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Abstract 

Chen, R.-J. and Y.-S. Hou, Non-associative parallel prefix computation, Information Processing Letters 44 (1992) 91-94. 

Associativity of a binary operation allows many applications that are not possible with a non-associative binary operation. 

We propose a method to transform a binary expression into an associative one and present two related applications. 
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1. Introduction 

A:;sociativity is very useful in evaluating binary 
expressions. For example, without associativity, 

prefix computation is hard to implement in paral- 

lel [1,2,5,61, and a non-associative binary expres- 
sion with reverse calculation order is difficult to 
evaluate using a one-way automata (see Section 
4). II‘ the corresponding operation is associative, 

these two examples become easy to compute be- 
causl.: the order of computation does not affect 

the result. 
N’e show how to translate a non-associative 

operator into an associative one. In Section 2, we 
define the prefix computation problem with a 

non-associative operator and present a method to 
solve, it in parallel. Section 3 extends the method 
to the prefix computation problem with multiple 

G~rrespondence to: R.-J. Chen, Department of Computer 

Science and Information Engineering, National Chiao Tung 

Univt,rsity, 1001 TA Hsueh Road, Hsinchu 30050, Taiwan, 

ROC Email: rjchen@csunix.csie.nctu.edu.tw. 

operators. An application to a one-way finite 
automata design is discussed in Section 4. 

2. Parallel prefix computation with a non-as- 
sociative operator 

Let [A, @J ] be an algebraic structure, where A 
is a finite set and @ is a (not necessarily associa- 

tive) binary operator mapping A x A to A. 

Definition 1. The binary expression X, @x2 8 
. . . @xx, is defined as 

( ‘.. ((x1 8x,) 8%) ... @xx,), 

for x1, x2 ,..., x, EA. 

The prefix computation problem is to evaluate 
all products X, @x, @J ... @xi, for i = l,..., n, 
for a given sequence x1, x2,. . . , x,,. In [6], a 
well-known parallel algorithm taking 20 + 1 steps 

on a (2n - l)-node tree circuit is presented, where 
D is the depth of the tree circuit. Prefix computa- 
tions can be applied to carry-look-ahead addition 
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[1,5,6], linear recurrences [6, p. 2411, and schedul- The prefixes of a @b EJ c 8 a are evaluated as 
ing [2]. follows, 

For the case of a non-associative operator 8, 
we define a function induced by an element in A 
as follows. 

Definition 2. For x EA, function C$ : A +A is 
defined by @$(y> = y @ x, for every y E A. And we 

define a constant function 1, as I,(y) =x, for 

every y EA. 

a@b= q, o I,(-) = u, 

a@b@c= cq 0 @,, oI,(-) =c, 

a@b@c@a= @U 0 cq 0 q, 0 I,(-) = b. 

We now address the time complexity of the 

The definition of C$ is similar to currying, as 

used in lambda calculus, type theories, and func- 
tional programming languages [7]. 

By the definition of F,, we have 

x, @x,@ ... @xx,, 

= ( ... ((x, 8x2) @Xx3) ... @x,,) 

=(‘+%;(“I) @xx,)... @x,,j 

= @X,1 . . . @x3( @%xz(~d> . . . ) 

= 8x,, o...o@ o@l 
x3 I2 O L,(k). 

The original binary expression x, 8 x2 8 . . . @ x, 
can be regarded as B1,, 0 . . 0 ~3~~ 0 Bx 0 I,,; and 
the prefix computation problem becomes a suffix 

computation problem. Since the composition op- 

erator 0 is associative, the technique of parallel 
prefix computation previously discussed can be 

applied. 

parallel algorithm. Let I A I denote the size of A. 
By modifying the parallel prefix one [6], we can 

get a parallel suffix algorithm that takes O(D) 
steps when implemented on a binary tree cir- 
cuit of depth D. To compute all the suffixes of 

OI we adopt Gries’ view 
[>f’&aptir?] ;o?se a-?me-dimensional array of 

size I A I to represent a function Bk. In accor- 
dance with the notation in [3], let a[l.. ( A I], 
b[l..IA I] and c[l..I Al] be three arrays (func- 
tions). Then the composition c = a 0 b can be 
defined as 

(c; 1:u[b[l]];2:u[b[2]];...;IAI:a[b[lAl]]). 

Example 3. [{a, b, cl, ~31 is an algebraic struc- 
ture with a non-associative operator @ whose 

operator table is defined below: 

So it takes O( I A I) time to compute a composi- 

tion of two functions. Furthermore, an array 
(function) movement along an edge on a tree 

circuit takes O( I A I) time. Since each step in the 
parallel suffix algorithm consists of at most a 
function composition and two array movements, 

we can get an O( I A I . D) parallel algorithm. The 
time complexity will be 0( I A / log n) on a (2n ~ 

ll-node complete binary tree circuit (where D = 
log(2n - l)), which is smaller than the time com- 
plexity O(n) of the sequential algorithm when 
I Al is fixed and II is large. 

Then 

As for space complexity, each node needs a 
two-dimensional array of size ( A I x I A I for the 

operation table and three arrays of size I A I for 

induced functions, thus amounting to O(n I A I 2). 
If common memory is available, the operation 
table can be shared and the space complexity 
becomes IA1*+O(nIAIl. 

@a = ((a, a>, (b, cl, Cc, 611, 
@h = {(a, a), (b, a>, Cc, c>l, 
@<. = ((a, c), (b, b), Cc, a>), 

I, = {(a, a), (b, a>, Cc, a>), 
Ih = Ku, b), (6, b), (c, bk 
Z, = {(a, c), (b, c>, Cc, CM. 

3. Parallel prefix computation with multiple oper- 
ators 

In this section, we extend the computations in 
Section 2 to a more general class of binary ex- 
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pressions. Assume [A, @’ , . . . , @k ] is an alge- 
braic structure with k operators (k 2 1). These 
operators need not be associative. The prefix 
commutation problem is to evaluate all prefixes 
for 28. given expression 

= (( ... (X, @‘X2) e2 ... $n-lx,), 

where @ E (@I,. . . , ~3~ } for all i. We define a 
family of induced functions as before. 

Definition 4. For x EA an operator @i is de- 
fined as qK : A +A, with c%$ (y) =y @,x, for ev- 
ery ;I EA. 

Similarly, 

The suffixes of @J-’ 0 . . 0 CT+:‘*“, 0 CD:, 0 I,, can 

be clamputed in O( I A I .D> by using a (2~2 - l)- 
node tree circuit. 

Applications include Boolean algebra (AND, 
OR), modular arithmetic (addition modulo m, 
multiplication modulo ml, and recurrence equa- 
tions. Two examples are shown as follows. 

Example 5. [{0, 1, 2}, 8’ , @2 ] is an algebraic 
structure with two operators, where @’ is addi- 
tion modulo 3 and @2 is multiplication modulo 3. 
Their operation tables are shown below: 

Then 

8,’ = KO, O), (1, 0, (2, 211, 
@ = KO, 0, (1, 2), (2, O)I, 
@.‘.! = ((0, 21, (I, O), (2, 111, 
@,,i = ((0, O), ( 1, O), (2, O)}, 
@$ = ((0, O), (1, 0, (2, 2)), 
@; = KO, O), (1, 2>, (2, 1)). 

The prefixes of 1 @’ 0 @2 2 8’ 1 are evaluated as 
follows, 

1 8’ 0 = 8”’ 0 I,(-) = 1, 

1 63’ 0 B2 2 = 8; 0 ‘8;, 0 I,(-) = 2, 

1 8’ 0 L$ 2 @’ 1 = @; 0 @; 0 8; 0 I,(-) = 0. 

Example 6. Consider the following recurrence re- 
lations: 

22,+1 = 22, c3' c;, 

22, - -a, 8’ z2,_, 8’ b, CZJ’ 22,-Z. for i 2 1, 

given za,z, are initial values. @’ is addition mod- 
ulo m and @Q~ is multiplication modulo m for a 
positive integer m. Vector-matrix multiplication 
and vector-vector addition are defined as fol- 
lows, 

=(a&cdb@2e,a@2ddb&f), 

(a,b)+(c,d)=(a@‘c,bdd). 

We can rewrite the above recurrence relations as 

(Z 21+1, zz,) = (z2;-'3 z2i-2) 
(ii: 6ji: XI 

+ (c;, O), 
and 

(z Zzr) 21+1> 

+(c2,0)) + ... +(c,, 0)). 

We compute z(‘, z,, . . . , z2,,+, by evaluating pre- 
fixes in the above equation. It takes 0(m2D) time 
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and needs O(rzm’) space on an O(n)-node depth 
D binary tree circuit. 

4. An automata design for string acceptance 

Hopcroft and Ullman [4, Exercise 2.8(b)] ask 
how to design a nondeterministic finite automata 

(NFA) that accepts the following language L: 
“The set of all strings over the alphabet 

(a, h, c} that have the same value when evaluated 
left to right as right to left by multiplying accord- 
ing to the table in Example 3.” 

It is easy to use a deterministic finite automata 
(DFA) to evaluate an expression from left to 
right. The bottleneck of this problem is evalua- 
tion right to left. Since the tape head of the 

one-way automata cannot rewind, a straightfor- 
ward method is to use a one-way NFA that 
“guesses” all possible products of the entire string 
from right to left. However, the construction is 
complicated. Instead, we use the concept of the 
transformation in Section 2 to construct a simple 

DFA that accepts language L. 
In accordance with the notation in (41, we give 

the definitions of the DFA below. 

2’ = {a, b, c} is an input alphabet. 

-?=(fIf’:Z+X). 

J;, = ((a, a), (b, a), Cc, c)]. 
f/, = Ha, c), (b, a). (c, 6)). 
f,. = Ku, b), (h, c), (c. a)]. 
(Induced function f, is defined as f,(y) =ny.) 

DFA M = (@‘, 2’, 6, qo, F) is defined as follows. 

d = {[1, f, r] Il,r E 2, f~ 3) U (ql,} is the set 

of states; 
q. is the initial state; 
F=([~,,~,L.]I~‘~~,~EC~) is the set of final 

states; 
6 is a transition function, where 

G,,, x) = (x, f,, X] for x E 2’, and 

6((x, f, yl, z) = [xz, fof,, f(z)1 for X,Y,Z E 

c, fE3. 

State [I, f, r] means that 1 is the current product 

from left to right, r is the current product from 

right to left, and f is the composition of induced 
functions. 

Theorem 7. DFA M accepts language L. 

Proof. By induction, we can prove that after run- 
ning the input string x,x2.. . x,,, M enters the 
state 

[((...(X,XL).“)S,,),fl,‘f;?C”.Of,,,, 

fY,“ft,o ... of;,,_(-%,]. 

Accordingly, x,x2.. . x,, E L if and only if 

(( ... (XIX?) ‘.‘%I)%) 

=f.r, O f,, O . . . O .f;,,&rJ 

= (x,(x2 ‘.. (x,_,xJ) -). 0 
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