for T����TK by
taking into account the interference between the Kondo reso-
nance and the broadened impurity level on dot 1 within the
Dyson’s equation approach. To make contact of our results in
the experiments, the asymmetrical double dip/peak structure
and the scaling behaviors in the Fano line shape predicted
here in the spectral properties of the TDOS of the
conduction-electron leads can be detected by the transport
through the STM tips4 as an indication and direct conse-
quence of the two-stage Kondo effect in our side-coupled
double quantum dot system. Finally, we would like to make
a remark on the Fano line shape in TDOS of the leads in our
system without particle-hole symmetry. In this case, we ex-
pect a smooth crossover �instead of the KT type transition�
between the Kondo and local singlet phases due to the po-
tential scattering terms generated in the presence of particle-
hole asymmetry. Nevertheless, further investigations via
NRG are needed to clarify this issue.
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FIG. 7. �Color online� The Fano line shape for �c��� �in unit of
�0� on a logarithmic scale of � /T� for different antiferromagnetic
spin-exchange couplings J by NRG. The other parameters are the
same as in Fig. 1. The dotted-dashed lines are power-law fits to the
universal scaling function of � /T� via Eq. �20�.
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