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Abstract

Background: Satellite RNAs (satRNAs), virus parasites, are exclusively associated with plant virus infection and have
attracted much interest over the last 3 decades. Upon virus infection, virus-specific small interfering RNAs (vsiRNAs) are
produced by dicer-like (DCL) endoribonucleases for anti-viral defense. The composition of vsiRNAs has been studied
extensively; however, studies of satRNA-derived siRNAs (satsiRNAs) or siRNA profiles after satRNA co-infection are limited.
Here, we report on the small RNA profiles associated with infection with Bamboo mosaic virus (BaMV) and its two satellite
RNAs (satBaMVs) in Nicotiana benthamiana and Arabidopsis thaliana.

Methodology/Principal Findings: Leaves of N. benthamiana or A. thaliana inoculated with water, BaMV alone or co-
inoculated with interfering or noninterfering satBaMV were collected for RNA extraction, then large-scale Solexa
sequencing. Up to about 20% of total siRNAs as BaMV-specific siRNAs were accumulated in highly susceptible N.
benthamiana leaves inoculated with BaMV alone or co-inoculated with noninterfering satBaMV; however, only about 0.1%
of vsiRNAs were produced in plants co-infected with interfering satBaMV. The abundant region of siRNA distribution along
BaMV and satBaMV genomes differed by host but not by co-infection with satBaMV. Most of the BaMV and satBaMV siRNAs
were 21 or 22 nt, of both (+) and (2) polarities; however, a higher proportion of 22-nt BaMV and satBaMV siRNAs were
generated in N. benthamiana than in A. thaliana. Furthermore, the proportion of non-viral 24-nt siRNAs was greatly
increased in N. benthamiana after virus infection.

Conclusions/Significance: The overall composition of vsiRNAs and satsiRNAs in the infected plants reflect the combined
action of virus, satRNA and different DCLs in host plants. Our findings suggest that the structure and/or sequence demands
of various DCLs in different hosts may result in differential susceptibility to the same virus. DCL2 producing 24-nt siRNAs
under biotic stresses may play a vital role in the antiviral mechanism in N. benthamiana.
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Introduction

RNA silencing is a sequence-specific gene regulatory mecha-

nism involved in development, maintenance of genome integrity

and cellular defense against virus infection in plants and animals

[1,2,3,4,5]. Small interfering RNAs (siRNAs), diverse in size,

sequence, biogenesis and biological actions, are the key mediators

of RNA silencing [6]. In the RNA silencing process, the double-

stranded RNAs (dsRNAs) or highly structured single-stranded

RNAs (ssRNAs) introduced into a cell are recognized by the

RNase-III enzyme Dicers and processed into siRNAs. These

siRNAs are then recruited by ARGONAUTE (AGO) protein in

RNA-induced silencing complexes (RISCs) and act in a sequence-

specific manner to repressively regulate target gene expression by

RNA degradation, translational inhibition or chromatin modifi-

cation [7,8].

The model plant Arabidopsis thaliana contains four DICER-like

proteins (DCLs) faithfully generating size-specific siRNAs from

both endogenous and exogenous dsRNA precursors [9]. DCL1 is

mainly responsible for the biogenesis of endogenous microRNAs

(miRNAs) [10]. DCL2 functions in the biogenesis of endogenous

24-nt natural antisense transcript-derived siRNAs (nat-siRNAs)

induced by abiotic and biotic stress [11,12]. DCL3 functions to

process RNA-dependent RNA polymerase 2 (RDR2)-dependent

dsRNA precursors to produce 24-nt siRNAs to direct DNA

methylation [13]. DCL4 generates endogenous 21-nt trans-acting
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siRNAs (tasiRNAs) from RDR6-dependent dsRNA precursors

[14,15].

Despite DCLs processing endogenous precursors to siRNAs, all

four DCLs are involved in producing the virus-derived siRNAs

(vsiRNAs) during virus infection [16,17,18]. RNA virus infection

usually results in elevated DCL4-dependent 21-nt and DCL2-

dependent 22-nt vsiRNAs [16,19,20,21,22]. DCL4, DCL2 and

DCL3 have specific, hierarchical antiviral activities against RNA

viruses [16,21]. DCL4 is the predominant sensor of RNA virus,

whereas DCL2 has a subordinated anti-viral function and DCL3 a

limited function. Although DCL3 can generate 24-nt vsiRNAs in

RNA virus-infected plants when DCL2 and DCL4 are dysfunc-

tional, DCL3 is unable to trigger antiviral silencing [21]. Also,

DCL1 has no function in anti-RNA viruses [21]. However,

siRNAs derived from DNA viruses could be generated by all

DCLs [18].

Recently, genome-wide screening and analyses of siRNAs

derived from A. thaliana were used with wild-type Col-0 and

several dcl and rdr mutants to diagnose the function of different

DCLs and RDRs [23]. As well, the origin, processing and stability

of siRNAs derived from viruses were studied in several DNA

viruses, RNA viruses and viroids [18,20,21,23,24,25,26]; most of

the vsiRNAs were shown to be positive-sense dominant [20,25,27].

In contrast, for satRNAs, only one study has investigated siRNAs

derived from satRNAs associated with Cucumber mosaic virus

satRNA (satCMV) [25]. Most of the siRNAs derived from

satCMV showed positive-sense polarity and were produced from

highly structured regions predominantly of 21 nt [25]. In addition,

DCL4 was found to be the major enzyme for generation of these

siRNAs [25]. However, all these reports focused on the viral or

satRNA genome itself. The profile of vsiRNAs after satRNA co-

infection has not yet been studied.

Bamboo mosaic virus (BaMV) belongs to the potexvirus genus and

contains a single-stranded, positive-sense RNA genome that

encodes five open reading frames (ORFs) [28]. BaMV-associated

satRNA (satBaMV), the only example of satRNA associated with

potexvirus, totally depends on BaMV for replication, assembly and

movement and contains only one ORF [29]. P20, encoded by

satBaMV, can be detected in vivo and in vitro [29,30] but is not

required for satBaMV replication or cell-to-cell movement [31]. It

indeed facilitates satBaMV long-distance movement in Nicotiana

benthamiana co-infected with BaMV [31,32].

Previously, we characterized two representative satBaMVs:

BSL6 and BSF4 [33]. The BSL6 is an interfering satBaMV that

can greatly reduce BaMV accumulation and attenuate BaMV-

induced symptoms in all tested plants, including N. benthamiana and

Chenopodium quinoa [34,35,36], whereas BSF4, an non-interfering

satBaMV, could not. BSL6 and BSF4 satBaMV share 93%

nucleotide identity [33], but the key determinant of satBaMV-

mediated interference of BaMV replication has been mapped to

the apical hairpin stem loop (AHSL) located in the 59 UTR of

BSL6 [35]. One specific nucleotide change in the internal loop of

AHSL could change the interference ability [36]. Nevertheless, the

detailed mechanism has not yet been defined. Previously, Havelda

et al. [37] reported that defective interfering RNA (DI-RNA) of

Tomato bushy stunt virus (TBSV) could enhance the silencing

pathway on elevating the level of TBSV vsiRNAs and result in

saturation of the viral silencing suppressor and a high level of

unbound vsiRNAs [37]. Such findings led us to investigate

whether BSL6 satBaMV uses a similar strategy to interfere with

replication of BaMV.

To analyze the profiles of viral and satellite siRNAs (satsiRNAs),

we performed large-scale siRNA sequencing from BaMV-infected

or satBaMV-co-infected plants followed by bioinformatics analy-

ses. In plants co-infected with BaMV and BSL6, the level of

siRNAs of BaMV was much less than that in plants infected with

BaMV alone or co-infected with BSF4. In general, BaMV and

satBaMV siRNAs are enriched in 21 and 22 nt of both strand

polarity types and not evenly distributed in the viral or satRNA

genome. The abundant region of siRNAs along BaMV and

satBaMV genomes are altered in different infected hosts, which

suggests that the DCL target site of the virus genome may be

involved in the virus susceptibility of different hosts.

Results

Detection of small RNAs derived from BaMV or satBaMVs
by northern hybridization

Viruses can induce post-transcriptional gene silencing (PTGS)

as the antiviral mechanism in plants [1,3,38,39], and subviral

agents, such as viroids or satRNAs, can also trigger PTGS to

produce small RNAs [40,41]. N. benthamiana is highly susceptible to

BaMV and satBaMV, which can move systemically and cause

mosaic symptoms. To understand the association of the accumu-

lation of BaMV and satBaMVs and their derived small RNAs, N.

benthamiana was mechanically inoculated with BaMV and a

noninterfering satBaMV, BSF4, or an interfering satBaMV,

BSL6. The inoculated and systemic leaves were harvested at 8

and 20 days post-inoculation (dpi), respectively, for detection of the

level of BaMV and satBaMV RNAs, vsiRNAs and satsiRNAs by

northern blot analysis. As shown in Figure 1A and previously

[35,36,42], BaMV accumulation was slightly reduced in the

inoculated leaves of N. benthamiana on co-inoculation with non-

interfering BSF4 satBaMV; however, BaMV accumulation was

greatly reduced on co-inoculation with interfering BSL6 satBaMV.

In BaMV-inoculated or BSF4 co-inoculated N. benthamiana, BaMV

siRNAs were barely detected in the inoculated leaves, and BaMV

siRNAs were not detected in the BSL6 co-inoculated leaves

(Figure 1A). In contrast, a significant amount of BaMV siRNAs

were detected, and the level was associated with the accumulation

of BaMV, in the systemic leaves of BaMV-infected or BSF4-co-

infected N. benthamiana (Figure 1B). The level of siRNAs derived

from BSF4 was substantial in the co-inoculated and systemic

leaves; however, neither BaMV nor satBaMV siRNAs could be

detected in BaMV-infected and BSL6-co-infected inoculated or

systemic leaves of N. benthamiana (Figures 1A and 1B), probably

because of the low accumulation of both BaMV and satBaMV in

the BSL6-co-inoculated plants. These results show that the levels

of vsiRNAs and satsiRNAs are well associated with BaMV and

satBaMV accumulation in inoculated and systemic leaves of

infected N. benthamiana.

Composition of the BaMV and satBaMV siRNAs in
infected N. benthamiana

To study the profiles of siRNAs, total RNA extracted from

inoculated and systemic leaves of N. benthamiana inoculated with

water (mock), BaMV, BaMV and BSF4, or BaMV and BSL6 were

submitted for Solexa sequencing.

After trimming the sequences, only the 17- to 28-nt siRNAs

were further analyzed. More than 2 million siRNA sequences of

17 to 28 nt, including endogenous and virus- or satRNA-derived

siRNAs, were obtained from each sample (Tables 1 and 2). In the

BaMV-inoculated leaves, only 3.7% of total siRNAs were

vsiRNAs, whereas in systemic leaves, vsiRNAs accumulated up

to 17.5%. Co-inoculation with BSF4 did not change the trend.

However, the amount of BSF4 siRNAs from inoculated leaves

were about 3.5 times more than that from systemic leaves (5.1%

in the inoculated leaves and 1.5% in the systemic leaves) (Table 1).

siRNAs of Virus and sat RNAs
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In leaves with BSL6 co-inoculation, only a few siRNAs were

matched to BaMV (0.1%) and BSL6 (0.2%), which corresponded

with the low level of BaMV and BSL6 RNAs in inoculated leaves

[35]. The level of vsiRNA (0.0%) and satsiRNA (0.0%) detected

in the BSL6-co-inoculated systemic leaves was too low, and these

data were excluded from further analysis (Table 1). All these

results seem to be associated with the amount of viral or

satBaMV RNAs that accumulated in leaves, which suggests that

BSL6 may interfere with the replication of BaMV before gene

silencing.

We analyzed the polarity of virus-derived siRNAs and found

negative-strand siRNAs of BaMV slightly higher in level than

positive-strand siRNAs (about 0.8 ratio for positive-strand to

negative-strand siRNAs) regardless of inoculated or systemic

leaves, in all of the samples analyzed from N. benthamiana. A

similar ratio of positive- to negative- strand satsiRNAs was

observed (Table 2). No comparison for BSL6 siRNAs was

performed because of the extremely low level (Table 2).

Virus- and satRNA-derived siRNAs are mainly 21 and
22 nt, but endogenous 24-nt siRNAs are increased in
level after BaMV and satBaMV infection in N.
benthamiana

With regard to size distribution, both positive- and negative-

stranded siRNAs were predominantly 21 nt (43,56%) and 22 nt

(33,43%), whether in inoculated or systemic leaves of BaMV-

infected or satBaMV-coinfected N. benthamiana (Figure 2A).

SatsiRNAs were also predominantly 21 nt (51,59%) and 22 nt

(30,41%) in both positive and negative polarities in the

inoculated and systemic leaves (Figure 2B). These results agree

with previous reports of the hierarchical action of DCL4 and

Figure 1. Accumulation of BaMV, satBaMV, and siRNAs in leaves of N. benthamiana and A. thaliana. Total RNA of 2.5 mg from N.
benthamiana or 5 mg from A. thaliana were analyzed by northern blot analysis. The BaMV genomic (6.4 Kb), two subgenomic RNAs (2.0 and 1.0 Kb)
and vsiRNAs were detected by a BaMV-specific probe and satRNA and satsiRNAs by a satBaMV-specific probe. M: mock (water) inoculation; 2: BaMV
alone. F4: noninterfering BSF4 satBaMV; L6: interfering BSL6 satBaMV. All films were exposed overnight except for detection of BaMV in N.
benthamiana systemic leaves infected with BaMV or co-infected with BSF4 and BSL6 (3-hr exposure).
doi:10.1371/journal.pone.0011928.g001

Table 1. The amount of small RNAs isolated from inoculated (I) and systemic (S) leaves of Nicotiana benthamiana inoculated with
water (mock), BaMV alone or co-inoculated with BSF4 or BSL6.

Mock BaMV (I) BaMV (S) BaMV+BSF4 (I) BaMV+BSF4 (S) BaMV+BSL6 (I) BaMV+BSL6 (S)

Total 2,489,506 3,293,585 3,411,741 5,247,031 3,567,466 3,272,499 4,853,059

BaMV 123,901 (3.7%) 596,851 (17.5%) 35,794 (0.7%) 829,730 (23.3%) 2,041 (0.1%) 95 (0.0%)

BSF4 269,101 (5.1%) 53,539 (1.5%)

BSL6 7,441 (0.2%) 71 (0.0%)

doi:10.1371/journal.pone.0011928.t001

siRNAs of Virus and sat RNAs
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Table 2. The polarity of small RNAs isolated from inoculated (I) and systemic (S) leaves of Nicotiana benthamiana inoculated with
water (mock), BaMV alone or co-inoculated with BSF4 or BSL6.

BaMV(I) BaMV(S) BaMV+BSF4(I) BaMV+BSF4(S) BaMV+BSL6(I) BaMV+BSL6(S)

BaMV (+) 55,553 266,734 15,672 363,001 805 64

BaMV (2) 68,348 330,117 20,122 466,729 1,236 31

B(+)/B(2) 0.81 0.80 0.77 0.77 - -

satBaMV (+) 115,896 24,488 2,678 62

satBaMV (2) 153,205 29,051 4,763 9

satB(+)/satB(2) 0.75 0.84 - -

B: BaMV.
satB: satBaMV.
(+): positive strand of virus/satRNA genome.
(2): negative strand of virus/satRNA genome.
‘‘-’’: not determined.
doi:10.1371/journal.pone.0011928.t002

Figure 2. Size distribution of siRNAs derived from BaMV or satBaMV-co-inoculated N. benthamiana. The total siRNAs were isolated from
BaMV-inoculated (I) and systemic (S) leaves, BaMV and BSF4 co-inoculated (I) and systemic (S) leaves, and BaMV and BSL6 inoculated leaves (I). (A)
siRNAs matched to positive-strand (+) BaMV (left panel) or negative-strand (2) BaMV (right panel). (B) siRNAs matched to satBaMV (+) (left panel) or
satBaMV (2) (right panel). Y axis represents the counts of siRNAs; X axis represents the length of siRNAs. The relative percentages of siRNAs of 21 and
22 nt to total siRNAs are shown above the bars.
doi:10.1371/journal.pone.0011928.g002

siRNAs of Virus and sat RNAs
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DCL2 in the production of most vsiRNAs and satsiRNAs of 21

and 22 nt.

To further analyze whether any bias in size distribution of

siRNAs occurs in mock and virus-infected or satRNA-co-infected

N. benthamiana, we compared the total siRNAs of 2–5 million reads.

With mock inoculation, the sizes of siRNAs peaked at 22 nt, which

represents the endogenous siRNAs. However, after BaMV

inoculation or co-inoculation with satBaMVs, the profiles of total

siRNAs changed. The population of 21-nt siRNAs increased and

that of 22-nt siRNAs greatly decreased, whereas 24-nt siRNAs

were induced to about 30%–40% of total siRNAs after BaMV

inoculation and co-inoculation with satBaMVs, respectively

(Figure 3). Because few 24-nt siRNAs were specific to BaMV or

satBaMV (less than 1%) (Figure 2), most of the 24-nt siRNAs

therefore represent the endogenous population. In Brassica juncea,

the endogenous 21-nt siRNAs are the most abundant. After Turnip

mosaic virus infection, 21- and 22-nt siRNAs were elevated to a

higher level [43]. The same result was derived from Cocksfoot streak

potyvirus (CSV)-infected Dactylis glomerata [44].

To further confirm the shift in the size class of the most

abundant endogenous small RNA species in host after BaMV

infection, total RNAs were isolated from mock- and BaMV-

infected N. benthamiana. The small RNAs were enriched and 59-end

labeled with [c-32P]-ATP. The 59-end labeled small RNAs

separated by denaturing PAGE revealed that a stronger signal

migrated at position of 24-nt RNAs in the BaMV-infected sample

than that in the mock-inoculated control (Figure 4), which is

consistent with the deep sequencing data.

The abundant distribution of siRNAs along the BaMV and
satBaMV genomes in N. benthamiana

To study the frequencies of vsiRNAs and satsiRNAs distributed

in the BaMV and satBaMV genomes, respectively, we spotted all

of the siRNAs, both positive- and negative-strand siRNAs, on the

genomes of BaMV and satBaMVs (Figure 5). vsiRNAs exhibited

similar patterns with or without satBaMV co-inoculation

(Figures 5A and supplemental data 1A, S1A). The most abundant

BaMV siRNAs were located within both positive and negative

strands of the coat protein (CP)-coding region and 39 UTR

(Figures 5A and S1), possibly because of the high accumulation of

CP-expressed subgenomic RNA in the leaves (Figures 1A and 1B)

[29,34]. However, only a few siRNAs were matched to BaMV or

BSL6 satBaMV in the symptomless systemic leaves of BSL6-co-

inoculated N. benthamiana (Tables 1 and 2).

Like BaMV siRNAs, BSF4 siRNAs showed similar patterns in

both inoculated and systemic leaves (Figures 5B and S1B). The

high abundant regions of satsiRNAs were in the positive strand of

500 to 550 nt and negative strands of 630 to 660 nt and 700 to

800 nt. Nevertheless, BSL6 siRNAs were more widely spread

along the BSL6 genome, with some peaks, particularly in the

negative strand of 200 to 250 nt and 600 to 660 nt (Figure S1B).

The major determinant of BSL6 in downregulating BaMV

replication is located in the 59 UTR, particularly in the

hypervariable (HV) region, which folds a conserved AHSL

structure [35]. We then mapped the 59-end siRNA of two

satBaMVs based on the secondary structures of 59 UTRs [36,45].

Both satsiRNAs peaked at the (2) strand of the HV region (Figure

S2), which indicates the accessibility of target sites with AHSL. On

analysis of satsiRNAs of BSL6, no BSL6-specific siRNA could be

found to target the BaMV genome.

Nucleotide preference of siRNAs from N. benthamiana
To investigate siRNA nucleotide preference, we first analyzed

the GC percentage (GC %) of the virus-derived siRNAs. The GC

% (mean 53.8%) of BaMV siRNAs was slightly higher than that of

the BaMV genome (50.6%) in systemic leaves of BaMV-infected

or BSF4-co-infected N. benthamiana. However, the GC % (mean

47.8%) of BaMV siRNAs in BaMV-inoculated leaves was lower

Figure 3. Size distribution of total small RNAs isolated from N. benthamiana. Total sRNAs ranging from 17 to 28 nt are shown on the X axis
and relative percentages are shown on the Y axis. Small RNAs were collected from mock (X), BaMV-inoculated leaves (&) and systemic leaves (m),
BaMV and BSF4 co-inoculated leaves (6) and systemic leaves (*), and BaMV and BSL6 co-inoculated leaves (N) and systemic leaves (+). Inoculated (I)
and systemic (S) leaves were harvested at 8 dpi and 20 dpi, respectively.
doi:10.1371/journal.pone.0011928.g003
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than that of BaMV (Figure S3). Moreover, the GC % of satBaMV

siRNAs (51.9%) was lower than that of the satBaMV genome

(54.0%) in BaMV and BSF4-co-infected leaves. Next, we analyzed

the internal stability at the 59 end of the siRNAs. The positive-

strand siRNAs derived from satBaMVs were AU rich at the first

7 nts (up to 59%), but this ratio was not obvious for the negative-

strand satsiRNAs or those derived from BaMV (data not shown).

We then analyzed the 59 terminal nucleotides of siRNAs. The

bioinformatic data did not reveal any strong preference for the 59

terminal nucleotide of BaMV- or satBaMV- specific siRNAs,

whether derived from the (+) or (2) strand or were 21- or 22-nt

siRNAs (data not shown). In summary, we found no nucleotide

preference in the generation of BaMV and satBaMV siRNAs in

infected N. benthamiana.

The composition of BaMV and satBaMV siRNAs in A.
thaliana

To compare the vsiRNAs and satsiRNAs in different plants, we

challenged the model plant A. thaliana, a non-natural host of BaMV,

with BaMV and satBaMVs. The inoculated and systemic leaves

were harvested at 7 and 15 dpi, respectively. No visible symptoms

were observed even after 1-month BaMV infection. However,

BaMV RNAs could be detected in inoculated leaves but not in

systemic leaves by northern blot analysis (Figure 1C and data not

shown). Notably, BaMV level in inoculated leaves of BaMV-

infected A. thaliana at 7 dpi was about one-fourth of that in

inoculated leaves of BaMV-infected N. benthamiana at 8 dpi. These

results indicated that BaMV caused symptomless infection and may

not be able to move systemically in A. thaliana. Most importantly,

BSL6-mediated interference with BaMV replication occurred in A.

thaliana (Figure 1C), similar to that found in N. benthamiana. BSL6

satBaMV downregulated about 90% of BaMV accumulation in

BSL6-co-inoculated A. thaliana, regardless of a similar level of BSF4

and BSL6 during co-infection. Hence, the inoculated leaves of

BaMV-infected and BaMV- and satBaMV-co-infected A. thaliana

were harvested at 7 dpi for deep sequencing.

Only a small proportion of sequenced small RNAs were derived

from BaMV (0.7,1.5%) or satBaMV (0.1%) in BaMV- and

satBaMV-co-infected A. thaliana (Table 3) as compared with those

in N. benthamiana (Table 1). This finding may be due to the low

accumulation of BaMV and satBaMV in inoculated A. thaliana.

Interestingly, in contrast to the negative-strand dominance of

BaMV siRNAs found in N. benthamiana, the level of positive-strand

vsiRNAs was nearly equal to or slightly higher than those of

negative-strand vsiRNAs in A. thaliana (Table 4). The positive-

strand satsiRNAs were also substantially greater in level than were

negative-strand satsiRNAs, although the accumulation level of

satsiRNAs was low.

Analysis of the whole set of siRNAs, including the endogenous

siRNAs, from A. thaliana revealed the 24-nt siRNAs the most

predominant [23], and 21-nt siRNAs were the second highest in all

treatments, including mock, BaMV, BaMV+BSF4 or +BSL6

infection (Figure 6). However, siRNAs matched to BaMV or

satBaMVs were mainly 21 nt (Figure S4). This result differs from that

of siRNAs from infected N. benthamiana. Most of the siRNAs isolated

from mock-inoculated N. benthamiana were 22 nt but decreased in

level after BaMV inoculation or co-inoculation with satBaMVs,

which was followed by accumulation of the 24-nt siRNAs (Figure 3).

Regarding the distribution of vsiRNAs, most of the BaMV

siRNAs from A. thaliana were derived from the first 59 half of the

genome with or without BSF4 co-inoculation (Figure 7 and data not

shown). This finding is in contrast to results of vsiRNAs from N.

benthamiana being largely generated from the CP and 39 UTR regions

(Figure 5). However, the distribution patterns of BSF4 siRNAs on the

satBaMV genome were similar in N. benthamiana and A. thaliana

(Figures 5B and 7B). In A. thaliana, the mean GC % of BaMV

siRNAs (50.84%) was comparable to that of the viral genome

(50.53%), but that of satBaMV siRNAs (49.81%) was a bit lower.

Confirmation of the abundance and polarities of siRNAs
derived from BaMV in N. benthamiana and A. thaliana by
northern hybridization

The abundant regions of siRNAs derived from BaMV were

further confirmed by probes hybridizing to sense and anti-sense

ORF1 and CP regions of the viral genome, respectively. In this

experiment, RNA samples of BaMV-infected or BaMV- and

satBaMV-co-infected systemic leaves of N. benthamiana at 20 dpi

and inoculated leaves of A. thaliana at 7 dpi were hybridized with

different probes by northern blot analyses. Although different

probes may result in different intensities, the signals obtained in

the northern hybridization (Figure 8) and the abundance of BaMV

siRNAs (Figure 5) showed the same trend. In the systemic leaves of

N. benthamiana, the CP probes showed stronger signals than did the

Figure 4. Comparison of the small RNAs between healthy and
BaMV infected N. benthamiana. Small RNAs were isolated from
healthy (H) or BaMV infected (I) leaves and 59-end labeled with [c-32P]-
ATP. The 59-end labeled small RNAs were separated by electrophoresis
through a 10% acrylamide gel containing 7 M urea. The lower panel
shows the quantity of equal loading by the separation of small RNAs on
1% agarose gel and stained with ethidium bromide. The positions of 22-
and 24- nt RNAs are indicated by arrows.
doi:10.1371/journal.pone.0011928.g004

siRNAs of Virus and sat RNAs
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ORF1 probes, and the CP (+) probe detected more than did the

CP (2) probe, which indicates that vsiRNAs derived from the (2)

strand of the CP region were indeed more abundant. All these

results matched the findings for the siRNAs analyzed along the

genome (Figure 5A, BaMV and BaMV+F4). As well, the CP

probes detected fewer siRNAs than did the ORF1 probes in A.

thaliana inoculated leaves. This finding agreed well with the deep

sequencing results, whereby most of the BaMV siRNAs were

located at the ORF1 region in A. thaliana (Figures 7 and 8).

The DECLs generate similar cleavage sites in the BaMV/
satBaMV genomes in the two different hosts

Although the abundance of siRNA distribution along the BaMV

genomes differed in the two infected plants: N. benthamiana and A.

Figure 5. The abundant distribution of siRNAs on BaMV and satBaMV genomes from infected N. benthamiana. siRNAs derived from the
viral genome of BaMV (A) and satBaMV (B) are shown in red above (positive strand) or green below (negative strand) the horizontal line. X axis
represents the length of the genome, and Y axis the counts of the siRNAs.
doi:10.1371/journal.pone.0011928.g005

Table 3. The amount of siRNAs isolated from inoculated
Arabidopsis thaliana inoculated with water (mock), BaMV
alone or co-inoculated with BSF4 or BSL6.

Mock BaMV BaMV+BSF4 BaMV+BSL6

Total 4,676,816 3,437,925 2,037,033 2,221,999

BaMV 23,714 (0.7%) 29,880 (1.5%) 4,555 (0.2%)

BSF4 1,281(0.1%)

BSL6 1,653 (0.1%)

doi:10.1371/journal.pone.0011928.t003
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thaliana, refined analysis of the siRNA distribution revealed similar

cleavage sites in BaMV or satBaMV, particularly in the 59 or 39

UTRs. For instance, in the 59 UTR of BSF4, satsiRNAs peaked at

the sense RNA nucleotides 100–120 in both A. thaliana and N.

benthamiana co-infected with BaMV and BSF4 (Figure 9A). This

peak is located within the internal loop II and short stem loop B

[45]. Similarly, in the 39 UTR of BSF4, satsiRNAs peaked at

antisense RNA nucleotides 760–780 in both co-infected N.

benthamiana and A. thaliana hosts (Figure 9B). This region resides

between stem-loop B and stem-loop C (SLC) and one strand of

stem region of SLC [46]. From secondary structural analysis of

highly frequent regions within the 59 and 39 UTRs, the structural

preference of DCLs could not be concluded. However, the

predominantly produced 21-nt satsiRNAs in A. thaliana were

replaced with an increasing amount of 22-nt siRNAs at the same

cleavage site in both inoculated and systemic leaves of N.

benthamiana (Figures 9A and 9B). This finding may account for

the 40% of vsiRNAs and satsiRNAs being 22 nt in N. benthamiana

but not in A. thaliana (Figures 2 and S4). These results also

demonstrate that structure or sequence demands of different DCLs

generating 21- and 22-nt siRNAs are similar in N. benthamiana.

Discussion

In this study, we globally analyzed the siRNAs derived from

BaMV and its non-interfering satRNA, BSF4, and interfering

satRNA, BSL6, in two different plants, N. benthamiana and A.

thaliana, by high-throughput sequencing followed by RNA

hybridization analysis. In general, we obtained more than 2

million siRNA sequences from each sample by a combination of

bioinformatic analyses, which provides detailed information about

the interactions among viruses, associated satRNAs and hosts.

Viral siRNAs in interfering satBaMV-co-infected plants
The interfering determinant region of BSL6 was previously

mapped to the AHSL at the 59 UTR of BSL6 [35,36]. The

mechanism of this satBaMV-mediated interference is still under

investigation. Both DI-RNAs of Cymbidium ringspot virus (CymRSV)

and TBSV can activate PTGS [37,47], but the DI-RNA of

CymRSV is a poor target of vsiRNAs [47]. As well, TBSV DI-

RNAs elevated the vsiRNAs, thus saturating the virus silencing

suppressor and increasing the amount of free-form siRNAs [37].

The 59 AHSL of BSL6 may interfere with BaMV accumulation

through a silencing mechanism. If so, we expected to detect

greater vsiRNA and satsiRNA accumulation to target the viral

genomes, followed by reduced accumulation of BaMV. However,

analyses of the vsiRNAs and satsiRNAs in the BSL6-co-inoculated

samples revealed the accumulation of only a few siRNAs in N.

benthamiana (0.1% and 0.2%, respectively) and A. thaliana (0.2% and

0.1%, respectively) (Tables 1, 2, 3, and 4). The low abundance of

vsiRNAs and satsiRNAs of BSL6 and its correlation with the

accumulation of BaMV and satBaMV implies that the downreg-

ulation of BaMV by BSL6 occurs at the step before the production

of siRNAs. In addition, we found similar BaMV small RNA

profiles in size distribution and strand polarity with and without

BSL6 co-infection (Figure 2). These results further suggest that the

BSL6-mediated interference of BaMV accumulation may occur

before the silencing event.

Figure 6. Size distribution of total small RNAs isolated from A. thaliana. Total sRNAs ranging from 17 to 28 nt are shown on the X axis, and
relative percentages are shown on the Y axis. The percentages of sRNAs of different lengths of mock (X), BaMV (&), and BaMV co-inoculated with
BSF4 (m) or BSL6 (6) plants are shown.
doi:10.1371/journal.pone.0011928.g006

Table 4. The polarity of siRNAs isolated from inoculated
Arabidopsis thaliana inoculated with water (mock), BaMV
alone or co-inoculated with BSF4 or BSL6.

BaMV BaMV+BSF4 BaMV+BSL6

BaMV (+) 11,937 15,763 2,725

BaMV (2) 11,777 14,117 1,830

B(+)/B(2) 1.01 1.16 -

satBaMV (+) 999 897

satBaMV (2) 282 756

satB(+)/satB(2) - -

B: BaMV.
satB: satBaMV.
(+): positive strand of virus/satRNA genome.
(2): negative strand of virus/satRNA genome.
‘‘-’’: not determined.
doi:10.1371/journal.pone.0011928.t004
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The activity of hierarchy DCLs among different plant
species

In the systemically infected host N. benthamiana, the siRNAs

derived from BaMV or satBaMVs were mainly 21 and 22 nt

(Figure 2), whereas those in non-systemically infected A. thaliana

were 21 nt (Figure S4). A similar phenomena was observed in

Tobacco rattle virus (TRV)-infected N. benthamiana and A. thaliana

[24]. Further, the endogenous siRNAs from different plants were

predominant in different sizes, for instance, 22 nt in N. benthamiana,

24 nt in A. thaliana [48] and 21 nt in Brassica juncea [43]. This

finding indicates that the major DCL for producing the

endogenous siRNAs is host dependent. Although most endoge-

nous siRNAs were 22 nt in mock-inoculated N. benthamiana, the

DCL4-dependent 21-nt siRNAs and DCL2- and DCL3-depen-

dent 24-nt siRNAs were actively produced after virus infection

(Figure 3). This finding agrees with previous reports that DCL4 is

the major enzyme for generating vsiRNAs against virus infection

in plants [16,18,21,49] and DCL2 for the biogenesis of 24-nt nat-

siRNAs under abiotic and biotic stress [12]. In the fungus

Cryphonectria parasitica infected by a hypovirus, the expression of

DCL2 for the generation of viral siRNAs was greatly induced [50].

This finding supports the notion that DCL enzymes could be

induced after virus infection [50], but they were not commonly

detected, probably because of the expression of a virus-encoded

silencing suppressor [50] or because of the hierarchy and

redundancy of DCLs in plants [21,51].

Figure 7. The distribution of siRNAs on the BaMV (A) and satBaMV (B) genome from A. thaliana. The siRNAs are shown in red above
(positive strand) or in green below (negative strand) the horizontal line. X axis represents the length of the genome, and Y axis represents the counts
of the siRNAs.
doi:10.1371/journal.pone.0011928.g007
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Of note, 24-nt non-viral small RNAs were greatly enriched in

number with virus infection (Figures 3 and 4). Among vsiRNAs

produced in N. benthamiana, about 35–40% were 22-nt siRNAs.

DCL2 may slice viral RNA directly into 22-nt siRNAs for antiviral

activity and also regulate host gene expression by inducing 24-nt

nat-siRNAs under biotic and abiotic stress, and to counteract virus

offense. Because the whole genome sequence of N. benthamiana is

unavailable, whether this large proportion of 24-nt small RNAs

can target the host gene cannot be addressed. In addition, only

about 15% of vsiRNAs were 22 nt, and the 24-nt non-viral small

RNAs were not induced by BaMV infection in A. thaliana (Figures 5

and S4). This discrepancy in sizes of siRNAs in N. benthamiana

versus A. thaliana could be due to far less accumulation of BaMV

and satBaMVs in A. thaliana than in N. benthamiana, thereby

generating fewer 22-nt vsiRNAs and satsiRNAs and correspond-

ing 24-nt siRNA production. However, co-inoculation with non-

interfering and interfering satRNAs would not alter the cleavage

sites of BaMV viral RNA by silencing machinery (Figure S1A).

Taken together, our results indicate that during virus infection or

satRNA co-infection, the predominant siRNAs in N. benthamiana

and A. thaliana differ in size. The activity of host-specific DCLs

could be variable and dynamic, targeting the RNA sequence or

structure preferentially in producing different siRNA profiles.

Viral/satsiRNA asymmetry in strand polarity differs in
different plants

Previously, most studies showed that cloned vsiRNAs originat-

ing from positive-strand RNA are more abundant than are those

from negative-strand RNA, such as in Turnip mosaic virus [52],

Turnip crinkle virus [27,53], Tobacco mosaic virus (TMV) [54], Potato

virus X (PVX) [20], CymRSV [20], CMV [52], satCMV [25] and

Peach latent mosaic viroid (PLMVd) [55]. Also, the vsiRNAs of a DNA

virus, Cauliflower mosaic virus (CaMV) [56], predominately originat-

ed from the translational leader with a secondary structure [56]. A

few examples, such as vsiRNAs of Cucumber yellow virus and

hypovirus-infecting fungi, showed an approximately equal ratio of

positive- to negative-strand RNA [19,50]. As well, only potato

spindle tuber viroid (PSTVd) vsiRNAs are predominately derived

from negative-strand RNA [57]. However, our results showed

about 80% ratio of positive- to negative- strand siRNAs of BaMV

in N. benthamiana infected with BaMV alone or with non-interfering

or interfering satBaMV (Table 2); nevertheless, in A. thaliana,

vsiRNAs of BaMV showed slightly higher abundance from

positive-strand RNA (Table 4). The different asymmetry in strand

polarity was also observed in TRV-infected N. benthamiana and A.

thaliana [24]. This finding may be due to the accessibility of DCLs

to various structural RNA molecules differing among hosts.

Another possibility may be the different optimal temperature for

growth of N. benthamiana and A. thaliana. The viral/sat RNA

structure may fold differently under different temperatures and

lead to the different viral/satsiRNA high peaks in these two

different plants.

Nucleotide preference of siRNAs
Regarding the selectivity of DCLs to the cutting site, internal

stability at the 59 end of the siRNAs plays an important role for

incorporation into the RISC in studying the thermodynamics of

functional siRNAs [58]. However, our GC % results of siRNAs or

59 ends of siRNAs of BaMV/satBaMV could not show any bias in

dicing activity (Figure S3). One explanation is that most of the

siRNAs we analyzed but not those loaded into the RISCs were

stable products after amplification and cleavage. This notion is

supported by the study of TRV, in which a large proportion of

TRV siRNAs were derived from processing viral dsRNAs

generated by the action of endogenous RDRs or direct RDR

products [24]. However, robust GC biases of TuMV and CSV

Figure 8. Northern blot analyses of siRNAs derived from BaMV in N. benthamiana and A. thaliana. Detection of BaMV siRNA to confirm the
abundant regions in BaMV or satBaMV-co-inoculated N. benthamiana and A. thaliana by different probes as indicated. Total RNA of 25 mg from BaMV-
inoculated or satBaMV-co-inoculated N. benthamiana or 45 mg from BaMV-inoculated or satBaMV-co-inoculated A. thaliana were loaded onto 19%
acrylamide/7 M urea gel. The same blot was used for detection by different probes. All films were processed overnight, except A. thaliana probe with
CP (+).
doi:10.1371/journal.pone.0011928.g008
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siRNAs were observed in infected leaves of B. juncea and D.

glomerata [43,44]. The DICERs, which produce the vsiRNAs,

could have preference for GC-rich regions, and this GC

preference is considered an ancient feature of plant DCLs [44].

The controversial results infer that the GC preference of plant

DCLs for viral RNAs remains debatable.

In terms of the the 59 terminal nucleotide involved in sorting

siRNA and thus guiding strands into AGO complexes, our data

revealed no strong bias in siRNAs of BaMV/satBaMV. However,

Donaire et al. [52] reported sense vsiRNAs enriched with a 59-

terminal U in plants infected with Melon necrotic spot virus,

CymRSV, TRV, CMV, Pepper mild mottle virus and Tomato yellow

leaf curl virus. However, plants infected with Watermelon mosaic virus,

TuMV and PVX, showed equal proportions of sense vsiRNAs

with a 59 terminal U and A and antisense vsiRNAs with a 59

terminal U, A or C [59]. Because sorting of siRNA guides strands

into AGO complexes by the 59 terminal nucleotide, data from

Donaire et al. and our study suggested that vsiRNAs can be

recruited into multiple AGO-containing complexes involving

AGO1, which favors a 59 terminal U; AGO2 and AGO4, which

favor a 59 terminal A; and AGO5, which favors a 59 terminal C

[60,61]. Thus, different AGOs may play different roles in selecting

sense and antisense vsiRNAs into RISC.

The role of RNA silencing in the pathogenicity of viruses
and satRNAs in different hosts

Delicate interactions among host, virus and satRNAs result in

varied virus-induced symptoms. For satCMV, satsiRNAs with

specific structural and conformational features play important

biological roles in the regulation of host and helper-virus gene

Figure 9. The distribution of siRNAs from sense and antisense BSF4 59 (A) and 39 (B) UTRs. The 21, 22 and 24 nt siRNAs derived from the
genome of satBaMV BSF4 are shown in yellow, green and orange above (positive strand) or below (negative strand) the horizontal line, respectively. X
axis represents the length of the genome, and Y axis represents the counts of the siRNAs.
doi:10.1371/journal.pone.0011928.g009
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expression [25]. Host genes can be targeted and cleaved by TMV-

derived siRNAs [54]. To this end, we predicted and scored host

genes targeted by siRNAs of BaMV and satBaMV (both BSF4 and

BSL6) (Figure S5) [54]. Some disease-related genes, such as several

LRR family disease-resistance proteins and a GTP/RNA binding

protein were the unique target of BSL6 siRNAs. Although these

findings need to be further confirmed, interfering satBaMV may

potentially manipulate the RNA interference machinery to

generate BSL6-specific siRNAs that can target and regulate host

genes and lead to downregulation of BaMV.

Surprisingly, the abundant distribution of BaMV siRNAs

differed between N. benthamiana and A. thaliana but not on co-

infection with BSF4 or BSL6 satBaMVs. The major target of

DCLs resides within the BaMV genome region encoding the

replicase in A. thaliana and the CP region in N. benthamiana

(Figures 5A, 7A and 8). This finding may explain why A. thaliana is

less susceptible to BaMV than is N. benthamiana. However,

regardless of the different distribution of vsiRNA among the

whole viral genome in different hosts, similar cleavage sites were

found in the 59 and 39 UTRs of the BaMV and satBaMV genome

(Figure 9). Although previous studies claimed that highly

structured regions were more susceptible to DCLs [25,56], the

59 UTRs of BaMV and satBaMV are not the major spots of viral/

satsiRNAs in both N. benthamiana and A. thaliana (Figures 5A, 5B,

7A, and 7B). The fewer viral/satsiRNAs generated from the 59

UTR may be due to its less accessibility to DCLs by the

complexity of proteins or protein–RNA or RNA–RNA interaction

involved in replication and translation. Such stabilized RNA

structures of 59 and 39 UTRs thus lead DCL to access the same

cleavage sites among UTR regions in different hosts.

Materials and Methods

Plant materials and virus inoculation
N. benthamiana plants were grown in a growth chamber with a

16-h-light/8-h-dark cycle at 25uC. Three leaves of 1-month-old N.

benthamiana, typically at the four-leaf stage, were used for

inoculation, 4 plants for each experiment. Methods used for

inoculation were previously reported [29,31], except that inocu-

lum contained 0.1 mg viral RNA extracted from BaMV-S virion

derived from BaMV-S infectious clone pCB-infected N. benthami-

ana [62,63] or the addition of 0.1 mg satBaMV transcript of pBSF4

[31] or pBSL6 [35]. Three inoculated leaves were harvested at 8

dpi, and the systemic leaves were harvested at 20 dpi for northern

blot analysis, small RNA northern blot analysis and small RNA

sequencing.

A. thaliana Col-0 seeds were sterilized and grown in solid MS

medium for 8 days, then transferred to soil and grown in a growth

chamber with 22/16uC day/night temperature cycles and a 16-h-

light/8-h-dark cycle. Typically, for each set of experiments, 12 to

20 1-month-old A. thaliana plants were used for inoculation. Four

to five rosette leaves of each plant were mechanically inoculated

with BaMV-S viral RNA (0.1 mg/leaf) alone or co-inoculated with

satBaMV transcripts (0.1 mg/leaf). All inoculated leaves were

harvested at 7 dpi for northern blot analysis, small RNA northern

blot analysis and small RNA sequencing.

RNA isolation and northern blot analysis
Total RNA was extracted with use of TRI Reagent (Sigma-

Aldrich, St. Louis, MO, USA) from 1 g inoculated leaves at 8 dpi

and systemic leaves at 20 dpi from N. benthamiana plants or

inoculated leaves at 7 dpi from A. thaliana. An amount of 2.5 mg

total RNA of N. benthamiana or 5 mg total RNA of A. thaliana was

used for BaMV and satBaMV detection by northern blot analysis.

For northern blot analysis, total RNA was denatured with use of

glyoxal. Electrophoresis was conducted in 1% agarose gels. RNA

was transferred to a HybondTM-N nylon membrane (GE

Healthcare, Buckinghamshire, UK) by the capillary method with

3 M sodium chloride and 0.01 N NaOH and immobilized by UV

cross-linking.

Hybridization was performed as described with probes labeled

with [32P]CTP [31]. The 32P-labeled BaMV-specific probe, L

probe, was prepared by linearization of pBaHB with HindIII, then

transcription with SP6 RNA polymerase, which is complementary

to the 39 ends of positive-strand BaMV RNA [64]. The S probe,

specific for the detection of positive-strand satBaMV RNA, was

transcribed from EcoRI-linearized pBSHE by use of T7 RNA

polymerase [31].

Small RNA northern blot analysis
For BaMV and satBaMV small RNA detection, low-molecular-

weight (LMW) RNA from 25 mg total RNA was enriched by 20%

PEG-8000/3M NaCl. An equal volume of 50% deionised

formamide with bromophenol blue was added to the LMW

RNA and boiled at 95uC for 5 min, then placed on ice until being

loaded into the 19% acrylamide/7 M urea gel. LMW RNA was

transferred to a HybondTM-N nylon membrane by a semi-dry

electroblotting system (Thermo Scientific Owl, New York, USA)

and immobilized by UV cross-linking. Blots were prehybridized

and hybridized at 42uC by use of ULTRAhybH-Oligo (Ambion).

The [32P]CTP-labeled ORF1 and CP probe were prepared as

described previously [31,64]. Briefly, BaMV 1 to 1024 nt was

cloned into pGEMT-easy as an ORF1 probe. To reduce the size

of the ORF1 and CP probes and to increase the hybridization

efficiency for BaMV and satBaMV small RNAs, these probes were

chemically hydrolyzed by use of alkaline carbonate buffer

(8.5 mM Na2CO3 with 1 mM NaHCO3, pH 10.2) at 60uC for

1 hr 30 min before hybridization.

Preparation of 59-end labeled small RNAs
To label the 59-end of the isolated total small RNAs, two mg of

small RNAs were dephosphorylated with 2 units of alkaline

phosphatase at 37uC for 1 h, followed by phenol/chloroform

extraction, and then ethanol precipitation prior to kinase

treatment [65]. The kinasing reaction was performed in a total

volume of 20 ml containing 3 ml (10 Ci/ml) [c-32P]-ATP and 5

units of T4 polynucleotide kinase, incubated at 37uC for 30 min,

and then heat inactivated at 65uC for 10 min. The labeled small

RNA were flowed into the G50 column (GE Healthcare, UK) to

remove the free [c-32P]-ATP. The 59-end labeled small RNAs

were resolved on 10% acrylamide gel containing 7 M urea. RNA

markers with 23 and 21 nt were 59-end labeled by the same

method.

Small RNA library sequencing
After total RNA was extracted from plants as indicated, small

RNA libraries were generated following the manufacturer’s

protocol (Illumina, California, USA). Briefly, for each library,

10 mg of total RNA was size fractionated on a 15% tris-borate-

EDTA urea polyacrylamide gel, and a 15–30 base-pair fraction

was excised and purified. The 59 RNA adapter (59-GUUCAGA-

GUUCUACAGUCCGAC GAUC-39) was first ligated to the

RNA pool and a 40–60 base-pair fraction was gel purified. Then,

the 39 RNA adapter (59- pUCGUAUGCCGUCUUCUG-

CUUGU-39) was ligated to the isolated RNA, and the 60–100

base-pair fraction was excised and purified. Reverse-transcription

PCR was used to create cDNA constructs based on the small

RNAs with adapter molecules on both ends. The amplified PCR
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products were then gel purified. The purified PCR products were

quantified on the Agilent DNA 1000 chip and sequencing was

performed by use of an Illumina 1G Genome Analyzer (Illumina,

California, USA).

Bioinformatic analysis of small RNAs
The Illumina 1G sequencing reads were first trimmed to

remove the adaptor sequence. The exact matches of the adapter

sequence in the reads were identified in 3 steps as follows: 1) The

adapter sequence was used as a probe, which allows for identifying

exact match inserts. 2) If no adapter sequence was found, the last

bases of the reads were probed successively with the first five bases

of the adapter (minimum 5 bases) until a match was found, thus

identifying inserts up to 30 bases. 3) Finally, the remaining reads

were searched for no exact matches of the adapter. The first 4

bases of the adapter were used as a probe; the following bases were

used to validate the adapter presence, and 70% of them had to be

identical to the adapter sequence. The trimmed sequencing reads

were then blasted to the BaMV (AF018156), BSF4 (AY205227)

and BSL6 (AY205210) satBaMV, and only sequences with perfect

matches were considered BaMV and satBaMV small RNAs.

Supporting Information

Figure S1 The distribution of siRNAs on the BaMV (A) and

satBaMV (B) genome from BaMV and BSF4- or BSL6-co-

inoculated N. benthamiana. The siRNAs derived from positive-

strand RNA (+) are shown in red above or negative-strand (2) in

green below the horizontal line. The X axis represents the length

of the genome, and the Y axis represents the counts of the siRNAs.

S: systemic leaves. I: inoculated leaves.

Found at: doi:10.1371/journal.pone.0011928.s001 (7.52 MB

TIF)

Figure S2 The distribution of siRNAs in the 59 UTRs of BSF4

(A) and BSL6 (B) satBaMV from BaMV and BSF4- or BSL6-co-

inoculated N. benthamiana. The siRNAs derived from positive-

strand RNA (+) are shown above or negative-strand RNA (2)

below the horizontal line. The X axis represents the length of the

59 UTR of satBaMV, and the Y axis represents the counts of the

siRNAs. The secondary structures of 59 UTRs of BSF4 and BSL6

satBaMV are shown in the right. The hypervariable (HV) regions

folding into conserved apical hairpin stem loop (AHSL) are shown

in red. S: systemic leaves. I: inoculated leaves.

Found at: doi:10.1371/journal.pone.0011928.s002 (10.07 MB

TIF)

Figure S3 The siRNA GC contents of BaMV (A) and satBaMV

(B) genome from BaMV or BaMV and BSF4- or BSL6-co-

inoculated N. benthamiana (Nb) and A. thaliana (At). The X axis

represents different samples, and the Y axis represents the GC

percentage of the siRNAs.

Found at: doi:10.1371/journal.pone.0011928.s003 (7.22 MB TIF)

Figure S4 Size distribution of siRNAs derived from BaMV or

satBaMV-co-inoculated A. thaliana. The total siRNAs were isolated

from BaMV or BaMV and BSF4- or BSL6-co-inoculated leaves.

(A) siRNAs matched to positive-strand (+) BaMV (left panel) or

negative-strand (2) BaMV (right panel). (B) siRNAs matched to

satBaMV (+) or satBaMV (2) genome. The X axis represents the

length of siRNAs, and the Y axis represents the counts of siRNAs.

The relative percentages of siRNAs of 21 and 22 nt to total

siRNAs are shown above the bars.

Found at: doi:10.1371/journal.pone.0011928.s004 (5.47 MB TIF)

Figure S5 Scores of host genes predicted as targets for BaMV in

BaMV or BaMV- and satBaMV-co-inoculated A. thaliana. The X

axis represents the counts of siRNAs and the Y axis represents the

scores of the predicted host gene targeted by BaMV siRNAs.

Found at: doi:10.1371/journal.pone.0011928.s005 (3.72 MB TIF)
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