Information Processing Letters 44 (1992) 107-111
North-Holland

19 November 1992

The worst case analysis of algorithm
on multiple stacks manipulation *

Been-Chian Chien

Instingte of Computer Science and Information Engineering, National Chino Tung University, Hsinchu 300, Taiwan, ROC

Wei-Pang Yang

Department of Computer and Information Science, National Chiao Tung University, Hsinchu 308, Taiwan, ROC

Communicated by K. Tkeda
Received 6 February 1991
Revised 24 Qctober 1991

Keywords: Analysis of algorithms; data structures; multiple stacks

1. Introduction

A stack is a simple and useful data structure.
The simplest and most natural way to keep a
stack inside a computer is to put ifems in a
sequential memory area. It is quite convenient in
dealing with only one stack. However, system
developers frequently encounter programs which
invelve multiple stacks, each of which has dynam-
ically varving size. In such a situation, keeping
multiple stacks in a common area with sequential
allocation with cause some trouble. First, devel-
opers would hate to impose a maximum size on
each stack, since the size is usually unpredictable.
Second, to store multiple variable-size stacks in
sequential locations of a common memory area,
the obstacle of overflow must be solved. An over-
flow situation will cause an “error”; it means the
stack is already full, yet there are still more items
that ought to be put in. A solution for overflow is
realiocating memory, making room for the over-
flowed stacks by taking some space from stacks

Correspondence to: W.-P. Yang, Department of Computer
and Information Science, National Chiao Tung University,
Hsinchu 300, Taiwan, ROC

* This research was partly supported by the National
Science Council of Taiwan, ROC under contract NSC 80-
0408-E009-11 (1990).

that are not yet filled. This operation may cause
many items to be moved to their proper locations
in order to keep correctness of the push opera-
tions coming later.

A number of possible solutions for overflow
have been suggested. Knuth proposed a simple
solution in reallocating memory by move opera-
tions {2]. The method will be described in detail
in the next section. He also analyzed the average
number of movements when overflow occurs and
got a formula concerning the number of stacks
and pushed items. Here, we focus on the worst
sequence of pushed data instead of the individual
worst case, getting some interesting properties
similar to [1,3].

2. Knuth’s method

The method of multiple stacks manipulation
proposed by Knuth [2] is briefly presented here.
Assume there are n stacks, and the value BASE]/]
and TOP[i] represent the bottom location and
the top location of stack i. These stacks all share
a common memory area consisting of all locations
L with Ly<L <L, where L, and L, are con-
stants specifying the total number of locations
available for use. Knuth’s method starts out with

0020-0190 /92 /$05.00 © 1992 ~ Elsevier Science Publishers B.V. All rights reserved W07

Volume 44, Number 2

all stacks empty, BASE[i]= TOP[i] =L, for all
i, and BASE[n + 1]1=L_. The Push and Pop al-
gorithms are as follows:

Push: TOPli] < TOP[i] + 1;
if TOP[i] = BASE[i + 1]
then Overflow
else CONTENTS[TOP[i]] < Y;

Pop: it TOP[i]= BASE[i]
then Underflow

else
begin
Y « CONTENTS[TOP[{]];
TOP[i]l « TOPlI] - 1;
end

When stack i overflows, the reallocating strat-
egy will find the smallest k for which i <k <n or
the largest k for which 1 <k <, and k satisfying
TOPlk] < BASE[k + 1]. It then moves the items
between stack (i + 1) and stack k one entry to
the right, if i < k <n; and between stack (k + 1)
and stack i one entry to the feft, otherwise.

This method works simply. It needs, however,
some move operations when overflow occurs.
Knuth found that the average number of move
operations required is

{2
2 LZI\2)
where m is the number of pushed items and # is
the number of stacks. The number of movements

is essentially proportional to the square of num-
ber of pushed items.

3. The worst push sequence and its analysis

Some important symbols and terminologies
must first be defined:

Definition 1. Assume there are n disjoint sets:
81805 8, (S, S) =0, for 1 <jk<n, j+k.

(1) 1; denotes an element in set S, and
U l<i<ni U.

108

INFORMATION PROCESSING LETTERS

19 November 1992

(2) A push sequence P with m numbers de-
noted p,,..., p,, where p;€ U; and let p; =1, if
p;ES,;.

(3) #(1)p is the number of I, in push se-
quence P.

Example 2. If there are 4 stacks and 6 push
operations, the 4 stacks here can be viewed as 4
disjoint sets and [, representing pushing an item
into stack 1. The push sequence p,p,p;psp5D;
may be

LI, L L LI, LI,

For push sequence I,1,1,1,1,1, we have: #(I,),
=2, #(1,), =2, #(1,)p =1, #(1,)p = 1. The total
number of push sequences is 4° in this example.

Definition 3. Let P be a push sequence with m
numbers and n disjoint sets as defined in Defini-
tion 1. We say p,>p, if p;=1,and p, =1, j> 1
®(p,), the number of p,, with 1<i<k and
D; > Py, is called the potential of P,

The potential defined above is actually equal
to the number of movements when p, are pushed
into stack 1.

Example 4. Following Example 2, the relations
between push sequence and the total number of
movements are shown in Table 1.

Questions arising are: how many movements

are needed under the worst push sequence and
which push sequence is the worst one?

Table 1

Push sequence T6_,¢(p,) = number of movements

LI LI, 0+0+0+0+0+0=0
LLLLII, 0+0+1+0+2+0=3
LILILII, 0+142+3+3+3=12

LLLILLI
LLLLILI,
LILLILILIL
LILLLILTL

0+1+2+3+2+4=12
0+1+2+2+4+4=13
0+0+2+3+4+4=13
0+1+1+3+4+4=13

Volume 44, Number 2

The above example gives us important infor-
mation; i.e., for different push sequences, when
their #(1,)p, 1 <i<n, are all the same, the num-
ber of pushed items are fixed, the sequence of
pushing will affect the number of movements. For
instance, the number of movements is 12 when
the push sequence is I,[;/,1, 1,1, and it is 13
when the push sequence is 1,151,1,1,1,. The fol-
lowing lemma explains this fact.

Lemma 5. Let there be given n disjoint sets and a
pusih sequence P defined as in Definition 1. Let
#U)p=1x;, 1 <j<n; X7_ x;=m. We get a maxi-
mai L7 P(p,) if and only if p;=1,, for 0 <i<
xop=1_ |, forx, <i<(x,+x,_);...;p; =1,
for Lj_,x; <i<Xj_|x,

Proof. @(p,) is the number of p, with 1 <i<k
and p; > p,. We have

max(i <I>(pk)) = i (max(@(py))),

k=1 k=1
anc
(X, + - +x0)
max(®(p,)) = it pp=1,forl<j<n—1,
0 if j=n.
‘There are at least (x,+ - +x,,,) elements

that appear before p,, i.e. k> (x, + -+ +x;,).
Furthermore, the number of p; satisfying p, > p,
for 1<i<k is also at most (x,+ - +x;).
These force sequence p,, 1 <k <m to become

p; =1, for()<i<x,,,

pizsln_l, for xn<i<(x,,+xn—1)a
n n

pi=1, for ij<i<2xf=m’
ji=2 j=1

if and only if max(X}_,®(p,)) is achieved. O

Let x;, @(p,) be defined as in Lemma 5 and
Definition 1. X7'_ ,®@(p,), summation of total po-

INFORMATION PROCESSING LETTERS

19 November 1992

tential, is equal to the total number of move-
ments. From Lemma 5,

m

Z (p(pk) =X Xy + (xn+xn—l)xn72+ T
k=1

+(xn+ e +xnfj)xn~j—l+ t

+(x,+ o Fxy)x,

-X.

=nil(ixj i

i=1 j=i+1

Now, the following needs to be found:
m n—1 n

mas| £ #(p0)) - max(Y ¥)
k=1 i=1 j=i+]1

n
subject to Y x,=m, x,;>0.
i=1

It can be formulated as an (n — 1) X (n — 1) tri-
angle matrix:

xn'xn—l
ann,2 xnflxn72
n¥n-3 Xn—1%n-3 Xp—2Xn-3
Xp Xy Xp—1%1 Xp—2%) T XX

X7 @(p,) is the sum of the terms in the above
matrix. In order to sum these terms, another
similar n X n matrix is considered:

XnXn Xn—1%n Xn—2%n XX,
XXy -1 Xp— Xy 1 Ap—2Xn XXy -1
XpXp—2 XpXp-2 Xp—2Xp—2 X1 Xn -2

XnX1 Xn—1%1 Xn-2X) XXy

109

Volume 44, Number 2

It has the property x,x; = x,x; and is symmetrical
about the main diagonal. Let

Tuppcr = Z

I<igj<n

n n

X X=X,

i=1j=i
n n

Tlower: Z 'xj'xi: Z Z-xjxi'
I<igjgn IES Y

In fact, T =T

upper lower»

n
Z XX + Z X, X;

l<ij<gn =1

n
+ XX

=

therefore

T, + T

upper lower —

I
————
.M:
=
——
3

Summation of triangle matrix is

m

Y. D(pi) = Tiower — (main diagonal)

k=1
1 n 2 n n
[Ex) + £2)- £
i=1

(g £e)

215 =1

i=1 i=1

o3[£5] - £]

SITEN

i=1

H
+min(Zx,z) .

i=1
From Schwarz’ inequality,
n 2
n n
2

Y x; 2%, and Y x,=m,

i=1 i=1

110

INFORMATION PROCESSING LETTERS

19 November 1992
Theorem 6. There are n stacks and m ,, sequen-
tial memory locations. The total number of move-
ments caused by Knuth’s method is at most (1 —
1/n)m?* after any sequence of m push operations,
where 0 <m <m_,,,.
Proof. Let the n stacks be the n disjoint sets
Si»...,8,. The m push operations are m numbers
in push sequence P. After Knuth’s manipulating
method is executed, the total number of move-
ments is exactly equal to X7 ,@(p,). From the
above description, Knuth’s method has number
of movements at most +(1 — 1/n)m? after any
sequence of m push operations. O

The result of worst case after a sequence of m
push operations is smaller than the summation of
individual worst cases, and it approximates 2 times
the average case. The number of movements for
individual worst case might be equal to the total
present items each time a new item is pushed.
That is, the total number of movements is the
summation from 1 to m — 1. It is equal to m(m —
1)/2. This case is actually only satisfied while
m = n. For most cases, they will be smaller than
this.

Another question is: how many item numbers
in each stack are there when the maximum value
occurs. This will be shown in the next theorem.

Theorem 7. The maximum value in Theorem 6
can be attained while there being (m —nlm/n))
number of x;=|m/nl+1 and the others x;=
{m/n] for 1 <i<n.

Proof. From the proof of Theorem 6,

m

o §)< [£1) - .]|.

k=1 i=1 i=1

If x,,...,x, are real numbers, the minimum can

be achieved when x, = -+ =x,=m/n.
Unfortunately, x,,..., x, are integers here. Let

x;,=|m/nl+y, vy integer,and —lm/ni<y, <m,
for 1 <i<n. We have

n m
Y y;=(m mod n)=mvn{~J,
i=1 h

Volune 44, Number 2

and

min(ixf)

r=]

o £ 2]

i=1

£l A7 B £

i—1L A i=1 i=1

o] Tl)

+min(iyf).

i=1

I

Therefore, min(Z”_,y?) can be achieved when
the number of y,=1 will be (m —nlm/n|) and
else y, = 0. Restated, the number of x,=|m/n]|
+1 is (m —nlm/n]). Furthermore, x,=|m/n]
+ 1 can be at any {, for 1 </ < n. Except for i of
x;=|m/nl+1, x, is equal to |m/n| elsewhere.

O

By Theorem 7, the total number of movements
may be smaller than the number in Theorem 6.
Because

n n m2
min Zx,?'—minZ(—) >0,
n

i=1 i=1

INFORMATION PROCESSING LETTERS

19 November 1992

and

max(min i x?— min i (ﬁ)z)

i=1 j=1\ 1

(151 £ ()

n m 2
=1\ 1
n n
= —, while (m mod n)=—;
4 2

where k =m —nlm/n].

The actual bound of number of move-
ments may then be (1 —1/n)m*—n/8, while
{(m mod n)=n/2 exactly occurs.

References

[1] J.L. Bentley and C.C. McGeoch, Amortized analyses of
self-organizing sequential search heuristics, Comm. ACM
28 (1985) 404-411.

[2] D.E. Knuth, The Art of Computer Programming, Vol. I:
Fundamental Algorithms (Addison-Wesley, Reading, MA,
1973).

[3] D.D. Sleator and R.E. Tarjan, Amortized efficiency of list
update and paging rules, Comm. ACM 28 (1985) 202-208.

111

