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Abstract—This paper demonstrates the feasibility of a simple
multigigabit-per-second (Gbps) radio-over-fiber (RoF) system
employing multilevel orthogonal frequency-division-multiplexing
(OFDM) signal modulation at 60 GHz and a single-electrode
Mach-Zehnder modulator (MZM). In this paper, the impact of
fiber chromatic dispersion and OFDM beat noise on the perfor-
mance of the RoF system are investigated by theoretical analysis,
VPI WDM-TransmissionMaker simulation and experimental
demonstration. A 13.875-Gb/s QPSK OFDM signal occupying the
full 7-GHz license-free band at 60 GHz with frequency multipli-
cation for the RoF link is demonstrated. After 3 km of standard
single-mode fiber transmission with no dispersion compensation,
the power penalty is less than 3 dB.

Index Terms—Orthogonal frequency-division multiplexing
(OFDM), radio-over-fiber (RoF), 60 GHz.

1. INTRODUCTION

S wireless communications continue to enjoy phe-

nomenal growth, the ever-rising demand for higher
data-speeds coupled with the advent of popular band-
width-hungry applications such as high-definition video
are putting pressure on wireless communication systems to
offer higher data rates. However, data rates of current wireless
systems are still limited to several tens of megabit-per-second
(Mbps)-hampered by congestion and limited frequency spec-
trum in their current frequency bands of operation. Since the
key to higher data rates is bandwidth, the most promising path
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to multigigabit-per-second (Gbps) wireless communication is
the use of millimeter (mm)-wave frequencies where very large
bands of frequency spectrum are available [1]. For instance,
the FCC’s 60-GHz band offers 7 GHz of unlicensed spec-
trum (57-64 GHz). However, mm-wave wireless networking
presents many technical challenges owing to the high carrier
frequencies and the wide-channel bandwidths used [2]-[6].
The challenges include the significantly higher air-link loss
(about 30 dB higher at 60 GHz than at 2.4 GHz), and reduced
device performance and lower power efficiency. In addition,
the wide-channel bandwidth means higher noise power and
reduced SNR. All these factors make wireless networking at
60-GHz “pico-cellular” in nature with the radio cells typically
smaller than 10 m. Consequently, Gbps wireless networking at
60 GHz requires an extensive high-capacity feeder network to
interconnect the large number of radio access points.

Radio-over-Fiber (RoF) technology can provide the required
feeder network as it is best suited to deal with the demands
of small-cell networks [7]-[9]. A fiber-based distributed an-
tenna system has the special advantage that it can support
the transparent distribution of multiple wireless standards or
applications. Fig. 1 illustrates a cartoon for future 60-GHz
wireless home network based on RoF technology. Because of
the high path loss and high attenuation through building walls,
in-building radio cells at 60 GHz are confined to a single room.
This reduces user interference resulting in very high wireless
data capacity per user [10].

In order to achieve multistandard operation, 60-GHz RoF
systems must be able to handle wireless signals with different
requirements. For instance, for 60-GHz systems, both single-
carrier [quadrature amplitude modulation (xQAM)] and multi-
carrier [orthogonal frequency-division-multiplexing (OFDM)]
modulation formats are important. The two formats may impose
different system performance requirements on the 60-GHz RoF
systems. For instance, channel uniformity is very critical for
single-carrier systems [11], [12]. On the other hand, the pres-
ence of multiple carriers in the OFDM signal format makes lin-
earity and the ability to handle a high peak-to-average power
ratio very critical system parameters. Furthermore, the system
requirements are rendered even more critical for the very wide-
band (> 1 GHz) channels being considered at 60 GHz and other
mm-wave bands. The consequence of these requirements is that
they lead to the use of complex RoF system architectures (e.g.,
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Fig. 1. Concept of future wireless home network system based on RoF
techniques.

dual-electrode modulator structures) for RF OFDM signal trans-
mission [13]-[15]. However, it is imperative that the employed
ROF links are as simple as possible to reduce cost, while pro-
viding the needed performance. This is especially true for cer-
tain applications such as in-building systems, where certain per-
formance attributes offered by complex RoF systems are not
even required. For example, fiber spans in most in-building ap-
plications are typically less than 300 m. Therefore, in-building
RoF systems for 60 GHz do not need the fiber chromatic disper-
sion tolerance for tens of kilometers that complex systems boast
of.

In this paper, we propose a simple RoF system architecture
for transporting and generating wideband OFDM signals at
60 GHz and investigate its performance theoretically and
experimentally. The RoF system uses only one single-elec-
trode Mach—Zehnder modulator (MZM) having no more than
35.5-GHz bandwidth. We experimentally demonstrate the suc-
cessful use of the simple RoF system to deliver a 13.875-Gb/s
wireless signal at 60 GHz. The OFDM signal occupied the
full 7-GHz spectrum at the 60-GHz band and used QPSK
modulation. Remote frequency upconversion from the IF to 60
GHz was achieved by employing a system configuration that
used a 35.5-GHz local oscillator (LO) signal, which was trans-
ported alongside the OFDM signal. This enabled high-quality
signal transmission over extended fiber lengths exceeding 3
km without any fiber dispersion compensation. The RoF link
included a wireless transmission distance of 3 m.

This paper is organized as follows. Section II describes the
concept of the proposed system and the two main design is-
sues of the RoF link, namely RF fading and beat noise inter-
ference. Section III presents in detailed the theoretical basis of
the proposed RoF system using a theoretical model and VPI
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WDM-TransmissionMaker simulation platform. Section I'V de-
scribes the experimental approach and discusses the results ob-
tained from system experiments employing the design criteria
from Section III. Finally, Section V reviews the main conclu-
sion of the paper.

II. CONCEPT OF PROPOSED SYSTEM

Fig. 2 schematically depicts the concept of the proposed RoF
system. The MZM driving signal consists of an OFDM signal
at a subcarrier frequency of f; and a sinusoidal LO signal with
a frequency of fo, as indicated in Fig. 2(insets i-iii). The fre-
quency fo of the LO signal is half the desired mm-wave fre-
quency of operation. To achieve the double sideband (DSB) with
carrier suppression modulation scheme, the MZM is biased at
the null point to suppress the optical carrier. Fig. 2(inset iv)
shows the generated optical OFDM and LO spectrum that has
two upper wavelength sidebands (USB1, USB2) and two lower
wavelength sidebands (LSB1, LSB2) with carrier suppression
at the output of the MZM. After square-law photo detection, the
generated photocurrent can be written as

Iphoto = (USB1 + USB2 + LSB1 + LSB2). (1)

Expanding the aforementioned equation produces the following
terms:

Baseband = USB1? + USB2? + L.SB1% + L.SB2*. (2)
OFDM signal at the sum frequency

= USB1 x LSB2 + USB2 x LSB1. 3)
OFDM signal at the frequency difference

= USB1 x USB2 + LSB1 x LSB2. (@)
Beat noise

= USB1 x LSB1 + USB2 x LSB2. 5)

The beating terms of USB1 x LSB2 and USB2 x LSBI1 gen-
erate the desired OFDM-modulated electrical signals at the sum
frequency (f2 + f1). The beating terms of USB1 x USB2 and
LSB1 x LSB2 generate electrical OFDM signals at the fre-
quency difference (fo—f1), which are well below the desired
mm-wave frequency band and are filtered off prior to wireless
transmission. Notably, a frequency multiplication factor of two
(2) can be achieved by properly choosing frequencies f; and
f2. This reduces the bandwidth requirements of the RoF trans-
mitter allowing for the use of low-frequency electrical and op-
tical components, including the MZM (< 40 GHz), which are
readily available and have very good performance (e.g., flat fre-
quency response).

In this paper, the target sum frequency is 60 GHz. Two main
issues will be crucial to the system performance and will be
explained in details in following sections. First, the RF fading
issue, as shown in (12), comes from the interaction between the
two copies of the desired signals, which are generated at the
photodiode, namely, USB1 x LSB2 and USB2 x LSBI, re-
spectively. After fiber transmission, the relative phase between
the two generated RF signals will change with transmitted dis-
tance owing to the slight difference in the propagation speeds of
the two sideband pairs induced by fiber chromatic dispersion.
As the relative phase reaches 180°, the electrical RF signal will
vanish. This is the RF fading problem. The second issue comes
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Fig. 2. Proposed RoF system based on a single-electrode MZM.

from beat noise of two OFDM signals USB1 x LSBI. If the
center frequency of OFDM signals is not properly chosen, the
beat noise will fall into the signal band and severely degrade the
system performance.

III. THEORETICAL ANALYSIS AND DESIGN ISSUES
A. MM-Wave Signal Generation Based on the Proposed
System

In this section, we present a theoretical basis of the proposed
mm-wave generation and transmission system. The concept be-
hind the generation of the 60-GHz wireless signal is shown in
Fig. 2, where only one single-electrode MZM is utilized. The
optical field at the input of the single-electrode MZM is given by
Ein(t) = E, cos(w.t), where E, and w,. are the amplitude and
angular frequency of the optical field, respectively. The driving
RF signal V' (t) consisting of two sinusoidal signals at different
frequencies MZM is V' (t) = Vj coswit + Vs cos wat, where V3
and V5, are the signal amplitudes at frequency w; and ws, re-
spectively. To simplify the analysis, the power splitting ratio of
the MZM is set as 0.5. In order to suppress the undesired optical
carrier, the single-electrode MZM is biased at the null point. The
optical field at the output of the MZM is then given by

Eout (t) = Eo COS Wt
COS[(T/2V7T)(V7T + VYl COS wlt =+ V2 COS th)]. (6)

Using Bessel function expansion, the output optical field at the
output of the MZM can be rewritten as

Eoui(t) = Eo{Jo(m2)J1(m1) cos|(we £ w1 )]
)J3(m1) cos|[(w. £ 3wy)t]

(m1)J2(ma) cos[(we + wy £ 2wo)]
(mq)Ja(ma) cos[(we — wy & 2wo)t]

+ Jo(m1)J1(m2) cos[(w. £ wo)i]
(m1)J3(m2) cos|(we £ 3ws)t]
(m2)Ja(ma) cos|(we + w2 + 2w1)1]
(m2)Ja(m1) cos[(we — wa £ 2w1)t] + ...}

)

O
0S
O

C
C
COs
C

where m; and ms are the modulation indexes defined as
Vi /2V, and Vo /2V,, respectively. J,() is the nth-order
Bessel function of the first kind. For a small modulation index
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Fig. 3. Magnitude of Bessel functions versus different RF modulation index.

the magnitude of Bessel function of the first kind is propor-
tional to the order of the function. As shown in Fig. 3, when
the modulation index is small, the output optical field can be
further simplified to

Eout(t) = Eo{Jo(ma)J1(m1) cos|[(w. £ w1)t]
+J0(m1)J1 (mg) COS[(u}C + C/.)Q)t]}. (8)

After square-law photo detection the photocurrent of the
mm-wave at frequency of w; + ws can be expressed as

b s = RE2Jo(ma)Jo(ma)J1(ma)J1(m2) — (9)
where R is the responsivity of photodiode.

B. Dispersion Induce RF Fading Analysis and Beat Noise

When optical RF signals are transmitted over a standard
single-mode fiber with dispersion, a phase shift to each optical
sideband relative to optical carrier is induced by fiber disper-
sion. The propagation constant of fiber can be expressed as [16]

Bw) = n(w)”

C

= fo+ 1w = we) + 3fa(w = we) 4+ (10)
where (,, = (d™B/dw™)|w=w, is the derivative of the
propagation constant evaluated at w = w,.. To simplify the
analysis, the effect of high-order fiber dispersion (i.e., third
order and higher) at 1550-nm band is neglected. For carrier
tones with central frequency at w = w. + nwgrp, we have
B(we £ nwrr) = By £ nfi(we)wrr + (1/2)n%Fa(we)wip
and 32(w.) = —(¢/2m f2)D(w..), where c is light speed in free
space, D is the chromatic dispersion parameter, and f. is the
frequency of the optical carrier. For a standard single-mode
fiber, D is 17 ps/(nm-km). Therefore, after transmission over a
standard single-mode fiber of length z, the electrical field can
be written as

Eout(t) = Eo{Jo(m2)J1(m1)
cos[(we + w1)t — Boz F frwiz — I/Zﬂgwfz]
+ Jo(ma)Ji(m2)
cos[(we & wa)t — Boz F Prwez — 1/202w32]}.
(11)
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Fig. 4. Simulated RF power of the generated mm-wave signal versus standard
single-mode fiber length for various input frequency differences (i.e., fo — f1).

After square-law photo detection, the photocurrent at the fre-
quency of can be expressed as

oy o (8) = REZ Jo(ma) Jo(ma) 1 (ma) J1 (mo)
cos Bﬁgz(u)g - w%)} . (12)

Due to fiber dispersion effect, the RF fading issue
would be observed. The RF signal power is related to
cos[(1/2)B22(w3 — w?)]. Therefore, the RF fading issue
would become serious when the magnitude of sum frequency
(f2 + f1) and frequency difference (fo — f1) become large.

For 60-GHz applications, the sum frequency ( fo+ f1) is fixed
at 60.5 GHz, and the frequency difference (f> — f1) will dictate
the performance of RF fading. As shown in Fig. 4, when the fre-
quency difference increases, the RF power will drop off rapidly.
For frequency differences of 10 and 40 GHz, the first deep ap-
pears following 6 and 1.6-km fiber transmission, respectively.
Not only does the smaller frequency difference result in a longer
fiber transmission distance, but it also reduces the bandwidth
requirements of the transmitter. However, the drawback of a
small frequency difference is the risk of having beat noise in-
terference. For example, if we choose 5.5 GHz as the frequency
difference and set the input frequencies at wy = 33 GHz and
wy = 27.5 GHz, then with 7-GHz signal bandwidth, the gener-
ated signal will occupy frequencies from 24 to 31 GHz. As a re-
sult, the beat noise (i.e., USB1 x LSB1) will fill the band from 48
to 62 GHz. Since the generated OFDM signal will fill the band
from 57 to 64 GHz, the beat noise will fall in-band, as shown in
Fig. 5(a), resulting in the possibility for severe system perfor-
mance degradation. It is therefore necessary to choose proper
frequencies of the input signals in the design process in order
to avoid beat-noise induced system performance degradation.
A good example is shown in Fig. 5(b), where a frequency dif-
ference of 15.5 GHz is chosen, resulting in the beat noise occu-
pying the band from 38 to 52 GHz and causing no interference.

Therefore, there are tradeoffs between RF fading and beat
noise interference. In the following analysis, we will choose the
lowest possible frequency difference without causing any beat
noise interference. With a target signal bandwidth of 7 GHz and
center frequency of 60.5 GHz, we have

fl + f2 = 60.5 GHz
2(f1 +3.5) = 60.5 — 3.5 = 57 GHz.
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Fig. 5. Beat noise interference in the proposed system and how to keep it from
degrading system performance: (a) beat signal falls inside the desired band,
(b) beat signal is far away from desired band, and (c) beat noise is just outside
the desired frequency band.

This leads to a frequency difference equal to 10.5 GHz and
input signal frequencies f; = 25 GHz and fo = 35.5 GHz,
respectively. In this case, the beat noise falls just outside the
desired signal band, as shown in Fig. 5(c). With the chosen
frequency parameters, we can calculate the RF fading perfor-
mance. Fig. 6(a) shows the RF power of the mm-wave signals
generated between 57 and 64 GHz plotted against frequency.
The line and circle represent theoretical results obtained using
the model in (12) and VPI WDM-TransmissionMaker simula-
tion results, respectively. It can be seen that RF fading is neg-
ligible over the whole 7-GHz spectrum for fiber spans up to
1 km. Beyond 1 km, frequencies in the lower part of the spec-
trum begin to experience increasing attenuation because they
are generated from larger frequency differences. After 4 km of
fiber transmission, the attenuation increases to 14 dB at 57 GHz
and only 3 dB at 64 GHz. Nonetheless, for typical indoor appli-
cations, 2—-3 km is more than enough [17]. On the other hand,
if longer fiber transmission distances are needed, then any one
of the four optical sidebands (see Fig. 2) may be filtered off
to eliminate fading. To compare the fading length of the pro-
posed system to that of a DSB intensity-modulation direct-de-
tection (IMDD) transmission system, we plot the calculated and
the simulated (VPI WDM-TransmissionMaker) fading (signal
power) as a function of frequency. As Fig. 6(b) shows, the first
deep (total fading) at 60.5 GHz occurs after just 1 km of standard
single-mode fiber transmission in the case of the DSB IMDD
ROF system. Therefore, compared with the DSB IMDD RoF
system, the proposed system offers superior transmission per-
formance and more flexible system design.
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mission length, (a) proposed system, (b) DSB modulation format.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Fig. 7 depicts the experimental setup of the RoF system [18].
Due to the bandwidth limitation of the arbitrary waveform gen-
erator (AWG) located at the head-end unit (HEU), a 3.5-GHz-
wide OFDM signal was generated using a Matlab Program. The
OFDM signal had 37 subcarriers, as shown in Fig. 7(inset i). It
was then upconvert to 25 GHz using an electrical mixer. Both
sidebands of the up-converted OFDM signal were retained for
transmission in order to emulate a 7-GHz-wide OFDM signal.
Since the OFDM subcarriers were transmitted independently
(uncorrelated) and demodulated independently at the receiver,
the total bit rate of the 7-GHz-wide OFDM signal was double
that of the baseband OFDM signal generated by the AWG. The
resolution of the digital-to-analog converter (DAC) of the AWG
was set to 8 bits. The DAC sampling rate was 24 GSample/s. The
inverse fast Fourier transform (FFT) length was 256, resulting
in a subcarrier symbol rate of 93.75 MSymbol/s. Therefore,
with a total of 74 subcarriers and QPSK modulation on each
subcarrier, the combined data rate of the 7-GHz-wide OFDM
signal at the output of the electrical mixer was 13.875 Gb/s.
The signal was then combined with a 35.5-GHz LO signal gen-
erated by a signal generator. The composite signal was then
used to drive a single-electrode MZM specified for 40-Gb/s
data transmission with 0-dBm driving power. The optical signal
source was a DFB laser, emitting +10.5-dBm optical power
at 1550-nm wavelength. The continuous wave optical signal
was fed into the MZM, where it was modulated by the com-
bined OFDM and LO signals. The MZM modulator was biased
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Fig. 7. Experimental setup of the proposed RoF system (LPF: low-pass filter;
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at the point of minimum transmission in order to suppress the
optical carrier. Therefore, the optical signal exiting the MZM
comprised a total of four sidebands, two unmodulated subcar-
riers at f,£35.5 GHz and two OFDM-modulated subcarriers at
fox25 GHz, where f, is the optical carrier frequency, as shown
in Fig. 7(inset ii).

One of the advantages of the proposed system is that the rel-
ative intensity between the unmodulated optical subcarrier and
the OFDM-modulated subcarrier can be tuned easily by inde-
pendently adjusting the amplitudes of the two input signals (RF)
to optimize system performance. The optical signal was then
amplified by an erbium-doped fiber amplifier (EDFA) with a
noise figure of 4 dB. After the EDFA, an optical bandpass filter
(BPF) with a 3-dB bandwidth of 3 nm was used to suppress
the amplified spontaneous emission (ASE) noise. The optical
signal was then transmitted to a remote antenna unit (RAU)
connected by standard single-mode fibers of different lengths.
At the RAU, the OFDM signal at 25 GHz was upconverted
to 60.5 GHz through square-law photo-detection (mixing with
the remotely transmitted 35.5-GHz LO signal) in the 67-GHz
photodiode. The generated electrical power is —39.3 dBm with
—5-dBm receiving optical power. Therefore, the E/O and O/E
conversion loss of the proposed RoF link was about 39.3 dB.
Since the OFDM signal at 25 GHz was 7-GHz wide, the signal
generated at the RAU was also 7-GHz wide, occupying the
full spectrum at the 60-GHz band specified by the FCC (57-64
GHz). The OFDM signal was then amplified by a LNA with
38-dB gain, and the power of the amplified OFDM signal was
—1.3 dBm. After the LNA, the 60-GHz OFDM signal was in one
case immediately downconverted to an IF without transmission
over the air. In the second case, the amplified signal was fed
into a rectangular waveguide-based standard gain horn antenna
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Fig. 8. BER curves of 13.875-Gb/s QPSK OFDM signal after transmission
over the RoF system including 3-m wireless distance.

with about 23-dBi gain and transmitted over 3-m wireless dis-
tance. After transmission over the air, the 60-GHz signal was re-
ceived by another standard gain horn antenna with —33.1 dBm
received power. Therefore, the estimated path loss of the wire-
less transmission is about 77.8 dB. Then, the received signals
was amplified with an LNA (gain =21 dB) and passed on to the
60-GHz downconverter. The 60-GHz downconverter consisted
of a mixer driven by a 56-GHz LO, as shown in Fig. 7. There-
fore, the received OFDM signal at 60.5 GHz was down-con-
verted to an IF of 4.5 GHz. The IF was chosen so as to maintain
the 7-GHz-wide spectrum of the received OFDM signal. The
waveforms of the downconverted OFDM signals were captured
by a real-time oscilloscope with a 40-GSample/s sampling rate
and a 3-dB bandwidth of 13 GHz for offline signal processing
and analysis. An offline Matlab digital signal processing pro-
gram was employed to demodulate the OFDM signal. The de-
modulation process included synchronization, FFT calculation,
and one-tap equalization.

B. Experimental Results and Discussions

First, we measured the performance of the system with 3-m
wireless transmission. Fig. 8 shows the bit-error-rate (BER)
curves for the received 13.875-Gb/s QPSK OFDM signal. The
BER was estimated from the measured error vector magnitude
(EVM), which is defined in [19] and [20] as

EVM = \/Z |SIdea1 - SMeasureP/Z |SIdea1|2 x 100%
(14

where Sigeal and Syieasure are the ideal and the measured con-
stellation points, respectively. For QPSK signal, the BER is re-
lated to EVM by

IR

15)
where @[] is the Gaussian coerror function. Fig. 8 shows that
as fiber transmission length increased, the system sensitivity de-
creased. For back-to-back (BTB), 500-m and 1-km transmission

2243

Power (dBm)

Frequency (GHz)

Fig. 9. Downconvert electrical spectrums for different standard single-mode
fiber transmission length.

distances, the sensitivity was the same and equals to —13 dBm
for a BER of 1 x 1073, After 2 km and 3 km of fiber trans-
mission, there was a small penalty of about 1 dB and 1.5 dB,
respectively, at the BER of 1 x 1073, However, after 5 km of
fiber transmission, the signal was severely corrupted with the
BER greater than 1 x 1073, Fig. 9 shows the electrical spec-
trum of the down-converted OFDM signal. It can be seen from
the figure that the spectrum of the downconverted OFDM signal
was 7-GHz wide. The spectrum also shows a peak at 4.5 GHz,
which is the residual signal from the 25-GHz LO used to upcon-
vert the baseband OFDM signal to 25 GHz back at the HEU. The
progression of the chromatic-dispersion-induced fading as the
fiber transmission distance becomes larger can also be seen in
Fig. 9. It was observed that lower frequency components faded
quicker and deeper, just as predicted by the theoretical analysis
presented in Section III-B. The reason for the quicker/greater
fading at the lower frequency components is because the lower
frequency components are generated by larger frequency dif-
ferences of the two electrical input signals at the HEU. Fig. 10
shows the constellation diagrams of the demodulated OFDM
signals for different fiber transmission lengths with the wire-
less transmission distance fixed at 3 m. Very clear constella-
tion diagrams were observed until the fiber length exceeded
3 km. The total data rate of the signal was 13.875 Gb/s. The
detected optical power corresponding to the constellation dia-
grams was —10 dBm. For the BTB case, the calculated EVM
was 17.7%. However, lower EVM values up to 16% were ob-
tained at higher received optical powers. The clean constellation
diagram in Fig. 10 confirms the excellent performance of the
ROF system in generating and transmitting high-quality wide-
band OFDM signals at 60 GHz both over optical fiber and wire-
less distance. It also shows the potential of the system for oper-
ating at a bit rate higher than 13.875 Gb/s by using modulation
formats of higher order than QPSK (e.g., 8 QAM).

To further investigate the impact of RF fading on signal
quality, the SNR of each of the 74 subcarriers making up the
OFDM signal was calculated for different fiber transmission
distances, using [19]

SNR = —20log(EVM/100%). (16)
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Fig. 11. SNR versus different subcarrier for different standard single-mode
fiber transmission length.

The result is shown in Fig. 11. The higher subcarrier number
corresponds to higher subcarrier frequency (i.e., subcarrier
number 74 is around 64 GHz before downconversion). It was
observed that the SNR of the individual subcarriers remained
the same for BTB, 0.5 and 1 km of fiber transmission distances.
However, for fiber spans longer than 1 km, a drop in the SNR of

the subcarriers at the lower end of the spectrum was observed.
For example, after 3 km of fiber transmission, the SNR of the
first and the 74th subcarriers dropped by 4 and 1 dB, respec-
tively, with respect to their respective BTB SNRs. This result is
consistent with the theoretical analysis presented in Section III,
which showed that subcarriers at the lower frequencies suffered
worse RF fading leading to a reduced average SNR.

To investigate the performance of the RoF system without
wireless transmission, the OFDM signal generated at the RAU
was immediately downconverted to the same IF frequency as
before (i.e., 4.5 GHz). Just like before, the optical signal was
transmitted over different lengths of standard single-mode fiber.
The resultis given in Fig. 12, where the estimated BER is plotted
against the optical signal power. Once again, the performance of
the RoF system with BTB, 500 m and 1 km of fiber transmis-
sion remained the same. This means that, just like in the case
with wireless transmission, the system suffered no penalty due
to fiber chromatic dispersion up to 1-km fiber transmission. For
fiber transmission distances of 2 and 3 km, there was a penalty
of 1 and 1.5 dB, respectively, at a BERs equal to 1 x 1073,
A larger penalty was observed after transmission over 4 km of
standard single-mode fiber. These results are similar to the ones
obtained in the case of the system with wireless transmission
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Fig. 12. BER curves of 13.875-Gb/s QPSK OFDM signal without wireless
transmission.

discussed earlier. The difference in the sensitivities of the two
systems (with and without wireless transmission, i.e., Figs. 8
and 12, respectively) is about 1 dB. This is attributed to the pres-
ence of an extra LNA required in the wireless receiver (i.e., in
the case of the system with wireless transmission).

Given the small dispersion penalty observed for fiber spans up
to 3 km, the proposed RoF system is well suited to system ap-
plications characterized by short fiber spans, but where minimal
system complexity is critical. A good example is in-building
applications, where in most instances fiber spans of less than
300 m are sufficient. However, if required, the fading-limited
maximum fiber transmission distance may be extended by, e.g.,
using a filter such as a wavelength interleaver to remove any
one of the four sidebands (LO or OFDM) from the modulated
optical signal at the HEU prior to transmission. Filtering one
of the sidebands results in the generation of only one copy of
the desired mm-wave signal at the RAU, eliminating the possi-
bility for fading. However, the addition of the filter makes the
RoF system more complex, which as stated earlier should be
avoided in short-range RoF applications.

V. CONCLUSION

We have theoretically and experimentally investigated the
performance of a simple RoF system for transporting and gener-
ating multi-Gbps OFDM-modulated wideband wireless signals
at 60 GHz. The RoF system employs a single-electrode MZM
and uses no linearization techniques. Theoretical analysis of
the proposed system shows that by choosing appropriate input
signal frequencies, the system can achieve fiber transmission
distances exceeding 3 km without any chromatic dispersion
compensation. The theoretical analysis was confirmed by
experimental results. The RoF system was successfully used
to transport a 14-Gb/s OFDM-QPSK-modulated signal at 60
GHz over 3 km of standard single-mode fiber and 3-m wireless
distance. Experimental results showed that after 3 km of fiber
transmission there was only a small optical power penalty of 2
dB or less, at both BERs of 1 x 10~ and 1 x 10~2. Fiber links
of 3 km are sufficient for most short-range RoF applications
such as in-building systems, where low system complexity is
very critical. However, if needed, the RF fading limit of the
proposed system may be extended to much longer fiber spans
by filtering.
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