
Information Processing Letters 44 (1992) 91-94

North-Holland

19 November 1992

Non-associative parallel prefix computation
Rong-Jaye Chen and Yu-Song Hou
Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC

Communicated by D. Gries

Received 13 May 1992

Revised 16 July 1992

Abstract

Chen, R.-J. and Y.-S. Hou, Non-associative parallel prefix computation, Information Processing Letters 44 (1992) 91-94.

Associativity of a binary operation allows many applications that are not possible with a non-associative binary operation.

We propose a method to transform a binary expression into an associative one and present two related applications.

Keywords: Parallel algorithms; associative binary operation; parallel prefix computation; one-way finite automata

1. Introduction

A:;sociativity is very useful in evaluating binary
expressions. For example, without associativity,

prefix computation is hard to implement in paral-

lel [1,2,5,61, and a non-associative binary expres-
sion with reverse calculation order is difficult to
evaluate using a one-way automata (see Section
4). II‘ the corresponding operation is associative,

these two examples become easy to compute be-
causl.: the order of computation does not affect

the result.
N’e show how to translate a non-associative

operator into an associative one. In Section 2, we
define the prefix computation problem with a

non-associative operator and present a method to
solve, it in parallel. Section 3 extends the method
to the prefix computation problem with multiple

G~rrespondence to: R.-J. Chen, Department of Computer

Science and Information Engineering, National Chiao Tung

Univt,rsity, 1001 TA Hsueh Road, Hsinchu 30050, Taiwan,

ROC Email: rjchen@csunix.csie.nctu.edu.tw.

operators. An application to a one-way finite
automata design is discussed in Section 4.

2. Parallel prefix computation with a non-as-
sociative operator

Let [A, @J] be an algebraic structure, where A
is a finite set and @ is a (not necessarily associa-

tive) binary operator mapping A x A to A.

Definition 1. The binary expression X, @x2 8
. . . @xx, is defined as

(‘.. ((x1 8x,) 8%) ... @xx,),

for x1, x2 ,..., x, EA.

The prefix computation problem is to evaluate
all products X, @x, @J ... @xi, for i = l,..., n,
for a given sequence x1, x2,. . . , x,,. In [6], a
well-known parallel algorithm taking 20 + 1 steps

on a (2n - l)-node tree circuit is presented, where
D is the depth of the tree circuit. Prefix computa-
tions can be applied to carry-look-ahead addition

0020-0190/92/$05.00 0 1992 - El sevier Science Publishers B.V. All rights reserved 91

Volume 44, Number 2 INFORMATION PROCESSING LETTERS 19 November 1992

[1,5,6], linear recurrences [6, p. 2411, and schedul- The prefixes of a @b EJ c 8 a are evaluated as
ing [2]. follows,

For the case of a non-associative operator 8,
we define a function induced by an element in A
as follows.

Definition 2. For x EA, function C$: A +A is
defined by @$(y> = y @ x, for every y E A. And we

define a constant function 1, as I,(y) =x, for

every y EA.

a@b= q, o I,(-) = u,

a@b@c= cq 0 @,, oI,(-) =c,

a@b@c@a= @U 0 cq 0 q, 0 I,(-) = b.

We now address the time complexity of the

The definition of C$ is similar to currying, as

used in lambda calculus, type theories, and func-
tional programming languages [7].

By the definition of F,, we have

x, @x,@ ... @xx,,

= (... ((x, 8x2) @Xx3) ... @x,,)

=(‘+%;(“I) @xx,)... @x,,j

= @X,1 . . . @x3(@%xz(~d> . . .)

= 8x,, o...o@ o@l
x3 I2 O L,(k).

The original binary expression x, 8 x2 8 . . . @ x,
can be regarded as B1,, 0 . . 0 ~3~~ 0 Bx 0 I,,; and
the prefix computation problem becomes a suffix

computation problem. Since the composition op-

erator 0 is associative, the technique of parallel
prefix computation previously discussed can be

applied.

parallel algorithm. Let I A I denote the size of A.
By modifying the parallel prefix one [6], we can

get a parallel suffix algorithm that takes O(D)
steps when implemented on a binary tree cir-
cuit of depth D. To compute all the suffixes of

OI we adopt Gries’ view
[>f’&aptir?] ;o?se a-?me-dimensional array of

size I A I to represent a function Bk. In accor-
dance with the notation in [3], let a[l.. (A I],
b[l..IA I] and c[l..I Al] be three arrays (func-
tions). Then the composition c = a 0 b can be
defined as

(c; 1:u[b[l]];2:u[b[2]];...;IAI:a[b[lAl]]).

Example 3. [{a, b, cl, ~31 is an algebraic struc-
ture with a non-associative operator @ whose

operator table is defined below:

So it takes O(I A I) time to compute a composi-

tion of two functions. Furthermore, an array
(function) movement along an edge on a tree

circuit takes O(I A I) time. Since each step in the
parallel suffix algorithm consists of at most a
function composition and two array movements,

we can get an O(I A I . D) parallel algorithm. The
time complexity will be 0(I A / log n) on a (2n ~

ll-node complete binary tree circuit (where D =
log(2n - l)), which is smaller than the time com-
plexity O(n) of the sequential algorithm when
I Al is fixed and II is large.

Then

As for space complexity, each node needs a
two-dimensional array of size (A I x I A I for the

operation table and three arrays of size I A I for

induced functions, thus amounting to O(n I A I 2).
If common memory is available, the operation
table can be shared and the space complexity
becomes IA1*+O(nIAIl.

@a = ((a, a>, (b, cl, Cc, 611,
@h = {(a, a), (b, a>, Cc, c>l,
@<. = ((a, c), (b, b), Cc, a>),

I, = {(a, a), (b, a>, Cc, a>),
Ih = Ku, b), (6, b), (c, bk
Z, = {(a, c), (b, c>, Cc, CM.

3. Parallel prefix computation with multiple oper-
ators

In this section, we extend the computations in
Section 2 to a more general class of binary ex-

92

Volmne 44. Number 2 INFORMATION PROCESSING LETTERS 19 November 1902

pressions. Assume [A, @’ , . . . , @k] is an alge-
braic structure with k operators (k 2 1). These
operators need not be associative. The prefix
commutation problem is to evaluate all prefixes
for 28. given expression

= ((... (X, @‘X2) e2 ... $n-lx,),

where @ E (@I,. . . , ~3~ } for all i. We define a
family of induced functions as before.

Definition 4. For x EA an operator @i is de-
fined as qK : A +A, with c%$ (y) =y @,x, for ev-
ery ;I EA.

Similarly,

The suffixes of @J-’ 0 . . 0 CT+:‘*“, 0 CD:, 0 I,, can

be clamputed in O(I A I .D> by using a (2~2 - l)-
node tree circuit.

Applications include Boolean algebra (AND,
OR), modular arithmetic (addition modulo m,
multiplication modulo ml, and recurrence equa-
tions. Two examples are shown as follows.

Example 5. [{0, 1, 2}, 8’ , @2] is an algebraic
structure with two operators, where @’ is addi-
tion modulo 3 and @2 is multiplication modulo 3.
Their operation tables are shown below:

Then

8,’ = KO, O), (1, 0, (2, 211,
@ = KO, 0, (1, 2), (2, O)I,
@.‘.! = ((0, 21, (I, O), (2, 111,
@,,i = ((0, O), (1, O), (2, O)},
@$ = ((0, O), (1, 0, (2, 2)),
@; = KO, O), (1, 2>, (2, 1)).

The prefixes of 1 @’ 0 @2 2 8’ 1 are evaluated as
follows,

1 8’ 0 = 8”’ 0 I,(-) = 1,

1 63’ 0 B2 2 = 8; 0 ‘8;, 0 I,(-) = 2,

1 8’ 0 L$ 2 @’ 1 = @; 0 @; 0 8; 0 I,(-) = 0.

Example 6. Consider the following recurrence re-
lations:

22,+1 = 22, c3' c;,

22, - -a, 8’ z2,_, 8’ b, CZJ’ 22,-Z. for i 2 1,

given za,z, are initial values. @’ is addition mod-
ulo m and @Q~ is multiplication modulo m for a
positive integer m. Vector-matrix multiplication
and vector-vector addition are defined as fol-
lows,

=(a&cdb@2e,a@2ddb&f),

(a,b)+(c,d)=(a@‘c,bdd).

We can rewrite the above recurrence relations as

(Z 21+1, zz,) = (z2;-'3 z2i-2)
(ii: 6ji: XI

+ (c;, O),
and

(z Zzr) 21+1>

+(c2,0)) + ... +(c,, 0)).

We compute z(‘, z,, . . . , z2,,+, by evaluating pre-
fixes in the above equation. It takes 0(m2D) time

93

Volume 44, Number 2 INFORMATION PROCESSING LETTERS IY November 1YY2

and needs O(rzm’) space on an O(n)-node depth
D binary tree circuit.

4. An automata design for string acceptance

Hopcroft and Ullman [4, Exercise 2.8(b)] ask
how to design a nondeterministic finite automata

(NFA) that accepts the following language L:
“The set of all strings over the alphabet

(a, h, c} that have the same value when evaluated
left to right as right to left by multiplying accord-
ing to the table in Example 3.”

It is easy to use a deterministic finite automata
(DFA) to evaluate an expression from left to
right. The bottleneck of this problem is evalua-
tion right to left. Since the tape head of the

one-way automata cannot rewind, a straightfor-
ward method is to use a one-way NFA that
“guesses” all possible products of the entire string
from right to left. However, the construction is
complicated. Instead, we use the concept of the
transformation in Section 2 to construct a simple

DFA that accepts language L.
In accordance with the notation in (41, we give

the definitions of the DFA below.

2’ = {a, b, c} is an input alphabet.

-?=(fIf’:Z+X).

J;, = ((a, a), (b, a), Cc, c)].
f/, = Ha, c), (b, a). (c, 6)).
f,. = Ku, b), (h, c), (c. a)].
(Induced function f, is defined as f,(y) =ny.)

DFA M = (@‘, 2’, 6, qo, F) is defined as follows.

d = {[1, f, r] Il,r E 2, f~ 3) U (ql,} is the set

of states;
q. is the initial state;
F=([~,,~,L.]I~‘~~,~EC~) is the set of final

states;
6 is a transition function, where

G,,, x) = (x, f,, X] for x E 2’, and

6((x, f, yl, z) = [xz, fof,, f(z)1 for X,Y,Z E

c, fE3.

State [I, f, r] means that 1 is the current product

from left to right, r is the current product from

right to left, and f is the composition of induced
functions.

Theorem 7. DFA M accepts language L.

Proof. By induction, we can prove that after run-
ning the input string x,x2.. . x,,, M enters the
state

[((...(X,XL).“)S,,),fl,‘f;?C”.Of,,,,

fY,“ft,o ... of;,,_(-%,].

Accordingly, x,x2.. . x,, E L if and only if

((... (XIX?) ‘.‘%I)%)

=f.r, O f,, O . . . O .f;,,&rJ

= (x,(x2 ‘.. (x,_,xJ) -). 0

References

[I] R.P. Brent and H.T. Kung, A regular layout for parallel

adders. IEEE Truns. Cornput. 31 (10X2) 260-264.
[2] E. Dekel and S. Sahni. Binary trees and parallel schedul-

ing algorithms, IEEE Trans. Compur. 32 (1’983) 307~315.

[3] D. Cries, Tkc Scierzce of Programming (Springer, Berlin.

lY81).

[4] J.E. Hopcroft and J.D. Ullman, Infroduction 10 Auromuta
Tkeory, Lunguugc.~. arzd Computation (Addison-Wesley,

Reading. MA, 197’)).

[Sl R.E. Ladner and M.J. Fischer, Parallel prefix computa-

tion, J. ACM 27 (1980) 831-838.

[6] T. Leighton. Irttroduction to Parallel Algorithms und Arcki-
trcture.s: Arrays. Trees, Hypercutws (Morgan Kaufmann,

Reading, MA, 1992).

171 C;. Revesr, Lamhdu-C’ulculus, Comhinutor,y, and Func-
fionul Programming (Cambridge University Press, Cam-

bridge, 1988).

