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A low-power and low-noise amplifier with a new input- matching tech-
nique using 0.18 mm CMOS technology for ultra-wideband appli-
cations is presented. A proposed broadband input match can be
acquired easily by selecting an appropriate width of the transistor,
which will effectively avoid the usage of the low-Q on-chip inductors
in the input network. Moreover, demonstrated is the feasibility of the
inter-stage resonator to accomplish bandwidth enhancement without
additional power consumption. The IC prototype achieves good per-
formances such as a power gain of 16.2 dB, a better than 10 dB
input return loss, and 2.3 dB minimum noise figure while consuming
a DC core power of only 6.8 mW.

Introduction: Ultra-wideband (UWB) systems operate over a wide
range of frequencies from 3.1 to 10.6 GHz, and the realisation of the
UWB receiver suffers serious challenges, especially for the low-noise
amplifier (LNA). It must provide a fine wideband 50 V input matching
with flat gain over the entire bandwidth, low noise, good linearity, and
low power consumption. In general, the distributed configuration [1]
and LC input network [2, 3] are attractive for their ultra-wide bandwidth;
however, major drawbacks are the larger chip area and worse noise
figure owing to use of low-Q on-chip inductors in the input network.
To overcome the above-mentioned drawbacks, in this Letter we
propose a new inductorless input-matching technique, which is based
on a source-degenerated structure to achieve superior noise performance.
On the other hand, the common-source stage with LC tank load can be
adopted to enhance the bandwidth of the amplifier by appropriately
tuning the resonator frequency of the LC tank load; however, it is una-
voidable to increase DC power consumption, which may make this
circuit unsatisfactory for low-power application. In this Letter, we
utilise the inter-stage resonator to improve power gain bandwidth
without using the common-source stage. As a consequence, DC power
reduction and bandwidth enhancement will be attained simultaneously.
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Fig. 1 Principle of proposed input matching circuit

a Current-reused configuration with additional capacitor Ca

b Frequency behaviour of input impedance with and without capacitor Ca

c Proposed broadband input match circuit with suitable size of transistor M2

Circuit design: The proposed input matching circuit, as shown in
Fig. 1a, utilises the current-reused configuration with an additional
capacitor Ca to achieve the design of low-power characteristic and wide-
band match. Fig. 1b depicts the frequency behaviour of the input impe-
dance on the Smith chart. It is obvious that the transistor components
M1n and M1p give rise to a parasitic effect such as a Miller parasitic
capacitor; therefore, an extra parallel resonant frequency vH in Fig. 1b
can be generated by introducing only an additional capacitor Ca.
Owing to the presence of the resonant frequency VH, a loop surrounding
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the 50 V matching point is formed on the Smith chart. As we will see, a
broadband input match in the intended frequency range can be acquired
by selecting an appropriate value of the capacitor Ca. In this study, we
are inclined to employ the parasitic capacitor Cgs2 of the amplifier
stage M2, as shown in Fig. 1c, to substitute for the capacitor Ca.
Fig. 2a shows the relation between input return loss and frequency for
different widths of transistor M2. It can be observed that the input-match-
ing performance will be ameliorated when the width of transistor M2

increases; however, an overlarge width will bring about deterioration
in the noise figure, as demonstrated in Fig. 2b. This is because an over-
large capacitor Ca will diminish the power gain of the current-reused
amplifiers M1n and M1p to indirectly worsen the noise property of the
proposed UWB LNA. As a consequence, a trade-off should be carefully
considered so as to make an optimum design.

0 2 4 6 8 10 12 14 16
30

25

20

15

10

5

0

without M2
M2=30 µm
M2=100 µm
M2=300 µm

in
pu

t r
et

ur
n 

lo
ss

, d
B

frequency, GHz
a b

3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8
M2=30 µm
M2=100 µm
M2=300 µm
M2=500 µm

no
is

e 
fig

ur
e,

 d
B

frequency, GHz

Fig. 2 Simulated input return loss and noise figure for different widths of
transistor M2

a Input return loss
b Noise figure

The 3–10 GHz UWB LNA fabricated by 0.18 mm TSMC CMOS
process is shown in Fig. 3. It is known that maximum power transfer
will occur by means of conjugate impedance matching. The inter-
stage resonator (C2, L1) in Fig. 3 accomplishes bandwidth extension
owing to the conjugate impedance matching. Fig. 4 shows the simulated
impedances of Z1 (solid line) and Z2 (dashed line) (see Fig. 3a) from 4 to
12 GHz. The best conjugate impedance matching is designed near
9.6 GHz by using the inter-stage resonator to improve the bandwidth
without additional power consumption. In addition, a larger substrate
resistor RB is adopted in the RF MOS device to obstruct undesired
noise power from the substrate port, and the buffer transistor M3 with
a 50 V resistive load Ro in the proposed UWB LNA is employed to
achieve output matching for testing purposes.
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Fig. 3 Complete schematic and die microphotograph of proposed UWB LNA

a Complete schematic
b Die microphotograph
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Fig. 4 Input reflection coefficients on Smith chart for impedances Z1 (solid
line) and Z2 (dashed line) shown in Fig. 3a

Results: The UWB LNA chip is measured by on-wafer probing and the
total DC core power dissipation is 6.8 mW. A die microphotograph of
the fabricated LNA is shown in Fig. 3b, with a die area including
pads of 0.81 × 0.81 mm2. The S-parameters of the designed LNA are
measured using an Agilent E8361A PNA network analyser. The noise
figure (NF) is measured using an Agilent N8975A noise figure analyser
with Agilent 346C noise source. Simulated and measured results of
power gain and input return loss are depicted in Fig. 5. The small
signal peak gain is 16.2 dB with 3 dB bandwidth of 7 GHz from 3 to
10 GHz and input return loss is better than 10 dB in the operation band-
width. The simulated and measured noise figure at the same bias con-
dition is also depicted in Fig. 5. It is seen that the minimum value of
NF is equal to 2.3 dB at 3.5 GHz. The proposed LNA performance is
compared with recently published CMOS LNAs and summarised in
Table 1 [4–8].
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Fig. 5 Measured S-parameters and noise figure of proposed UWB LNA

Table 1: UWB LNA performance summary

Ref.
Tech.!
(mm)

BW
(GHz)

Gmax

(dB)
NFmin

(dB)
Pdiss

(mW)
Area

(mm2)
∗FOM/Area

[1] 0.13 0–12.1 18.7 3 27.6 0.88 4.29

[2] 0.18 3–4.8 13.9 4.7 14.6 0.95 0.33

[3] 0.13 2.2–9 11.3 3.9 30 0.68 0.87

[4] 0.18 2–12 11.8 3.1 22.7 0.45 3.66

[5] 0.13 0.1–10 17 5.3 60 0.64 0.76

[6] 0.13 3–10.35 12.5 3.3 7.2 0.77 4.92

[7] + 0.13 4.7–11.7 12.4 2.9 13.5 – –

[8] 0.18 0–16 10 3.6 21 1.19 1.57

TW 0.18 3–10 16.2 2.3 6.8 0.66 14.4

+ simulation results ! CMOS
∗

FOM = BW [GHz] Gmax [lin]
(NFmin [lin]−1) Pdiss [mW ] Area[mm2 ]
ELECTRON
Conclusion: The UWB LNA with a new input-matching concept has
been fabricated by using 0.18 mm CMOS process. A superior noise
performance with easily be achieved by the usage of the proposed induc-
torless input-matching technique. The inter-stage resonator is employed
for low power application to accomplish gain bandwidth extension
without extra DC power dissipation.
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