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1. Introduction 

A sta% is a simple and useful data structure. 
The simplest and most natural way to keep a 

stack inside a computer is to put items in a 
sequential memory area. It is quite convenient in 
dealing with only One stack. However, system 
developers frequentIy encounter programs which 
involve multiple stacks, each of which has dynam- 
ically varying size. In such a situation, keeping 
multiple stacks in a common area with sequential 
allolzation with cause some trouble. First, devef- 
opers would hate to impose a maximum size on 
each stack, since the size is usually unpredictable+ 
Second, to store multiple variable-size stacks in 
sequential locations of a common memory area, 
the obstacle of u~~~~~~~~ must be solved. An over- 
flow situation will cause an “error”; it means the 
stack is already full, yet there are still more items 
that ought to be put in. A solution for overflow is 
~~~~~~u~~~~r~~ ~~WZWJJ, making room for the over- 
floued stacks by taking some space from stacks 
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that are not yet filled. This operation may cause 
many items to be moved to their proper locations 
in order to keep corruptness of rhe ptrsh opera- 
tions coming later, 

A number of possible solutions for overflow 
have been suggested. Knuth proposed a simple 
solution in reallocating memory by move opera- 
tions 121. The method will be described in detail 
in the next section. He afso analyzed the average 
number of movements when overflow occurs and 
got a formula con~~rniug the number of stacks 
and pushed items. Here, we focus on the worst 
sequence of pushed data instead of the individual 
worst case, getting some interesting properties 
similar to [1,3]. 

2. Knuth’s method 

The method of multiple stacks manipulation 
proposed by Knuth [2] is briefly presented here. 
Assume there are n stacks, and the value BASE[1’] 
and ToP[i] represent the bottom location and 
the top location of stack i. These stacks all share 
a common memory area consisting of al1 locations 
t with L,, <L G L,, where t, and t, are con- 

stants specifying the total number of locations 
available for use. Knuth’s method starts out with 
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all stacks empty, BASE[I’] = TOP[~‘] = L,, for a11 
i, and BASE[n + 11 = L,. The Push and Pop al- 
gorithms are as follows: 

Push : 

Pop: 

TOP[i] + TOP[i] + 1; 
if TOP[i] = BASE[i +- l] 

then Ocerflow 

else CONTENTS[ TOP[ i]] + Y; 

if TOP[il = BASE[i] 

then Underflow 
else 

begin 
Y + CONTENTSi TOP[ ill; 

TOP[il * TOP[i] - 1; 

end 

When stack i overflows, the reallocating strat- 

egy will find the smallest k for which i < k G n or 
the largest k for which 1 < k < i, and k satisfying 
TOP[ k] < Z?ASE[ k + 11. It then moves the items 
between stack (i + 1) and stack k one entry to 

the right, if i < k G n; and between stack (k + 1) 
and stack i one entry to the left, otherwise. 

This method works simply. It needs, however, 

some move operations when overflow occurs. 

Knuth found that the average number of move 
operations required is 

where m is the number of pushed items and n is 
the number of stacks. The number of movements 
is essentially proportional to the square of num- 

ber of pushed items. 

3. The worst push sequence and its analysis 

Some important symbols and terminologies 
must first be defined: 

Definition 1. Assume there are n disjoint sets: 

S,, S,, . . , S,, <Sj n S,) = @, for 1 < j,k G n, j Z k. 

(1) Zi denotes an element in set Si, and 

U l<i<nSi= lJ. 

(2) A push sequence P with m numbers de- 

noted p,, . . , p,,, where pj E U; and let Pi = I,, if 

P, E s,. 
(3) #(ZJp is the number of I,, in push se- 

quence P. 

Example 2. If there are 4 stacks and 6 push 
operations, the 4 stacks here can be viewed as 4 
disjoint sets and I, representing pushing an item 

into stack 1. The push sequence p, p2p3p4p5ph 

may be 

Z,ZjZlZ,Z,Z,, Z1ZzZ,Z,Z,Z*, Z,Z,Z,Z,Z,Z,,..’ 

For push sequence I,Z,Z,Z,I,Z, we have: #(I,), 
= 2, #(I,>,, = 2, #(Z,), = 1, #(I,), = 1. The total 
number of push sequences is 46 in this example. 

Definition 3. Let P be a push sequence with m 

numbers and n disjoint sets as defined in Defini- 
tion 1. We say pi > pk if p, = Z, and pk = II, j > 1. 
@(p,), the number of pi, with 1 < i < k and 
p, >pk, is called the potential of Ph. 

The potential defined above is actually equal 

to the number of movements when pk are pushed 
into stack 1. 

Example 4. Following Example 2, the relations 

between push sequence and the total number of 
movements are shown in Table 1. 

Questions arising are: how many movements 
are needed under the worst push sequence and 
which push sequence is the worst one? 

Table 1 

Push sequence 

1,1,1,1,1,1, 

I,IzI,IzI,I, 

C:= ,@,( pr) = number of movements 

o+o+o+o+o+o= 0 

0+0+1+0+2+0=3 

1, I,‘& I, I, I I o+i+2+3+3+3=12 

14 I,I,I, 1, I, 0+1+2+3+2+4=12 

I,I,Id,I,I, 0+1+2+2+4+4=13 

I,I,I,I,I,I, 0+0+2+3+4+4 = 13 

I,I,Id,I,I, 0+1+1+3+4+4=13 
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The above example gives us important infor- 
mation; i.e., for different push sequences, when 

their #(I,),, 1 G i cs ~1, are all the same, the num- 
ber of pushed items are fixed, the sequence of 

pushing will affect the number of movements. For 
instance, the number of movements is 12 when 
the push sequence is I4 I, I,Z, I, I, and it is 13 

when the push sequence is Z,13Z2121,Z,. The fol- 
lowing lemma explains this fact. 

Lemma 5. Let there be given n disjoint sets and a 
pusiz sequence P defined as in Definition 1. Let 
#(l,),=xj, l<j<n; E,“=,x,=m. Wegetamaxi- 
mat CT,,@(p,> if and only if pi = I,,, for 0 < i < 
xn; pIsIn_,, forx,<i d(x,,+x,~,); . . ..pj-I., 
for CyE2xj < i 6 Cy= ,x,. 

Proof. @( pk) is the number of pi with 1 G i G k 
and p, > pk. We have 

ant: 

(xn + ... +xj+,) 

ma:y( @( p,)) = ifp,=I,,forlGjGn-1, 

0 if j = n. 

There are at least (xn + . . . +x,+ 1) elements 
that appear before pk, i.e. k > (x,, + . +xj+,‘). 
FLU thermore, the number of pi satisfying p, > pk 
for 1 szi<k is also at most (x,-t ... +xj+,). 
These force sequence pk, 1 G k G m to become 

pi Ei 1 

pi Ei ;’ 

for 0 <i 6xn, 

n-l, forx,<i<(x,+x,_,), 

n n 
p; 35 I 1, for Cx,<i,< Cxj=m, 

j=2 ]=l 

if and only if max(C’,“= ,@( pk)) is achieved. q 

Let xi, @(pk> be defined as in Lemma 5 and 
Definition 1. EF= ,@(p,), summation of total po- 

tential, is equal to the total number of move- 
ments. From Lemma 5, 

t @( Pk) =x,x.-1 +((x,+x,_,)x,~z+ .*’ 
k=l 

+(x, + *‘* +x,_,)x,,_,_, + *.. 

+(x,, + ... +x,)x, 

n-l n 

= c c Xj’X, 

i=l j=i+1 

Now, the following needs to be found: 

subject to 5 Xi = m, X; 2 0. 
1=1 

It can be formulated as an (n - 1) x (n - 1) tri- 
angle matrix: 

X,X,-I 
X,X,-2 X,~lX,~Z 

X,X,-3 X,-IX,-? X,1-2X,-3 

X,lXI X n ~ I Xl X n_IX, ‘.. X,X, 

C;;l= 1@( pk) is the sum of the terms in the above 

matrix. In order to sum these terms, another 
similar n x n matrix is considered: 
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It has the property xixi =xixi and is symmetrical Theorem 6. There are n stacks and mmax sequen- 
about the main diagonal. Let 

/I II 

Tuppcr = c x,xj= c &iXj’ 
l<l<,Crl izl jzr 

T l0wer = c nn x,x; = c cxjx,. 
I GiGjGn ill j-i 

In fact, Tupper = Tlower, therefore 

rr 
T upper + Tlower = c x,x, + cxixi 

I Ci,jGn i=l 

= 2T,“W,. 

Summation of triangle matrix is 

F @( pk) = Tlower - (main diagonal) 
k=l 

=max - 

(ic 1 

; 2x, ?- 2X; 
i=l 1=I 

From Schwarz’ inequality, 

, and tx,=rn, 
I=1 

x,>O,for l<i<n. 

tial memory locations. The total number of mooe- 
ments caused by Knuth’s method is at most +<I - 
l/n)m2 after any sequence of m push operations, 
where 0 G m G m,,,. 

Proof. Let the n stacks be the n disjoint sets 

S,,..., S,. The m push operations are m numbers 
in push sequence P. After Knuth’s manipulating 

method is executed, the total number of move- 

ments is exactly equal to CJ=,@(pk). From the 
above description, Knuth’s method has number 
of movements at most +<l - l/n)m’ after any 
sequence of m push operations. q 

The result of worst case after a sequence of m 
push operations is smaller than the summation of 

individual worst cases, and it approximates 2 times 
the average case. The number of movements for 

individual worst case might be equal to the total 
present items each time a new item is pushed. 
That is, the total number of movements is the 
summation from 1 to m - 1. It is equal to m(m - 
1)/2. This case is actually only satisfied while 
m = n. For most cases, they will be smaller than 
this. 

Another question is: how many item numbers 
in each stack are there when the maximum value 

occurs. This will be shown in the next theorem. 

Theorem 7. The maximum value in Theorem 6 
can be attained while there being (m - nlm/nI> 
number of xi = [m/n] + 1 and the others xi= 
[m/n] for 1 <i<n. 

Proof. From the proof of Theorem 6, 

If x,,..., x, are real numbers, the minimum can 
be achieved when x, = . . =x, = m/n. 

Unfortunately, x,, . . , x, are integers here. Let 
x, =[m/n]+y,, yi integer,and -lm/nl~y,~m, 
for 1 <i<n. We have 

n 

xy;=(m mod n)=m-n 
i= 1 
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and 

It1 \ 

mini CX,?) 

Therefore, min(C:‘=, y,‘) can be achieved when 

the number of y, = 1 will be Cm - nlm/nj> and 
else y, = 0. Restated, the number of xi = [m/n] 

+ 1 is (m - nlm/n]). Furthermore, xi = [m/n] 
+ 1 can be at any i, for 1 G i G n. Except for i of 

X, = [m/n] + 1, X, is equal to [m/n] elsewhere. 

By Theorem 7, the total number of movements 
may be smaller than the number in Theorem 6. 

Because 

and 

max min 2 X; - min t 
( ( ji 

” 
2 

i= I r=l n 

n m 2 
_ Et 1 - 

/-I n 

n 
- 
4’ 

while (m mod n) = 5; 

where k = m - nlm/n]. 
The actual bound of number of move- 

ments may then be +(l - l/n)m2 - n/X, while 
(m mod n) = n/2 exactly occurs. 
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