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Pilot-Aided Multicarrier Channel Estimation via
MMSE Linear Phase-Shifted

Polynomial Interpolation
Kun-Chien Hung and David W. Lin, Senior Member, IEEE

Abstract—Current wireless multicarrier systems commonly
adopt pilot-aided channel estimation, for which a simplest
and least restrictive technique is polynomial interpolation in
the frequency domain. For channels with large delay spreads,
however, the performance of low-order polynomial interpolation
suffers from modeling error. The problem may be remedied by
adding a linear phase shift to the interpolator, or equivalently,
a “window shift" in the time domain. We derive a method
to estimate the optimal window shift, in the minimum mean-
square error (MMSE) sense, for polynomial-interpolative channel
estimation of arbitrary order. As a practical application, we
show how to apply the resultant technique to Mobile WiMAX
downlink channel estimation. In addition, we propose a method
to automatically select the interpolation order based on some
estimated MSE.

Index Terms—Channel estimation, delay estimation, orthog-
onal frequency-division multiple access (OFDMA), orthogonal
frequency-division multiplexing (OFDM), polynomial interpola-
tion.

I. INTRODUCTION

COHERENT multicarrier transmission requires channel
state information. Hence wireless multicarrier systems

today commonly transmit pilots to facilitate channel estima-
tion. Pilots are subcarriers that carry known signals. They may
be dispersed in frequency and/or in time. A typical channel
estimator starts by estimating the channel responses at the
pilot subcarriers. Then it “fleshes out" the estimate for other
subcarriers in some way. Three primary types of pilot-aided
channel estimation methods are model-based, Wiener filtering,
and channel-independent interpolation.

Model-based methods attempt to identify the the multipath
delays. The channel is then estimated via projection onto the
so-called “delay subspace." Such methods can achieve good
performance with few pilots, but two main concerns are the
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complexity and the robustness of delay subspace estimation
[1]–[4], especially when the multipath delays are not sample-
spaced.

Wiener, or linear minimum mean-square error (LMMSE),
filtering, has been considered widely [5]–[9]. However, it re-
quires the channel correlation function, which raises problems
not only in the complexity of correlation estimation but also
in the impact of estimation accuracy on channel estimation
performance. A suboptimal solution is to use a predefined
shape for the correlation function, such as that associated with
a uniform [9] or an exponential power-delay profile (PDP) [5],
[10]. Nevertheless, one still needs to estimate the parameters
of the PDP.

Channel-independent interpolation methods seek to recon-
struct the channel responses at data subcarriers by channel-
independent interpolation of the channel estimates at pilot
subcarriers. The simplest of them is low-order polynomial
interpolation in the frequency domain [11]. The maximum-
likelihood (ML) interpolator [7] is a more sophisticated mem-
ber of them, but it requires that the number of pilots be no
smaller than the length of the channel impulse response.

In short, an ideal channel estimator should require as few
pilots as possible, have good estimation perfomance and
low computational complexity, and be robust to variations in
channel and operating conditions. Existing techniques are open
to improvement in one or another of these aspects. In this
work, we consider the lowest-complexity approach, namely,
polynomial interpolation, which also appears to be the most
robust and most broadly applicable of all approaches. We
seek to enhance its performance without significant increase
in complexity. We assume that the synchronization of carrier
frequency and multicarrier symbol timing is done prior to
channel estimation. Further, we assume that the carrier fre-
quency synchronization is rather accurate while the symbol
timing synchronization may be less so. These are reasonable
assumptions, for example, in downlink (DL) Mobile WiMAX
transmission [12], [13].

To begin, we first note that, of all polynomial interpolation
schemes, a simplest and most commonly considered is linear
interpolation. For this scheme, it has been found that the
channel estimation performance may suffer greatly not only in
poor symbol synchronization [14] but also when the channel
has a large delay spread [15]. One way to alleviate the problem
is to use a higher interpolation order [11]. The reason why
different interpolation orders may give different performance
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Fig. 1. Comparison of different ways of interpolation in terms of the
equivalent time-windowing effects.

can be interpreted via some well-known results in signal
processing theory, which not only provide a useful perspective
for understanding and analysis of the phenomenon but also
hint at improved interpolator design. Specifically, polynomial
interpolation amounts to a sort of linear filtering [16]. Since
convolution in the frequency domain corresponds to multipli-
cation in the time domain, different orders of interpolation of
the frequency response correspond to different kinds of win-
dowing on the channel impulse response. Fig. 1 is a conceptual
illustration [17]. Linear interpolation (dashed line) corresponds
to a smaller window size than quadratic interpolation (dash-
dot line) and hence results in greater distortion of the channel
response. However, if one can shift the window corresponding
to linear interpolation by some amount to better capture the
time range of significant channel response samples (solid line),
then one may improve its performance. The same also applies
to higher-order interpolation.

Now the question is: how to determine the optimal window
shift for a given interpolation order? As shifting a signal in
time amounts to modulating its frequency spectrum with a
single complex exponential, Hsieh and Wei [11] adopt the
single frequency estimators of Kay [18] to find the desired
offset. Unfortunately, for channel estimation these estimators
are not optimal in the MSE sense [15]. We will derive the
optimal window shift that attains MMSE in channel estimation
for arbitrary polynomial order. Another interesting question is
how the required window shifting (in time) or the equivalent
linear phase rotation (in frequency) may be realized. Earlier
studies [11], [15] have employed straightforward linear phase
rotation in the frequency domain. We will see that, when the
amount of shift is an integer multiple of the sample period, a
much simpler alternative exists which involves mere circular
shifting of signal samples.

It is instinctively expected that the MMSE in channel esti-
mation should depend on the amount of channel noise. In fact,
later analysis will show that, in high channel noise, higher-
order interpolation may be affected so more adversely than
lower-order interpolation as to yield worse channel estimates.
Therefore, it would be desirable if the interpolation order can

be selected adaptively according to the channel condition to
attain the best possible channel estimation performance. We
will also address this issue.

In summary, the contributions of this paper are: 1) a
low-complexity channel estimation technique based on linear
phase-shifted polynomial interpolation, 2) specialization of
the technique to DL Mobile WiMAX transmission, and 3)
a technique for adaptive selection of the polynomial inter-
polation order. In what follows, Section II considers the
estimation of MMSE window shift under given polynomial
order. Section III evaluates its performance in noisy channel
under comb-type pilots. Section IV adapts the technique to suit
the Mobile WiMAX DL signal, which has an interesting pilot
structure that necessitates some additional design work. We
also investigate the adaptive selection of interpolation order
in this context. Finally, Section V concludes the paper.

II. MMSE WINDOW SHIFTING

Consider a sampled equivalent lowpass channel impulse
response

ℎ(𝑛) =

𝐿−1∑
𝑙=0

𝛼𝑙𝛿(𝑛− 𝑙) (1)

where 𝑛 and 𝑙 are integers in units of the sampling period
𝑇𝑠, 𝛼𝑙 is the complex gain of path 𝑙, and (𝐿 − 1)𝑇𝑠 is the
maximum path delay. The corresponding frequency response
is given by

𝐻(𝑓) =

𝐿−1∑
𝑙=0

𝛼𝑙𝑒
−𝑗2𝜋𝑙𝑓/𝑁 (2)

where 𝑁 is the size of discrete Fourier transform (DFT)
used in multicarrier transformation and the division by 𝑁
in the exponent term normlizes the subcarrier spacing in the
multicarrier system to unity as well as normalizes the period
of 𝐻(𝑓) in 𝑓 to 𝑁 .

Consider comb-type pilot allocation and let the 𝑚th pilot
subcarrier be located at frequency 𝑝0 + 𝑚𝐹 where 𝑝0 is
the lowest pilot subcarrier frequency and 𝐹 is the spacing
of pilot subcarriers. (The treatment can be readily extended
to noncomb-type pilots, but the equations become somewhat
cumbersome.) Let �̂�(𝑝) denote the channel estimate at any
pilot subcarrier 𝑝, however it may be obtained. Then conven-
tional polynomial interpolation between two pilot locations
𝑝 = 𝑝0 +𝑚𝐹 and 𝑝+ 𝐹 = 𝑝0 + (𝑚+ 1)𝐹 can be written as

�̂�(𝑝+ 𝑛) =

𝐾∑
𝑘=0

𝑐𝑛𝑘 �̂�(𝑝+ 𝑥𝑛𝑘) (3)

where 0 < 𝑛 < 𝐹 , 𝐾 is the interpolation order, 𝑥𝑛𝑘 is an
integer multiple of 𝐹 that defines the 𝑘th pilot location used
in interpolation, and 𝑐𝑛𝑘 is the corresponding interpolation
coefficient. Usually, 𝑥𝑛𝑘 should be as small in magnitude as
possible so that the interpolating pilots 𝑝+𝑥𝑛𝑘 are as close to
the frequency 𝑝+𝑛 as possible, but this point does not matter
for now. The coefficients that yield error-free interpolation of
any polynomial function of order 𝐾 or below are known [19].
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They are real and can be written in the Vandermonde form as

c′𝑛𝐾 ≜ [𝑐𝑛0 𝑐𝑛1 ⋅ ⋅ ⋅ 𝑐𝑛𝐾 ]

=
[
1 𝑛 ⋅ ⋅ ⋅ 𝑛𝐾

]︸ ︷︷ ︸
≜v′

𝑛𝐾

⎡
⎢⎢⎢⎣

1 𝑥𝑛0 ⋅ ⋅ ⋅ 𝑥𝐾𝑛0
1 𝑥𝑛1 ⋅ ⋅ ⋅ 𝑥𝐾𝑛1
...

...
. . .

...
1 𝑥𝑛𝐾 ⋅ ⋅ ⋅ 𝑥𝐾𝑛𝐾

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
≜X𝑛𝐾

−1

, (4)

where ′ denotes transpose, or in the Lagrange form as [20,
§25.2.2]

𝑐𝑛𝑘 =

𝐾∏
𝑚=0,𝑚 ∕=𝑘

𝑛− 𝑥𝑛𝑚
𝑥𝑛𝑘 − 𝑥𝑛𝑚

, 0 ≤ 𝑘 ≤ 𝐾. (5)

Now consider phase-rotated interpolation corresponding to
a time window delay of 𝜏 samples, where the optimal value of
𝜏 is to be found. (In principle, 𝜏 needs not be an integer.) To
see how it affects (3), consider an arbitrary frequency-domain
filter with input 𝑎(𝑓), output 𝑏(𝑓), and impulse response 𝑐(𝑓).
A 𝜏 -sample delay of the time window corresponding to 𝑐(𝑓)
amounts to a linear phase rotation of the frequency-domain
impulse response to 𝑒−𝑗2𝜋𝜏𝑓/𝑁𝑐(𝑓). That is, the input-output
relation is changed from 𝑏(𝑓) =

∑
𝑓 ′ 𝑐(𝑓−𝑓 ′)𝑎(𝑓 ′) to 𝑏(𝑓) =∑

𝑓 ′ 𝑒−𝑗2𝜋𝜏(𝑓−𝑓 ′)/𝑁𝑐(𝑓 − 𝑓 ′)𝑎(𝑓 ′). Identifying 𝑓 with 𝑝+ 𝑛
and 𝑓 ′ with 𝑝+ 𝑥𝑛𝑘, we get, for (3),

�̂�(𝑝+ 𝑛)

=

𝐾∑
𝑘=0

𝑒−𝑗2𝜋𝜏(𝑛−𝑥𝑛𝑘)/𝑁 𝑐𝑛𝑘�̂�(𝑝+ 𝑥𝑛𝑘)

= 𝑒−𝑗2𝜋𝜏(𝑝+𝑛)/𝑁
𝐾∑

𝑘=0

𝑐𝑛𝑘

[
𝑒𝑗2𝜋𝜏(𝑝+𝑥𝑛𝑘)/𝑁 �̂�(𝑝+ 𝑥𝑛𝑘)

]
. (6)

By substituting 𝑝 + 𝑥𝑛𝑘 with 𝑓 in the last bracketed term,
we see that this term indicates a phase rotation of the pilot
subcarrier channel estimates by an amount corresponding to
a 𝜏 -sample time advance. The right-hand side (RHS) of (6)
can thus be interpreted as indicating a four-step procedure for
channel estimation under given 𝜏 as follows: 1) obtain the pilot
subcarrier channel estimates �̂�(𝑝 + 𝑥𝑛𝑘) by some method,
2) phase-rotate the pilot subcarrier channel estimates by an
amount corresponding to a 𝜏 -sample time advance (as indi-
cated by the bracketed term in (6)), 3) perform conventional
polynomial interpolation to obtain the data subcarrier channel
estimates (as indicated by the last summation in (6)), and 4)
phase-derotate the channel estimates from the last step by an
amount corresponding to a 𝜏 -sample time delay (as indicated
by the premultiplication by 𝑒−𝑗2𝜋𝜏(𝑝+𝑛)/𝑁 in (6)).

As mentioned previously, when 𝜏 is an integer, a simple
time-domain equivalent exists for steps 2 and 4. Specifically,
for an integer 𝜏 , if we shift the received signal circularly by
−𝜏 samples before taking its DFT, the channel response is
effectively advanced by 𝜏 samples. Working with the circularly
shifted signal, the phase rotation and derotation can be saved.
More details will be given in Section IV when we consider
Mobile WiMAX DL transmission. But for convenience, the
theoretical derivation below employs the formulation based
on phase rotation.

Now we turn to the key issue of determining 𝜏 . For this
we first find how the channel estimation MSE depends on 𝜏
under arbitrary polynomial interpolation order. Then we derive
a suboptimal solution for 𝜏 and consider its computational
complexity.

A. MSE as Function of Window Shift

Consider advancing the channel impulse response by 𝜏
samples. The resultant frequency response is given by

𝐻𝜏 (𝑓) ≜ 𝑒𝑗2𝜋𝜏𝑓/𝑁𝐻(𝑓) =
𝐿−1∑
𝑙=0

𝛼𝑙𝑒
−𝑗2𝜋(𝑙−𝜏)𝑓/𝑁 . (7)

Laying together the first RHS in (7) and the bracketed term
in (6), we see that the bracketed term may be viewed as an
estimate of 𝐻𝜏 (𝑝+ 𝑥𝑛𝑘). More generally, let

�̂�𝜏 (𝑓) = 𝑒𝑗2𝜋𝜏𝑓/𝑁 �̂�(𝑓). (8)

Then (6) can be rewritten as

�̂�𝜏 (𝑝+ 𝑛) =

𝐾∑
𝑘=0

𝑐𝑛𝑘�̂�𝜏 (𝑝+ 𝑥𝑛𝑘). (9)

The MSE in �̂�𝜏 (𝑝 + 𝑛) (as estimate of 𝐻𝜏 (𝑝 + 𝑛)) is the
same as that in �̂�(𝑝+ 𝑛) (as estimate of 𝐻(𝑝+ 𝑛)), for the
two estimates are related by mere phase rotation. Hence we
derive the former. To concentrate on the modeling error of
interpolation, we ignore the effect of channel noise for the
moment. That is, we assume temporarily that �̂�𝜏 (𝑝+ 𝑥𝑛𝑘) =
𝐻𝜏 (𝑝 + 𝑥𝑛𝑘). In fact, mathematics below shows that white
channel noise does not affect the optimal window shift.

The 𝐾th-order Taylor series expansion of 𝐻𝜏 (𝑝+𝑛) about
a subcarrier 𝑝 is given by

𝐻𝜏 (𝑝+ 𝑛) =

𝐾∑
𝑘=0

𝐻
(𝑘)
𝜏 (𝑝)𝑛𝑘

𝑘!
+ 𝜌𝐾(𝑝+ 𝑛) (10)

where 𝐻
(𝑘)
𝜏 (𝑝) denotes the 𝑘th derivative of 𝐻𝜏 (𝑝) and

𝜌𝐾(𝑝 + 𝑛) is the remainder term. By the integral form of
the remainder term [20, §25.2.25],

𝜌𝐾(𝑝+ 𝑛) =

∫ 𝑛

0

𝐻
(𝐾+1)
𝜏 (𝑝+ 𝑢)

𝐾!
(𝑛− 𝑢)𝐾𝑑𝑢

=

𝐿−1∑
𝑙=0

𝛼𝑙

[−𝑗2𝜋(𝑙− 𝜏)

𝑁

]𝐾+1

𝑒−𝑗2𝜋(𝑙−𝜏)𝑝/𝑁

⋅
∫ 𝑛

0

𝑒−𝑗2𝜋(𝑙−𝜏)𝑢/𝑁

𝐾!
(𝑛− 𝑢)𝐾𝑑𝑢. (11)

From (9) and (4), the interpolation error for 𝐻𝜏 (𝑝 + 𝑛) is
given by

𝐻𝜏 (𝑝+ 𝑛)− �̂�𝜏 (𝑝+ 𝑛)

= 𝐻𝜏 (𝑝+ 𝑛)− v′
𝑛𝐾X−1

𝑛𝐾 ⋅ vec
[
�̂�𝜏 (𝑝+ 𝑥𝑛0),

�̂�𝜏 (𝑝+ 𝑥𝑛1), ⋅ ⋅ ⋅ , �̂�𝜏 (𝑝+ 𝑥𝑛𝐾)
]

(12)

where vec[⋅] denotes a vector of the items given in the brackets.
Since no error arises in interpolating a polynomial function of
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order 𝐾 or below, all errors in (12) are from the remainder
terms 𝜌𝐾(𝑝+ 𝑛) and 𝜌𝐾(𝑝+ 𝑥𝑛𝑘), 0 ≤ 𝑘 ≤ 𝐾 . Hence

𝐻𝜏 (𝑝+ 𝑛)− �̂�𝜏 (𝑝+ 𝑛)

= 𝜌𝐾(𝑝+ 𝑛)− v′
𝑛𝐾X−1

𝑛𝐾 ⋅ vec [𝜌𝐾(𝑝+ 𝑥𝑛0),

𝜌𝐾(𝑝+ 𝑥𝑛1), ⋅ ⋅ ⋅ , 𝜌𝐾(𝑝+ 𝑥𝑛𝐾)] . (13)

From (11), if subcarriers 𝑝 and 𝑝+𝑛 are spaced closely com-
pared to the coherence bandwidth such that 𝑒−𝑗2𝜋(𝑙−𝜏)𝑢/𝑁 ≈
1 for 0 ≤ 𝑢 ≤ 𝑛, then∫ 𝑛

0

𝑒−𝑗2𝜋(𝑙−𝜏)𝑢/𝑁

𝐾!
(𝑛− 𝑢)𝐾𝑑𝑢 ≈ 𝑛𝐾+1

(𝐾 + 1)!
(14)

and thence

𝜌𝐾(𝑝+ 𝑛) ≈ 𝑛𝐾+1

(𝐾 + 1)!

⋅
𝐿−1∑
𝑙=0

𝛼𝑙

[−𝑗2𝜋(𝑙− 𝜏)

𝑁

]𝐾+1

𝑒−𝑗2𝜋(𝑙−𝜏)𝑝/𝑁 . (15)

In fact, (15) gives an approximation of 𝜌𝐾(𝑝+𝑛) for any value
of 𝑛, not limited to 0 < 𝑛 < 𝐹 , although its accuracy should
tend to diminish as the magnitude of 𝑛 increases. Using it to
approximate 𝜌(𝑝 + 𝑥𝑛𝑘) (0 ≤ 𝑘 ≤ 𝐾) also and substituting
the result into (13), we get

𝐻𝜏 (𝑝+ 𝑛)− �̂�𝜏 (𝑝+ 𝑛)

≈ 1

(𝐾 + 1)!

[
𝑛𝐾+1 − v′

𝑛𝐾X−1
𝑛𝐾x𝑛𝐾

]
𝜉𝐾(𝑝, 𝜏) (16)

where

x𝑛𝐾 =
[
𝑥𝐾+1
𝑛0 , 𝑥𝐾+1

𝑛1 , ⋅ ⋅ ⋅ , 𝑥𝐾+1
𝑛𝐾

]′
, (17)

𝜉𝐾(𝑝, 𝜏) =
𝐿−1∑
𝑙=0

𝛼𝑙

[−𝑗2𝜋(𝑙 − 𝜏)

𝑁

]𝐾+1

𝑒−𝑗2𝜋(𝑙−𝜏)𝑝/𝑁 . (18)

The interpolation MSE at a subcarrier located an offset 𝑛 from
a pilot can be estimated by taking the average of ∣𝐻𝜏 (𝑝+𝑛)−
�̂�𝜏 (𝑝 + 𝑛)∣2 over all pilots. It is shown in Appendix A that
the bracketed term in (16) is equal to

∏𝐾
𝑘=0 (𝑛− 𝑥𝑛𝑘). As a

result,

⟨⟨∣𝐻𝜏 (𝑝+ 𝑛)− �̂�𝜏 (𝑝+ 𝑛)∣2⟩⟩

≈
[∏𝐾

𝑘=0 (𝑛− 𝑥𝑛𝑘)

(𝐾 + 1)!

]2
⟨⟨∣𝜉𝐾(𝑝, 𝜏)∣2⟩⟩

=

[∏𝐾
𝑘=0 (𝑛− 𝑥𝑛𝑘)

(𝐾 + 1)!

]2

⋅
𝐿−1∑
𝑙=0

(2𝜋)2𝐾+2

𝑁2𝐾+2
∣𝛼𝑙∣2(𝑙 − 𝜏)2𝐾+2

︸ ︷︷ ︸
≜𝜎2

𝜉𝐾(𝜏)

(19)

where ⟨⟨⋅⟩⟩ denotes averaging over all pilot subcarriers. The
second equality in (19) indicates that the MSE is dominated
by the channel paths with larger values of ∣𝛼𝑙∣2(𝑙 − 𝜏)2𝐾+2.

B. Estimation of Optimal Window Shift

From the above results, the channel estimation MSE can be
minimized by minimizing 𝜎2

𝜉𝐾(𝜏). By elementary calculus,
the approximately optimal window shift 𝜏 can be obtained by
solving

𝑑𝜎2
𝜉𝐾(𝜏)

𝑑𝜏
= − (2𝜋)2𝐾+2(2𝐾 + 2)

𝑁2𝐾+2

𝐿−1∑
𝑙=0

∣𝛼𝑙∣2(𝑙 − 𝜏)2𝐾+1

= 0. (20)

Unfortunately, this requires knowing the multipath gains and
delays, which are most likely unknown until after channel
estimation. To sidestep this dilemma, note that since

𝐻(𝐾+1)
𝜏 (𝑓) =

𝐿−1∑
𝑙=0

𝛼𝑙

[−𝑗2𝜋(𝑙− 𝜏)

𝑁

]𝐾+1

𝑒−𝑗2𝜋(𝑙−𝜏)𝑓/𝑁 ,

(21)
by Parseval’s theorem we get 𝜎2

𝜉𝐾(𝜏) = ⟨∣𝐻(𝐾+1)
𝜏 (𝑓)∣2⟩

where ⟨⋅⟩ denotes averaging over all frequencies. Thus min-
imizing 𝜎2

𝜉𝐾(𝜏) is equivalent to minimizing ⟨∣𝐻(𝐾+1)
𝜏 (𝑓)∣2⟩.

While 𝐻
(𝐾+1)
𝜏 (𝑓) is usually not available, either, it can be

approximated, for example, by the 𝐾+1st forward difference
given by

𝐷𝐾+1𝐻𝜏 (𝑓)

=
1

𝐹𝐾+1

𝐾+1∑
𝑘=0

(−1)𝑘
(
𝐾 + 1

𝑘

)
𝐻𝜏 (𝑓 + (𝐾 + 1− 𝑘)𝐹 ). (22)

The target of minimization can then be approximated by

𝜎2
𝜉𝐾(𝜏) ≈ 𝛾

≜ 1

𝐹 2𝐾+2
⋅
〈〈∣∣∣∣∣

𝐾+1∑
𝑘=0

(−1)𝑘

⋅
(
𝐾 + 1

𝑘

)
�̂�𝜏 (𝑝+ (𝐾 + 1− 𝑘)𝐹 )

∣∣∣∣2
〉〉

. (23)

Some algebraic manipulations result in

𝛾 =
1

𝐹 2𝐾+2
[𝑃𝐾𝑅0 + 2𝛾𝐾(𝜏)] (24)

where 𝑃𝐾 = 2𝐾+1(2𝐾 + 1)!!/(𝐾 + 1)!, 𝑅𝑘 = ⟨⟨�̂�(𝑝 +
𝑘𝐹 )�̂�∗(𝑝)⟩⟩, and

𝛾𝐾(𝜏) = ℜ
{

𝐾+1∑
𝑚=1

(−1)𝑚𝐴𝐾𝑚𝑒
−𝑗2𝜋𝑚𝐹𝜏/𝑁𝑅𝑚

}
(25)

with ℜ{𝑎} denoting the real part of quantity 𝑎, 𝑚!! = 𝑚(𝑚−
2)(𝑚 − 4) ⋅ ⋅ ⋅𝑥 where 𝑥 = 2 for even 𝑚 and 𝑥 = 1 for odd
𝑚, and

𝐴𝐾𝑚 =
𝐾+1∑
𝑘=𝑚

(
𝐾 + 1

𝑘

)(
𝐾 + 1

𝑘 −𝑚

)

=
2𝐾+1(2𝐾 + 1)!!(𝐾 + 1)!

(𝐾 + 1−𝑚)!(𝐾 + 1 +𝑚)!
. (26)

Noting that only 𝛾𝐾(𝜏) depends on 𝜏 , we may estimate the
optimal window shift as

𝜏 = argmin
𝜏

𝛾𝐾(𝜏). (27)
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TABLE I
ORDER-OF-MAGNITUDE COMPARISON OF CHANNEL ESTIMATOR

COMPLEXITY

Method No. of Real Multiplications

Proposed 2(𝐾 + 1)(𝑁 +𝑀 + 𝐿/𝑔)
ML with radix-2 FFT 2𝑀 log2 𝑀 + 2𝑁 log2 𝑁

ML with radix-4 FFT 3𝑀
2

log2 𝑀 + 3𝑁
2

log2 𝑁

For linear, quadratic and cubic interpolators, we have

𝛾1(𝜏) = ℜ{
𝑒−𝑗2𝜃𝑅2 − 4𝑒−𝑗𝜃𝑅1

}
, (28)

𝛾2(𝜏) = ℜ{−𝑒−𝑗3𝜃𝑅3 + 6𝑒−𝑗2𝜃𝑅2 − 15𝑒−𝑗𝜃𝑅1

}
, (29)

𝛾3(𝜏) = ℜ{
𝑒−𝑗4𝜃𝑅4 − 8𝑒−𝑗3𝜃𝑅3 + 28𝑒−𝑗2𝜃𝑅2

−56𝑒−𝑗𝜃𝑅1

}
, (30)

where 𝜃 = 2𝜋𝐹𝜏/𝑁 . To compute 𝜏 by (27), one way is
to solve the equation 𝑑𝛾𝐾(𝜏)/𝑑𝜏 = 0 for 𝜏 that minimizes
𝛾𝐾(𝜏). Unfortunately, algebraic solution exists only in the
case of linear interpolation, for it is the only case where the
equation has order under 5 [15]. Numerical solutions have
to be resorted to in other cases. This being so, one might
as well search over the range [0, 𝐿 − 1] for the value of
𝜏 that minimizes 𝛾𝐾(𝜏) rather than find it through solving
𝑑𝛾𝐾(𝜏)/𝑑𝜏 = 0. The density of searched points can be chosen
according to the desired accuracy. By experience, we find that
a suitable granularity is roughly 2 to 6 sample periods.

C. Computational Complexity

In summary, the proposed procedure to compute 𝜏 for 𝐾th-
order interpolation is as follows: 1) Given pilot subcarrier
channel response estimates �̂�(𝑝), calculate 𝑅𝑘 = ⟨⟨�̂�(𝑝 +
𝑘𝐹 )�̂�∗(𝑝)⟩⟩, 1 ≤ 𝑘 ≤ 𝐾+1, and 2) search over the maximum
range of path delays at a chosen granularity for the delay value
𝜏 that minimizes 𝛾𝐾(𝜏) and let 𝜏 be equal to it. Step 1 requires
on the order of 4(𝐾 + 1)𝑀 real multiplications (RMULTs)
where 𝑀 is the number of pilot subcarriers used to compute
𝑅𝑘. For step 2, the number of 𝛾𝐾(𝜏) values to be computed
is on the order of 𝐿/𝑔 where 𝑔 is the search granularity.
The 𝑒𝑗𝜃 values corresponding to the searched delay values
can be precomputed and stored. Then step 2 requires on the
order of 2(𝐾+1)𝐿/𝑔 RMULTs. Thus the total computational
complexity to obtain 𝜏 is on the order of (𝐾+1)(4𝑀+2𝐿/𝑔)
RMULTs. In most system designs, it should be a fraction of
the order of 2(𝐾+1)(𝑁 −𝑀) RMULTs for the interpolation
proper.

It is of interest to compare the above with the complexity
of ML interpolation. Given pilot subcarrier channel estimates
�̂�(𝑝), ML interpolation can be achieved by taking the 𝑀 -
point inverse DFT (IDFT) of �̂�(𝑝), truncating the result to
have maximum delay 𝐿 − 1, and taking the 𝑁 -point DFT.
Table I gives a comparison in number of RMULTs, assuming
that radix-2 or radix-4 fast Fourier transform (FFT) can be
used to carry out the IDFT and DFT in ML interpolation.
Note that ML interpolation requires that 𝑀 > 𝐿− 1.

In current systems, the channel path delays usually do
not vary significantly over several multicarrier symbols. Nor
do the path gains vary violently over consecutive multicar-
rier symbols. These can be exploited to further reduce the

complexity of the proposed technique. For example, after
initialization, we may perform incremental search for the
optimal 𝜏 within a small range around the previous solution,
rather than conducting a full search over the entire interval.
Indeed, the optimal window shift may need be estimated only
once every few symbols.

III. PERFORMANCE WITH COMB-TYPE PILOTS

Now consider the overall MSE of channel estimation by the
proposed method in noisy channel for a system with comb-
type pilots. Two reasons why we consider such a system are
its relative ease of analysis and its ability to provide insights
concerning the proposed method’s performance.

To start, note that the estimation error arises from three
sources, namely, 1) error from optimal interpolation (i.e., the
minimum modeling error 𝐻𝜏 (𝑝+ 𝑛) − �̂�𝜏 (𝑝+ 𝑛) attainable
with optimal window shift), 2) use of the suboptimal window
shift 𝜏 of (27), and 3) the channel noise (which has been omit-
ted thus far). The effect of source 2 (suboptimal estimation
of window shift) defies a simple and general characterization
because, as can be seen from the derivation from (19) to (27),
it depends on the channel property in a complicated way. For-
tunately, experience shows that when the pilots are reasonably
dense, this error source contributes a minor amount in the total
MSE. So we omit its effect in the analysis. Actually, we do
not have an exact expression for source 1 (error of optimal
interpolation), either, but only an approximation as given in
(19). Thus the analysis is necessarily approximate. We assume
that the channel noise is additive white Gaussian, i.e., AWGN,
and independent of the modeling error.

For simplicity, let the pilot spacing 𝐹 be an integer fraction
of 𝑁 . And let 𝜎2

𝑒𝐾(𝑛) denote the RHS of (19). Then from (19),
the average MSE due to modeling error is approximately

𝜎2
𝑒𝐾 ≜ 1

𝐹 − 1

𝐹−1∑
𝑛=1

𝜎2
𝑒𝐾(𝑛)

=
1

𝐹 − 1

𝐹−1∑
𝑛=1

[∏𝐾
𝑘=0(𝑛− 𝑥𝑛𝑘)

(𝐾 + 1)!

]2
︸ ︷︷ ︸

≜𝑞𝐾(𝐹 )

⋅𝜎2
𝜉𝐾(𝜏𝑜) (31)

where 𝜏𝑜 is the approximately optimal delay defined by (20).
To be more specific of the values of 𝑞𝐾(𝐹 ), we need to define
𝑥𝑛𝑘 specifically. For this, consider letting 𝑥𝑛𝑘 lie in the range
−⌊𝐾/2⌋𝐹 to ⌊(𝐾+1)/2⌋𝐹 so that it is as small in magnitude
as possible. And discard the nonpilot subcarriers that are too
near a bandedge that there do not exist 𝐾 + 1 pilots in the
above range for interpolation use. Then for linear, quadratic,
and cubic interpolations we get

𝑞1(𝐹 ) =
1

120
𝐹 (𝐹 + 1)(𝐹 2 + 1), (32)

𝑞2(𝐹 ) =
1

7560
𝐹 (𝐹 + 1)(2𝐹 − 1)(2𝐹 + 1)(4𝐹 2 + 5), (33)

𝑞3(𝐹 ) =
1

362880
𝐹 (𝐹 + 1)

⋅(103𝐹 6 + 103𝐹 4 + 61𝐹 2 + 21), (34)

respectively. But 𝜎2
𝜉𝐾(𝜏𝑜) is channel-dependent and no general

formulas can be given.
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For the contribution of the AWGN, consider (3). Let the
pilot signals have unity magnitude and let the pilot fre-
quency responses 𝐻(𝑝) be estimated by the least-squares (LS)
method, that is, by simply dividing the received signal value at
each pilot subcarrier 𝑝 by the pilot signal value there. Then the
MSE in each �̂�(𝑝) is equal to the AWGN variance, which we
denote by 𝜎2

𝜂 . Hence, the AWGN contribution in the channel
estimation MSE at subcarrier 𝑝+ 𝑛 is

𝜎2
𝑤𝐾(𝑛) ≜ 𝜎2

𝜂 ∥c𝑛𝐾∥2 = 𝜎2
𝜂 v

′
𝑛𝐾 (X𝑛𝐾X′

𝑛𝐾)
−1

v𝑛𝐾 (35)

(where c𝑛𝐾 is as defined in (4)) and the average over all data
subcarriers is given by 𝜎2

𝑤𝐾 =
∑𝐹−1

𝑛=1 𝜎
2
𝑤𝐾(𝑛)/(𝐹 − 1). In

particular,

𝜎2
𝑤1 =

(
0.667− 0.333

𝐹

)
𝜎2
𝜂, (36)

𝜎2
𝑤2 =

(
0.8− 0.2

𝐹
+

0.05

𝐹 2
+

0.05

𝐹 3

)
𝜎2
𝜂, (37)

𝜎2
𝑤3 =

(
0.776− 0.224

𝐹
− 0.058

𝐹 2
− 0.058

𝐹 3
− 0.013

𝐹 4

+
0.013

𝐹 5

)
𝜎2
𝜂. (38)

The overall approximate channel estimation MSE is given
by 𝜎2

𝑒𝐾 + 𝜎2
𝑤𝐾 .

A. Numerical Examples

As an example, consider an orthogonal frequency-division
multiplexing (OFDM) system with bandwidth = 10 MHz, DFT
size 𝑁 = 1024, cyclic prefix (CP) length = 𝑁/8 = 128, and
pilot spacing 𝐹 = 4. The window shift is obtained by search
over all even-sample delays between 0 and 127. That is, the
search granularity is 2 samples. We simulate the SUI-4 and
SUI-5 PDPs [21], whose power profiles are [0,−4,−8] and
[0,−5,−10] (in dB), respectively, and whose delay profiles
are (approximately) [0, 14, 36] and [0, 45, 112] (in samples),
respectively. The path coefficients are Rayleigh and block-
static (constant over one symbol period). A total of 2000
simulation runs are used to obtain the MSE statistics for each
signal-to-noise (SNR) value.

Fig. 2 shows histograms of the estimated window shifts
for different interpolation orders over SUI-4 and SUI-5. Most
shifts are quite a distance from zero, and they span a broad
range within the limits of the delay spread, especially for
the lower interpolation orders. Together with the MSE results
below, this confirms the importance of proper window shifting
on interpolation performance.

Fig. 3 illustrates the channel estimation performance of the
proposed technique and compares it with conventional poly-
nomial interpolation, LMMSE (4 taps), and ML (truncating
to 128 samples between IDFT and DFT), where the MSE is
normalized (NMSE) relative to the channel power gain. For
LMMSE channel estimation, two conditions are simulated,
one with filter coefficients calculated using the exact channel
correlation functions (the “exact LMMSE" curves) and the
other with them calculated using the channel correlation
function corresponding to a uniform PDP of length equal
to the CP (the “approx. LMMSE" curves). For SUI-4, the
approximate analysis for phase-shifted interpolation yields
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Fig. 2. Histograms of estimated window shifts for different orders of
polynomial interpolations at 30 dB SNR. Top: over SUI-4; bottom: over SUI-
5.

almost indistinguishable results from simulation. That for
conventional polynomial interpolation is less accurate, as can
be expected. At higher SNR values, conventional polynomial
interpolation suffers significant loss from the MSE floors due
to modeling errors, whereas phase-shifted interpolation can
maintain a −1 slope in NMSE to much higher SNR values.
For SUI-5, which has a greater delay spread than SUI-4, the
approximate analysis tends to overestimate the MSE. And
the error floors begin at lower SNR values than in SUI-4.
However, the MSE floors of phase-shifted interpolation are
much lower than that of conventional interpolation for all
interpolation orders.

Not surprisingly, the best performer at any SNR is either
the ML or the exact LMMSE. For ML channel estimation,
since there are 256 pilots and we truncate to 128 samples
between IDFT and DFT, its NMSE is uniformly better than
the SNR by 3 dB. From Table I, phase-shifted polynomial
interpolation takes on the order of 5376 (for 𝐾 = 1) to
10752 (for 𝐾 = 3) RMULTs, whereas ML interpolation on
the order of 24576 (with radix-2 FFT) or 18432 (with radix-
4 FFT) RMULTs. Regarding LMMSE channel estimation,
exact LMMSE is not realizable. The approximate LMMSE
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Fig. 3. NMSE of different channel estimation methods, where “PS" stands
for “phase-shifted." Top: under SUI-4 PDP; bottom: under SUI-5 PDP.
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Fig. 4. NMSE of different channel estimation methods under the SUI-4 PDP
with 25 samples of delay, where “PS" stands for “phase-shifted."

solution is quite poor in SUI-4 compared to phase-shifted
polynomial interpolation, but is comparable to phase-shifted
cubic interpolation in SUI-5 that has a longer delay spread.
In a channel with reasonably short delay spread, such as SUI-
4, phase-shifted cubic interpolation can provide comparable
performance to exact LMMSE in medium to high SNR.

To verify that the proposed method is able to deal with
inaccurate OFDM symbol timing, we simulate SUI-4 with 25
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Fig. 5. Comparison of NMSE in channel estimation of the proposed
method for finding the window shift with brute-force search at integer-sample
granularity, where “PS" stands for “phase-shifted."

samples of initial delay. Fig. 4 shows the resultant performance
of various channel estimators. Comparing with Fig. 3 (top
plot), we see that the performance of the proposed method, as
well as that of ML and exact LMMSE, stays unchanged. But
conventional polynomial interpolation yields a much degraded
performance due to the mechanism explained via Fig. 1.
In contrast, the approximate LMMSE yields an improved
performance, presumably because the 25 samples of initial
delay makes the PDP closer to being uniform.

To see how much suboptimality the several approximations
in Sections II-A and B may lead to, we compare the NMSE
in channel estimation of the proposed method for finding
the window shift to that achieved with brute-force search at
integer-sample granularity. It turns out that the difference is
very small. Fig. 5 shows the result for the SUI-5 channel.

IV. PERFORMANCE UNDER THE MOBILE WIMAX
DOWNLINK SIGNAL STRUCTURE

The Mobile WiMAX specifications furnish an interesting
setting to test the performance of the proposed technique,
especially since the number of pilots therein may be so few
that ML interpolation cannot be applied to channels with
moderate to long delay spreads.

The DL transmission of Mobile WiMAX is organized
into “subframes." A subframe consists of an all-pilot OFDM
preamble symbol followed by an even number of OFDM data
symbols. The subcarriers in a data symbol are divided into
“clusters" that contain 14 consecutive subcarriers each. A DL
user signal consists of a number of subcarriers from a number
of pseudo-randomly distributed (in frequency) clusters. The
pattern of pilot subcarriers alternates in temporally successive
OFDM symbols. Fig. 6 illustrates how pilots are placed in
clusters. For convenience, in this section let 𝐻(𝑠, 𝑛) denote
the channel response at the 𝑛th subcarrier of some cluster in
symbol 𝑠. In a typical system with 10 MHz bandwith and
𝑁 = 1024 [12], [13], there can be as few as 24 pilots in an
OFDM symbol.

As the pilots are no longer of the comb type, the channel
estimation method described earlier needs to be adjusted, and
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Fig. 6. Cluster structure in Mobile WiMAX downlink and corresponding
channel estimation method. Each circle indicates a subcarrier and dark circles
indicate pilot subcarriers. Four temporally consecutive clusters are shown,
from top to bottom. The 14 subcarriers in a cluster are ordered from left to
right.

so is the MSE analysis. Below we tailor the proposed channel
estimation technique to suit the given DL signal structure
and investigate the ensuing performance. We also propose a
method to adaptively select the interpolation order for the best
performance.

A. Channel Estimator Design

By the pseudo-random distribution of clusters, two “neigh-
boring" clusters in a DL signal may not be adjacent in
frequency. Thus it is simpler to perform channel estimation on
clusters at different frequency positions separately than jointly.
Now, in each cluster, there are only two pilot subcarriers
whose distance varies with symbol index. In a typical system
with 10 MHz bandwidth and 𝑁 = 1024, two adjacent subcar-
riers are approximately 10 kHz apart. Hence in odd-numbered
symbols the pilots are spaced by over 100 kHz, which is about
the same order of magnitude as the coherence bandwidth of
a typical urban outdoor channel [22]. Linear interpolation,
even with optimal window shift, is not expected to yield good
performance over this distance. In even-numbered symbols,
extrapolation is needed for the many data subcarriers that
lie outside the span of the pilots. Such extrapolation should
be minimized because it amplifies the noise, for at least one
extrapolation coefficient is greater than 1. Therefore, a good
channel estimator should not limit itself to using the two
only pilots in the current cluster, but should avail itself of
the channel information at the two other pilot frequencies in
temporally close clusters.

Concerning the window shift 𝜏 , since an integer value
suffices for performance and can simplify the computation,
we let 𝜏 be an integer. In addition, to save computation, we
estimate 𝜏 only once per DL subframe from the preamble
symbol employing the method of Section II-B. The resultant
channel estimation method for the data symbols is as follows.
For convenience, we describe it for the middle two (dash-
boxed) symbols illustrated in Fig. 6 together.

1) Recall the value of 𝜏 that has been estimated using the
preamble symbol.

2) Circularly shift the signal samples in symbols 1 to 4 by
−𝜏 samples before taking their DFT. This is equivalent
to effecting a channel with phase-rotated frequency

response 𝐻𝜏 (𝑠, 𝑛) = 𝑒𝑗2𝜋𝜏𝑓(𝑛)/𝑁𝐻(𝑠, 𝑛) where 𝑓(𝑛)
denotes the normalized frequency of subcarrier 𝑛. (We
have used an adapted version of the notations in (7)
here.)

3) Do LS channel estimation for pilot subcarriers in sym-
bols 1 to 4. This yields, for each pilot with time-
frequency index (𝑠, 𝑛), a phase-rotated channel estimate
�̂�𝜏 (𝑠, 𝑛) = 𝑒𝑗2𝜋𝜏𝑓(𝑛)/𝑁 �̂�(𝑠, 𝑛). (We have used an
adapted version of the notations in (8) here.)

4) Linearly interpolate in time to obtain �̂�𝜏 (2, 0),
�̂�𝜏 (2, 12), �̂�𝜏 (3, 4) and �̂�𝜏 (3, 8).

5) Perform conventional 𝐾th-order interpolation (and ex-
trapolation) in frequency to obtain channel estimates
for the remaining subcarriers in symbols 2 and 3.
This corresponds to the operation described in (9), or
equivalently, that in the last summation in (6).

Note that we do not have to carry out the phase-derotation
indicated by the premultiplication with 𝑒−𝑗2𝜋𝜏(𝑝+𝑛)/𝑁 in the
RHS of (6), for by the circular signal shifting in step 2,
the phase-rotated channel becomes what is needed for signal
detection, not the phase-derotated. Note also that step 4
(temporal interpolation) results in four reference data points
per cluster. Hence in step 5 we may employ an interpolation
order up to three. To minimize the modeling error, in 𝐾th-
order interpolation of a data subcarrier’s channel response the
𝐾 +1 nearest pilots’ responses are used. The performance of
the proposed channel estimator is analyzed in Appendix B.

B. Simulation Examples

We simulate a system with carrier frequency = 2.5 GHz,
bandwidth = 10 MHz, DFT size = 1024, and cyclic prefix
length = 128. We let a DL subframe contain 24 OFDM
symbols following the preamble. Again, we simulate the
SUI-4 and SUI-5 PDPs with block-static fading at a rate
corresponding to 100 km/h of mobile speed.

Fig. 7 shows some channel estimation performance results.
(See curves marked by the first six legend items in each plot.)
For SUI-4, the approximate analysis matches the simulation
results almost exactly. For SUI-5, which has a larger delay
spread than SUI-4, the approximate analysis is less accurate,
but still follows the general behavior of the simulation results.
The channel estimators show poorer performance under SUI-
5 than under SUI-4, but the relative performance of the three
interpolation orders are characteristically similar in both cases.
In either channel, the MSE floors of lower-order interpolation
start to manifest at lower SNR values than higher-order inter-
polation. As a rule, in higher pilot SNR, higher-order interpo-
lators perform better by having lower frequency interpolation
errors, but in lower pilot SNR, lower-order interpolators are
better due to smaller AWGN effects.

C. Adaptive Selection of Interpolation Order

That the best interpolation order depends on the channel
SNR suggests adaptive selection of the interpolator order.
From the analysis in Appendix B, this can be accomplished
if we can estimate 𝜎2

𝜂 , 𝜎
2
𝑡 , and 𝜎2

𝜉𝐾(𝜏𝑜) and use the results to
predict the MSE via (44), (47), (48), and (49). The interpola-
tion order that yields the least MSE can then be chosen.



HUNG and LIN: PILOT-AIDED MULTICARRIER CHANNEL ESTIMATION VIA MMSE LINEAR PHASE-SHIFTED POLYNOMIAL INTERPOLATION 2547

5 10 15 20 25 30 35 40
−40

−35

−30

−25

−20

−15

−10

−5

Pilot SNR (dB)

N
M

S
E

 (
dB

)

 

 
Linear (Simulation)
Linear (Analysis)
Quad. (Simulation)
Quad. (Analysis)
Cubic (Simulation)
Cubic (Analysis)
Adaptive (Simulation)
Approx. LMMSE (Simul.)
Exact LMMSE (Simul.)

5 10 15 20 25 30 35 40
−35

−30

−25

−20

−15

−10

−5

Pilot SNR (dB)

N
M

S
E

 (
dB

)

 

 
Linear (Simulation)
Linear (Analysis)
Quad. (Simulation)
Quad. (Analysis)
Cubic (Simulation)
Cubic (Analysis)
Adaptive (Simulation)
Approx. LMMSE (Simul.)
Exact LMMSE (Simul.)

Fig. 7. NMSE of channel estimation in WiMAX DL transmission at 100
km/h mobile speed with fixed-order and adaptive interpolation. Top: over
SUI-4 channel; bottom: over SUI-5 channel.

As the window shift 𝜏 is determined once per DL subframe
(see Section IV-A), the interpolation order is also determined
once per DL subframe. As the quantity 𝜎2

𝑡 (variance of
temporal interpolation error) is a function of the time-variation
of the channel, it is hard to estimate using only the preamble
symbol. Thus we disregard it (and the center RHS term in
(49)) in the selection of the interpolation order. For the other
two quantities, 𝜎2

𝜂 (variance of LS channel estimation error)
can be relatively easily estimated using the null subcarriers
in the preamble. As to 𝜎2

𝜉𝐾(𝜏𝑜), from (23) and (24) we can
estimate it from the preamble symbol as

�̂�2
𝜉𝐾(𝜏𝑜) =

1

𝐹 2𝐾+2

[
𝑃𝐾�̂�0 + 2min

𝜏
𝛾𝐾(𝜏)

]
(39)

where �̂�0 = ⟨⟨∣�̂�(𝑓)∣2⟩⟩ − �̂�2
𝜂 with �̂�2

𝜂 being an estimate of
𝜎2
𝜂 , and 𝑃1 = 6, 𝑃2 = 20, and 𝑃3 = 70. In summary, for

each DL subframe, we partially predict the MSEs for linear,
quadratic, and cubic interpolations based on (49), with its
center RHS term omitted, using the received preamble symbol.
The interpolation order yielding the smallest predicted partial
MSE is selected.

The performance of adaptive interpolation over the SUI-
4 and SUI-5 channels is also illustrated in Fig. 7. We see

that, by and large, the proposed scheme can choose the
optimal interpolation order, though at times it may make
an unfavorable decision. For comparison, the figure also
shows the performance of 4-tap LMMSE estimation based
on exact channel correlation (marked “exact LMMSE") and
that based on a correlation function corresponding to uniform
PDP of length equal to CP (marked “approx. LMMSE").
Again, the exact LMMSE has the best performance of all,
but is unrealizable. On the other hand, the performance of
the approximate LMMSE estimator is more erratic, because a
uniform PDP may or may not be close to the characteristics
of the instantaneous channel response at any given time.

V. CONCLUSION

We considered channel estimation by polynomial inter-
polation for multicarrier transmission. We showed that, by
shifting the effective time window by a proper amount, the
performance could be improved significantly. We derived a
method to estimate the optimal window shift for arbitrary
interpolation order. The method operates on frequency-domain
quantities and is thus particularly suitable for pilot-aided
multicarrier systems. It can be used where ML interpolation
cannot for scarcity of pilots.

As a practical example, we considered the structure of
Mobile WiMAX downlink signal and specialized the proposed
technique for it. We also proposed a way to carry out adaptive
selection of interpolation order based on some estimated MSE
values. Simulation results showed that the adaptive scheme
could yield nearly optimal performance over a wide range
of SNR values. It may even compare favorably to LMMSE
channel estimation.

APPENDIX A
SIMPLIFICATION OF

[
𝑛𝐾+1 − v′

𝑛𝐾X−1
𝑛𝐾x𝑛𝐾

]
Let z = [𝑧(𝑥𝑛0), 𝑧(𝑥𝑛1), ⋅ ⋅ ⋅ , 𝑧(𝑥𝑛𝐾)]

′ where 𝑧(𝑛) ≜
𝑛𝐾+1 − v′

𝑛𝐾X−1
𝑛𝐾x𝑛𝐾 . Then

z = x𝑛𝐾 − [v𝑥0𝐾 ,v𝑥1𝐾 , ⋅ ⋅ ⋅ ,v𝑥𝐾𝐾 ]
′
X−1

𝑛𝐾x𝑛𝐾

= x𝑛𝐾 −X𝑛𝐾X−1
𝑛𝐾x𝑛𝐾 = 0. (40)

Thus 𝑥𝑛𝑘 is a root of 𝑧(𝑛) ∀𝑘 ∈ {0, ⋅ ⋅ ⋅ , 𝐾}. Now that 𝑧(𝑛)
is a 𝐾 + 1st-order polynomial in 𝑛 by definition, we have

𝑧(𝑛) = 𝐶
𝐾∏

𝑘=0

(𝑛− 𝑥𝑛𝑘) (41)

for some 𝐶. Further, since the 𝑛𝐾+1 term in 𝑧(𝑛) has unity
coefficient by definition, 𝐶 = 1.

APPENDIX B
PERFORMANCE ANALYSIS FOR THE PROPOSED WIMAX

CHANNEL ESTIMATOR

Four factors contribute to the channel estimation error.
They are, in order of appearance in the algorithm steps, 1)
suboptimality in the estimated window shift (introduced in
step 1), 2) the AWGN (introduced in step 3), 3) modeling
error due to temporal interpolation (introduced in step 4), and
4) modeling error due to frequency interpolation (introduced
in step 5). Compared to the analysis in Section III, the only
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additional factor is item 3. However, because of it the AWGN
propagates among the subcarriers differently than in the earlier
analysis. The temporal interpolation error itself propagates
through step 5, too. Moreover, the pilots used for frequency
interpolation in step 5 are chosen somewhat differently than
in Section III and the bandedge subcarriers are no longer
discarded. In short, we will need to redo some analysis. Again,
item 1 is difficult to analyze but, fortunately, constitutes a
minor contribution in the total MSE. Thus only the other three
factors are analyzed. We assume that these three errors are
uncorrelated.

First, consider the AWGN. It enters channel estimator
computation through the LS channel estimation at the pi-
lot subcarriers. Again, let 𝜎2

𝜂 denote the noise variance of
LS channel estimation at a pilot. This noise propagates
to other subcarriers via step 4 (temporal interpolation) and
step 5 (frequency interpolation). Via step 4, it contaminates
�̂�𝜏 (𝑠, 𝑛) where (𝑠, 𝑛) ∈ {(2, 0), (2, 12), (3, 4), (3, 8)}. Since
�̂�𝜏 (𝑠, 𝑛) = [�̂�𝜏 (𝑠−1, 𝑛)+�̂�𝜏(𝑠+1, 𝑛)]/2, the noise variance
in �̂�𝜏 (𝑠, 𝑛) is given by

𝜎2
𝑤𝐾(𝑠, 𝑛) =

(
1

2

)2

𝜎2
𝜂 +

(
1

2

)2

𝜎2
𝜂 =

1

2
𝜎2
𝜂 (42)

for all 𝐾 . Via step 5, it results in a noise variance

𝜎2
𝑤𝐾(𝑠, 𝑛) =

𝐾∑
𝑘=0

𝑐2𝑛𝑘𝜎
2
𝑤𝐾(𝑠, 𝑥𝑛𝑘) (43)

where 𝑠 ∈ {2, 3}, 𝑛 ∈ {1, 2, 3, 5, 6, 7, 9, 10, 11, 13}, and
𝑥𝑛𝑘 ∈ {0, 4, 8, 12}, with 𝑐𝑛𝑘 indexed similarly to (3). Av-
eraging over all data subcarriers, we obtain the average noise
variance as

𝜎2
𝑤1 = 0.5130𝜎2

𝜂, 𝜎
2
𝑤2 = 0.6699𝜎2

𝜂, 𝜎
2
𝑤3 = 0.8121𝜎2

𝜂, (44)

where the second subscript to 𝜎 gives the frequency interpo-
lation order 𝐾 as before (and similarly below).

Next, consider the modeling error in temporal interpolation.
Its mean-square value is

𝜎2
𝑡𝐾(𝑠, 𝑛)

= 𝐸

∣∣∣∣𝐻𝜏 (𝑠, 𝑛)− 1

2
[𝐻𝜏 (𝑠− 1, 𝑛) +𝐻𝜏 (𝑠+ 1, 𝑛)]

∣∣∣∣2 (45)

for (𝑠, 𝑛) ∈ {(2, 0), (2, 12), (3, 4), (3, 8)} for all 𝐾 . With
Rayleigh faded paths [15], [22],

𝜎2
𝑡𝐾(𝑠, 𝑛) =

𝐿−1∑
𝑙=0

𝐴2
𝑙

[
3

2
− 2𝐽0(2𝜋𝑓𝑙) +

1

2
𝐽0(4𝜋𝑓𝑙)

]

≈ 3𝜋4

2

𝐿−1∑
𝑙=0

𝑓4
𝑙 𝐴

2
𝑙 ≜ 𝜎2

𝑡 (46)

where 𝐴2
𝑙 = 𝐸∣𝛼𝑙∣2, 𝑓𝑙 is the peak Doppler shift of path 𝑙

times the OFDM symbol period, 𝐽0(⋅) is the Bessel function
of the first kind of order 0, and the approximation is obtained
by expanding the Bessel function into a second-order Taylor
series. Assume that the channel responses at different subcar-
riers are uncorrelated. Then a relation similar to (43) exists
concerning the propagation of the temporal modeling error in
the frequency domain via step 5. We get the average MSE as

𝜎2
𝑡1 = 0.4531𝜎2

𝑡 , 𝜎
2
𝑡2 = 0.5577𝜎2

𝑡 , 𝜎
2
𝑡3 = 0.6525𝜎2

𝑡 . (47)

Finally, consider the modeling error in frequency interpo-
lation. The MSE at any data subcarrier is as given in (19),
but the averages are different from that given in (31) due to
the difference in choice of interpolating pilots as well as the
presence of extrapolation for subcarrier 13. Straightforward
numerical calculation yields the following average MSE:

𝜎2
𝑒1 = 2.6458 𝜎2

𝜉1(𝜏
𝑜),

𝜎2
𝑒2 = 12.8125 𝜎2

𝜉2(𝜏
𝑜),

𝜎2
𝑒3 = 93.0820 𝜎2

𝜉3(𝜏
𝑜). (48)

Put together, the overall average channel estimation MSE
is given by

𝜎2
𝐾 = 𝜎2

𝑤𝐾 + 𝜎2
𝑡𝐾 + 𝜎2

𝑒𝐾 . (49)
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