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How Much Coherent Interval Should be Dedicated
to Non-Redundant Diagonal Precoding for

Blind Channel Estimation in
Single-Carrier Block Transmission?

Jwo-Yuh Wu, Member, IEEE

Abstract—Transmit precoding is a key technique for facilitat-
ing blind channel estimation at the receiver but the impact due
to precoding on the channel capacity is scarcely addressed in
the literature. In this paper we consider the single-carrier block
transmission with cyclic prefix, in which a recently proposed
diagonal-precoding assisted blind channel estimation scheme
via covariance matching is adopted to acquire the channel
information. It is shown that, when perfect channel knowledge
is available at the receiver, the optimal noise resistant precoder
proposed in the literature incurs the worst-case capacity penalty.
When the coherent interval is finite, channel mismatch occurs due
to finite-sample covariance matrix estimation. Thus, we aim to
determine how much of the coherent interval should be dedicated
to precoding in order to trade channel estimation accuracy for
the maximal capacity. Toward this end, we leverage the matrix
perturbation theory to derive a closed-form capacity measure
which explicitly takes account of the channel uncertainty in
the considered blind estimation setup. Such a capacity metric
is seen to be a complicated function of the precoding interval.
To facilitate analysis, an approximate formula for the derived
capacity measure is further given. This allows us to find a
closed-form estimate of the capacity-maximizing precoding time
fraction, and can also provide insights into the optimal tradeoff
between channel estimation accuracy and achievable capacity.
Numerical simulations are used for evidencing the proposed
analytic study.

Index Terms—Blind channel estimation; channel capacity;
precoding; single-carrier block transmission; cyclic prefix; ma-
trix perturbation analysis; sample covariance matrix; circulant
matrix.

I. INTRODUCTION

A. Motivation and Paper Contributions

BLIND channel estimation is widely known as a
bandwidth-efficient alternative as opposed to the training

technique for acquiring the channel information at the re-
ceiver [11]. Among the existing blind estimation methods, the
transmit-precoding assisted solutions attracted considerable
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attention in recent years [11]. Various channel estimation
algorithms associated with different precoding schemes have
been proposed, either in the serial transmission case [7], [17],
[25], [30], or in the block transmission counterpart, e.g., [4],
[18], [23], [26], [31], [33]. Unlike the multi-channel receive-
diversity estimation algorithms, e.g., [20], [28], the transmit-
precoding assisted approach is quite robust against channel
order mismatch and the channel zero locations [17], [25],
[30]. Nevertheless, most of the precoding based methods are
developed under the assumption that certain second-order
statistics of the received signal can be perfectly obtained.
The resultant channel estimation performance, therefore, is
dominated by the finite-sample estimation errors in the com-
puted data statistics. Moreover, symbol precoding at the trans-
mitter may have significant impact on the channel capacity
[6]. Under the perfect channel knowledge assumption the
capacity performances attained by various redundant and non-
redundant precoding schemes were analyzed in [6]. More in-
depth study of the achievable system capacity that explicitly
takes into account the channel mismatch effect in the context
of precoding-based blind estimation has not been seen in the
literature yet.

In this paper we consider the single-carrier block transmis-
sion with cyclic prefix (CP)1 [10], in which the transmitter
implements a non-redundant diagonal precoder and, at the
receiver the channel information is acquired through the
precoding-assisted blind estimation scheme [31]. The main
purpose of this paper is to investigate the optimal noise-
resistant precoder [31] from a capacity perspective, and to
further characterize an inherent tradeoff between channel
estimation quality and the achievable system capacity. Specif-
ically, it is shown that when the received signal covariance
matrix is perfectly obtained, thus the channel estimate is
exact2, the optimal noise-resistant precoder results in the
minimal capacity in the high SNR regime. Hence, if we adopt
the considered precoder to improve the channel estimation
accuracy, there is a potential loss in the achievable information

1CP-based single carrier systems have been considered as one next-
generation wireless standard, e.g., SC-OFDMA in LTE uplink [19].

2It is well-known that all blind estimation schemes can identify the channel
only up to a scalar ambiguity, which has to be removed by further inserting
some pilot symbols [11]. As in many previous works regarding performance
analysis of blind algorithms [7], [32], we assume for analytical simplicity that
the ambiguity is removed. In this sense, the channel estimate is considered
to be exact if the received signal covariance matrix can be obtained without
errors.
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rate. We then turn to consider the more realistic block fading
environment: (1) the channel remains constant over a finite
time duration and can change independently across different
time frames; (2) during each coherent interval the blind algo-
rithm [31] is implemented for obtaining the channel estimate.
Clearly, if all the symbol blocks within a coherent interval are
precoded, and the receiver uses all the available data blocks
to form a sample covariance matrix, one can come up with
the utmost channel estimation accuracy since the covariance
matrix estimation error is kept as small as possible. Such an
advantage, however, comes at the expense of capacity loss due
to precoding. On the contrary, if only a certain fraction of the
coherent time is spent for precoding, the quality of channel
estimation could be relatively poor though the precoding-
induced capacity loss can be reduced. This naturally motivates
the following question: How much the coherent interval should
be dedicated to precoding so that one can achieve the optimal
tradeoff between channel estimation accuracy and the maximal
system capacity ?

To pin down such a tradeoff, one needs a capacity measure
that can explicitly reflect the channel mismatch effect in the
considered blind estimation setup. By leveraging the matrix
perturbation analysis and following the technique in [12], we
derive one such capacity measure, which is seen to be a
complicated function of the precoding interval. To facilitate
analysis, we further derive an approximate expression for
the obtained capacity metric that has the following threefold
advantages. Firstly, it allows us to specify the aggregate capac-
ity cost incurred by the considered blind channel estimation
scheme as a sum of two terms, one due to precoding whereas
the other caused by channel estimation errors (or finite-sample
covariance matrix estimation). Secondly, based on this decom-
position there is a simple procedure for obtaining an analytic
estimate of the capacity-maximizing time fraction spent for
precoding. Thirdly, there are very informative interpretations
regarding the two penalty terms that will provide further
insights into the optimal tradeoff. The capacity results pre-
dicted by our analysis are further corroborated via numerical
simulations.

B. Paper Organization and Notation List

The rest of this paper is organized as follows. Section II
introduces the signal model, briefly reviews the blind channel
estimation scheme in [31], and highlights the essentials regard-
ing the optimal noise-resistant precoder. Section III discusses
the capacity performance of the considered precoder, assuming
that perfect channel knowledge is available at the receiver.
Section IV considers the block fading channel environment
and derives the capacity measure for specifying the design
tradeoff. Section V addresses the optimal precoding interval
selection problem. Section VI provides several numerical
experiments for evidencing the proposed analytical results.
Finally, Section VII concludes this paper.

Notation: Let ℝ𝑚×𝑛and ℂ𝑚×𝑛 be the sets of real and complex
matrices. Denote by (⋅)𝑇 , (⋅)∗, and (⋅)𝐻 , respectively the
transpose, complex conjugate, and Hermitian operations. The
symbols I𝑚 and 0𝑚 denote the 𝑚 × 𝑚 identity and zero
matrices; 0𝑚×𝑛 is the 𝑚 × 𝑛 zero matrix. The notation ⊗
stands for the Kronecker product [14, p-242], and vec(X)

is the vectorized operation of the matrix X [14]. For X =[
x1 ⋅ ⋅ ⋅ x𝑛

] ∈ ℂ𝑚×𝑛 and Y =
[
y1 ⋅ ⋅ ⋅ y𝑛

] ∈ ℂ𝑘×𝑛,
X□Y :=

[
x1 ⊗ y1 ⋅ ⋅ ⋅ x𝑛 ⊗ y𝑛

]
denotes the column-wise

Kronecker product [32]. For x ∈ ℂ𝑚, let diag{x} be the
𝑚 × 𝑚 diagonal matrix with the elements of x on the main
diagonal. The notation 𝐸{𝑦} stands for the expected value
of the random variable 𝑦. Denote by Tr[M] the trace of the
square matrix M.

II. DIAGONAL PRECODING BASED BLIND CHANNEL

ESTIMATION

A. Signal Model

We consider a precoded single-carrier CP-based system over
an 𝐿-order frequency-selective fading channel described as
[31]

y𝑘 = GPs𝑘 + v𝑘, 𝑘 ⩾ 0, (2.1)

where s𝑘 ∈ ℂ𝑁 and y𝑘 ∈ ℂ𝑁 are, respectively, the source
symbol and the received signal blocks (with 𝑁 denoting the
dimension of the source symbol vector), v𝑘 ∈ ℂ𝑁 is the noise
vector,

P := diag
{[

𝑝(0) ⋅ ⋅ ⋅ 𝑝(𝑁 − 1)
]} ∈ ℝ

𝑁 , 𝑝(𝑛) ∈ ℝ, (2.2)

is a diagonal precoding matrix, and G ∈ ℂ
𝑁×𝑁 is the

circulant channel matrix whose first column is given by

g :=
[
ℎ(0) ⋅ ⋅ ⋅ ℎ(𝐿) 0 ⋅ ⋅ ⋅ 0

]𝑇 ∈ ℂ
𝑁 , (2.3)

with ℎ(𝑛) being the 𝑛th channel tap, 0 ≤ 𝑛 ≤ 𝐿. The purpose
of diagonal precoding is to deliberately induce certain transmit
power variation so as to facilitate blind channel estimation at
the receiver. The following assumptions are made throughout
the paper.

a) The source s𝑘 is a white vector sequence with zero mean
and unit variance.

b) The noise v𝑘 is white circularly complex Gaussian with
zero mean, covariance 𝜎2

𝑣I, and is independent of the
source signal s𝑘 .

B. Blind Channel Estimation Algorithm

The approach in [31] exploits the circulant structure of
the channel matrix G as well as a resultant covariance-
matching channel estimation setup. More specifically, since
G is circulant, it can be expressed in terms of its first column
as

G =
[
g Jg ⋅ ⋅ ⋅ J𝑁−2g J𝑁−1g

]
, (2.4)

where

J :=

[
01×(𝑁−1) 1
I𝑁−1 0(𝑁−1)×1

]
∈ ℝ

𝑁×𝑁 (2.5)

is the permutation matrix. We assume for the moment that the
channel noise is absent, hence v𝑘 = 0. With (2.1), (2.2), and
(2.4), the covariance matrix of the received signal is easily
shown to be

Ry := 𝐸
{
y𝑘y

𝐻
𝑘

}
= GP2G𝐻 =

𝑁−1∑
𝑛=0

𝑝(𝑛)2J𝑛gg𝐻(J𝑇 )𝑛. (2.6)
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We observe that, for a given Ry, (2.6) defines a set of linear
equations with the product channel coefficients ℎ(𝑘)ℎ(𝑙)∗ (i.e.,
entries in gg𝐻 ) as unknowns. To exploit such an inherent
linear signal structure for channel estimation, we shall first
rearrange (2.6) into a standard linear equation form. By
resorting to the vec(⋅) operation, (2.6) can be rearranged into
(2.7), shown at the bottom of this page.

To solve for the product unknowns ℎ(𝑘)ℎ(𝑙)∗ via (2.7),
we have to first reduce the dimension of the equations by
removing the null variables in vec(gg𝐻). Specifically, it can
be shown that (2.7) is equivalent to [31]

Q̃ vec
(
hh𝐻

)
= vec(Ry), (2.8)

where h :=
[
ℎ(0) ⋅ ⋅ ⋅ ℎ(𝐿)

]𝑇
is the desired channel

impulse response vector, and

Q̃ := QJ1

(
I𝐿+1 ⊗ J2

)
(2.9)

with

J1 :=

[
I𝑁(𝐿+1)

0𝑁(𝑁−𝐿−1)×𝑁(𝐿+1)

]
∈ ℝ

𝑁2×𝑁(𝐿+1)

J2 :=

[
I𝐿+1

0(𝑁−𝐿−1)×(𝐿+1)

]
∈ ℝ

𝑁×(𝐿+1).

Assume that the matrix Q̃ is of full column rank; an associated
sufficient condition characterized in terms of the precoder
𝑝(𝑛) is established in [31, Proposition 4.1]. Then the product
channel coefficient vector can be computed as

vec
(
hh𝐻

)
=

(
Q̃𝑇 Q̃

)−1
Q̃𝑇 vec(Ry). (2.10)

Once vec(hh𝐻) is obtained, let us form the rank-one matrix

H := hh𝐻 = [ℎ(𝑘)ℎ(𝑙)∗]0≤𝑘,𝑙≤𝐿 . (2.11)

The channel impulse response vector h can then be estimated,
up to a scalar ambiguity, by computing the dominant eigen-
vector associated with the matrix H. We note that a similar
matrix outer-product approach has also been adopted in the
previous works [9], [16], [17], [26], [32]. To obtain the full
channel estimate, some pilot symbols should be inserted in the
symbol block for removing the scalar ambiguity; the detail is
referred to [31, p-1119].

C. Optimal Noise-Resistant Precoder

With noise corruption the autocorrelation matrix in (2.6)
instead reads

Ry = 𝐸
{
y𝑘y

𝐻
𝑘

}
=

𝑁−1∑
𝑛=0

𝑝(𝑛)2J𝑛gg𝐻(J𝑇 )𝑛+𝜎2
𝑣I . (2.12)

The identification equation (2.8) is then accordingly modified
as

vec(Ry) = Q̃ vec(hh𝐻) + 𝜎2
𝑣 vec(I) . (2.13)

In (2.13) we can think of the product channel coefficients
vec(hh𝐻) as the signal of interest, hence the range space
of Q̃ defining the signal subspace, and treat the white-noise
perturbation vec(I) as spanning the noise subspace. It is noted
that the matrix Q̃ depends entirely on the precoder coefficients
𝑝(𝑛)’s. To mitigate the noise effect on the estimated channel,
one natural approach is thus to design 𝑝(𝑛) so that the signal
and noise subspaces are rendered as close to being orthogonal
as possible. In [31] the precoder design problem is specifically
formulated as minimizing the largest correlation index among
the noise signature vec(I) and the columns of Q̃, subject to
the power normalization constraint

𝑁−1∑
𝑛=0

𝑝(𝑛)2 = 𝑁 (2.14)

and the threshold requirement

𝑝(𝑛)2 ≥ 𝛿 > 0, ∀ 0 ≤ 𝑛 ≤ 𝑁 − 1 , (2.15)

where 𝛿 is the power threshold, which is constrained to be
strictly positive to avoid symbol nulling. The optimal noise-
resistant precoder admits the following two-level form (see
[31, p-1121]): for a fixed but arbitrary 0 ≤ 𝑚 ≤ 𝑁 − 1,

𝑝(𝑚)2 = 𝑁(1− 𝛿) + 𝛿 and 𝑝(𝑛)2 = 𝛿 for 𝑛 ∕= 𝑚 .
(2.16)

The rest of this paper aims to study the optimal noise-resistant
precoder (2.16) from a capacity perspective, and to address
the optimal tradeoff between channel estimation accuracy and
achievable capacity when the coherent interval is finite and
Ry is estimated via a finite amount of data.

Remark: With the optimal precoder (2.16), it is shown in
[31] that a small threshold 𝛿 results in small noise corruption
on the product channel coefficients, thereby improving the
estimation accuracy. However, an unlimitedly small 𝛿 should
be avoided since it not only renders the symbol decision
process quite prone to noise (see [7], [31]), but will also incur
a high capacity penalty as will be shown next. For 𝑁 = 32
and 𝐿 = 8 (with the CP interval set equal to the channel
order), our simulation study in Section VI (see Figures 4
and 5) indicates that 𝛿 ≈ 0.9 is the compromising choice
regarding the tradeoff between channel estimation accuracy
and the achievable capacity.

⎡⎢⎢⎢⎢⎢⎣
𝑝(0)2I𝑁 𝑝(𝑁 − 1)2J𝑁−1 ⋅ ⋅ ⋅ 𝑝(2)2J2 𝑝(1)2J
𝑝(1)2J 𝑝(0)2I𝑁 ⋅ ⋅ ⋅ 𝑝(3)2J3 𝑝(2)2J2

...
... ⋅ ⋅ ⋅ ...

...
𝑝(𝑁 − 2)2J𝑁−2 𝑝(𝑁 − 3)2J𝑁−3 ⋅ ⋅ ⋅ 𝑝(0)2I𝑁 𝑝(𝑁 − 1)2J𝑁−1

𝑝(𝑁 − 1)2J𝑁−1 𝑝(𝑁 − 2)2J𝑁−2 ⋅ ⋅ ⋅ 𝑝(1)2J 𝑝(0)2I𝑁

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

:=Q

vec(gg𝐻) = vec(Ry). (2.7)
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III. CAPACITY PERFORMANCE WITH EXACT CHANNEL

KNOWLEDGE

This section investigates the impact of the precoder (2.16)
on capacity, assuming that the channel is perfectly known to
the receiver. In such an idealized case, the ergodic capacity
(in bits per block transmission, neglecting the CP overhead)
of the system (2.1) is well-known to be [27]

𝐼 = 𝐸
{
log det(I+ 𝜎−2

𝑣 GP2G𝐻)
}
. (3.1)

Since G is circulant, we have G = F𝐻DF, where F is the
FFT matrix and D is a diagonal matrix containing the channel
frequency responses. This implies

GP2G𝐻 = F𝐻DFP2F𝐻D𝐻F, (3.2)

and (3.1) becomes

𝐼 = 𝐸
{
log det(I+ 𝜎−2

𝑣 F𝐻DFP2F𝐻D𝐻F)
}

(𝑎)
= 𝐸

{
log det(I+ 𝜎−2

𝑣 FP2F𝐻D𝐻FF𝐻D)
}

(𝑏)
= 𝐸

{
log det(I+ 𝜎−2

𝑣 FP2F𝐻D̃)
}
, (3.3)

where (a) holds due to det(I + AB) = det(I + BA)
for A and B with compatible dimensions, and (b) follows
since FF𝐻 = I and by defining D̃ := D𝐻D, which is a
positive definite diagonal matrix. According to the Hadamard’s
inequality [13, p-477], the term log det(I+𝜎−2

𝑣 FP2F𝐻D̃) in
the capacity expression (3.3) is maximized if 𝑝(𝑛) is chosen so
that FP2F𝐻D̃ is diagonal. Since D̃ is diagonal, the matrix
FP2F𝐻D̃ can be diagonalized only when FP2F𝐻 is also
diagonal. Subject to the fact that FP2F𝐻 is circulant [8], the
only such diagonal FP2F𝐻 is a scalar multiple of the identity
matrix. As a result, the capacity-maximizing 𝑝(𝑛) should be
chosen so that

FP2F𝐻 = 𝛼I for some 𝛼 > 0. (3.4)

The unique 𝑝(𝑛) which satisfies (3.4) as well as the two
constraints (2.14) and (2.15) is

𝑝(𝑛) = 1, for 0 ≤ 𝑛 ≤ 𝑁 − 1. (3.5)

Hence, for i.i.d. sources, the equal-power scheme (3.5) is
capacity-optimal3. The modulated symbol power induced by
diagonal precoding, therefore, will inevitably incur a capacity
loss (i.e., precoding is harmful from the capacity perspective).
To characterize the capacity performance of the two-level
precoder (2.16) we further note that, in the high SNR region,
(3.3) is well approximated by [22]

𝐼 ≈ 𝐸
{
log det

(
𝜎−2
𝑣 FP2F𝐻D̃

)}
(3.6)

= log

{
𝜎−2𝑁
𝑣

𝑁−1∏
𝑛=0

𝑝(𝑛)2

}
+ 𝐸

{
log det D̃

}
.

From (3.6) we can see that, when SNR is high, the impact
on the capacity due to precoding is entirely characterized by
the product term

∏𝑁−1
𝑛=0 𝑝(𝑛)2. The smaller such a product

3If the uniform scheme (3.5) is used, the matrix Q̃ in (2.9) will however
be rank deficient and the channel is then rendered unidentifiable.

is, the larger the capacity penalty will be. The optimal noise-
resistant preocoder (2.16), however, turns out to be the worst-
case choice regarding channel capacity, as established in the
next theorem (see Appendix A for a proof).

Theorem 3.1: Among the 𝑝(𝑛) satisfying the constraints
(2.14) and (2.15), the precoder (2.16) minimizes the quantity∏𝑁−1

𝑛=0 𝑝(𝑛)2, yielding

min

𝑁−1∏
𝑛=0

𝑝(𝑛)2 = 𝛿𝑁−1
[
𝑁 − (𝑁 − 1)𝛿

]
. (3.7)

Discussions:

1. It is easy to check that the minimal product in (3.7)
increases as the threshold 𝛿 is increased toward unity;
when 𝛿 = 1, (2.16) reduces to the capacity-optimal
equal-power scheme (3.5). This implies that a large 𝛿,
though resulting in poor channel estimation accuracy
[31, Sec. V], will limit the capacity penalty incurred by
the precoding scheme (2.16). When channel estimation
error occurs, the compromising choice of 𝛿 between the
channel estimation accuracy and achievable capacity is
investigated in the simulation section.

2. The capacity (3.1) obtained under the perfect channel
knowledge assumption can be regarded as a yardstick
upper bound for the realistic situation when channel error
occurs. In this sense, the optimal noise-resistant precoder
(2.16) leads to the worst-case benchmark capacity when
SNR is high. Hence, if one adopts the precoder (2.16) for
improving the channel estimation accuracy, there could
be a substantial loss in the achievable system capacity.

3. The acquisition of exact channel knowledge via the blind
technique shown in Section III calls for an infinitely long
coherent interval, during which the received covariance
matrix Ry in (2.6) can be estimated, e.g., via the time
average, without errors. In the finite coherent interval
case, we can only obtain a sample covariance matrix by
using a finite number of data blocks, and the resultant
channel estimate will be no longer exact. If a large
portion of the source symbol blocks within the coherent
interval are precoded by (2.16), the finite sample error in
estimating Ry is relatively small, and a more accurate
channel estimate can be obtained. However, this would
come at the expense of reduced capacity since (2.16) is
the worst-case choice regarding the benchmark capacity
performance. On the other hand, if a small fraction of
the coherent interval is spent for precoding, the quality
of the channel estimate could be quite poor, though the
capacity penalty due to precoding can be limited. The op-
timal tradeoff between channel estimation accuracy and
the achievable system capacity regarding the precoding
interval selection is elaborated on next.

IV. CAPACITY MEASURE OVER FINITE COHERENT

INTERVALS

In the sequel we focus on the block fading environment, in
which the channel remains constant over some interval of 𝑇
symbol block periods, after which it changes independently to
another value that it holds for the next interval 𝑇 , and so on. In
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the training based counterpart, the coherent interval is typically
divided into two phases, one for placing training pilots and
the other for carrying data symbols, and the capacity-optimal
training period has been addressed in [1], [12], [28] for various
scenarios. Motivated by these works and to study the optimal
tradeoff problem in the considered precoding based blind
estimation setup, we thus assume that, during each coherent
interval, only the initial 1 < 𝑇𝑝 ≤ 𝑇 source symbol blocks are
precoded by (2.16) to facilitate channel estimation. The signal
model within a coherent interval of 𝑇 blocks can then be
described in a two-phase form as4 (4.1), shown at the bottom
of this page. The 𝑇𝑝 received blocks in the precoding phase
are used to form the sample covariance matrix

R̂𝑦 =
1

𝑇𝑝

𝑇𝑝∑
𝑘=1

y𝑘y
𝐻
𝑘 (4.2)

for channel estimation via the blind technique shown in
Section III; the remaining 𝑇 −𝑇𝑝 time slots are left for direct
data transmission to boost capacity. To seek for the optimal
𝑇𝑝 which attains the optimal tradeoff between blind channel
estimation accuracy and the achievable capacity, we need a
capacity metric that can explicitly take the channel mismatch
effect (or imperfect estimation of R̂y) into account. This is
the main focus of this section.

A. Capacity Measure

For a given channel estimate ĥ, and hence the associated
channel matrix Ĝ, let us follow the idea of [1], [12], [28] to
rewrite the system (2.1) by treating the estimated Ĝ as the
known channel matrix, and relegating the channel mismatch
into the noise component so that

y𝑘 = GPs𝑘 + v𝑘 (4.3)

= ĜPs𝑘 + G̃Ps𝑘 + v𝑘︸ ︷︷ ︸
:=ṽ𝑘

, where G̃ = G− Ĝ.

We note that, while in (2.1) the channel remains unknown,
the channel matrix Ĝ in (4.3) is otherwise known to the
receiver. Also, although the additive noise v𝑘 in (2.1) is white
Gaussian, the effective noise ṽ𝑘 in (4.3), which depends also
on the channel estimation error G̃, could be neither white
nor Gaussian. To characterize the capacity performance of
the channel (4.3), one needs to specify the covariance of the
effective noise ṽ𝑘. For this we first observe that, since R̂y in
(4.2) is unbiased, the computed outer-product ĥĥ𝐻 as a linear
function of R̂y (cf. (2.10)) is also an unbiased estimator of
ĥĥ𝐻 . However, the resultant channel estimate ĥ, obtained as
the dominant eigenvector of ĥĥ𝐻 , is an unbiased estimator of
the true h only when 𝑇𝑝 → ∞ [2], [15], [24]. For a finite 𝑇𝑝,
the statistical property of ĥ is quite difficult to characterize
[24]; exact expressions for the bias term 𝐸{ĥ − h}, and

4Without loss of generality we consider the initial coherent interval to
simplify notation.

consequently the covariance of ṽ𝑘 , are thus intractable. To
facilitate analysis in the finite-sample case, we propose to
adopt the approach similar to [21] and [32], in which 𝑇𝑝
is assumed to be large so that the unbiased-ness condition
𝐸{ĥ − h} = 0 (or 𝐸{G̃} = 0) is deemed to hold from the
first-order perturbation perspective5. Under this assumption
and by using a similar technique as in [1], [12], [28], a capacity
lower bound for the channel (4.3) is derived in the next lemma
(see Appendix B for a proof).

Lemma 4.1: Let 𝐼(y𝑘; s𝑘∣Ĝ) = max 𝐼(y𝑘; s𝑘∣Ĝ), namely,
the maximal mutual information (over the source distributions)
between the source and received signals for a fixed channel
estimate Ĝ. Then the following inequality holds for a large
𝑇𝑝:

𝐼(y𝑘; s𝑘∣Ĝ) ≥
log det

{
I+

[
𝐸

{
G̃P2G̃𝐻

}
+ 𝜎2

𝑣I
]−1

ĜP2Ĝ𝐻

}
. (4.4)

The lower bound in (4.4) is particularly appealing, as it is
a function of the channel mismatch G̃ = G − Ĝ and can
therefore serve as a capacity measure when channel estimation
error occurs. To address the optimal tradeoff based on the
capacity lower bound in (4.4), the first task is to find an explicit
expression of 𝐸{G̃P2G̃𝐻} in terms of the precoding interval
𝑇𝑝. This is done in the next subsection.

B. Covariance of the Channel Estimation Error: A Perturba-
tion Analysis

To proceed, we note from (2.4) that the circulant nature of
G̃ again yields

G̃ =
[
g̃ Jg̃ ⋅ ⋅ ⋅ J𝑁−2g̃ J𝑁−1g̃

]
, (4.5)

in which J is defined in (2.5) and g̃ =
[
h̃𝐻 0 ⋅ ⋅ ⋅ 0

]𝑇
is the zero-padded channel estimation error vector with h̃ =
ĥ−h. Since g̃ = J2h̃, where J2 is defined in (2.9), based on
(4.5) it is straightforward to verify

𝐸
{
G̃P2G̃𝐻

}
=

𝑁−1∑
𝑛=0

𝑝(𝑛)2J𝑛J2𝐸
{
h̃h̃𝐻

}
J𝑇2 (J

𝑇 )𝑛. (4.6)

Equation (4.6) shows that 𝐸{G̃P2G̃𝐻} is completely deter-
mined by 𝐸{h̃h̃𝐻}, namely, the covariance of the channel
estimation error. Hence it remains to find a closed-form
expression of 𝐸{h̃h̃𝐻} in terms of 𝑇𝑝. For this let us recall
from Section III-A that, if the perfect covariance matrix Ry

can be obtained, the exact channel h is identified via a
”two-step” approach: first compute the rank-one outer-product
matrix (2.11) followed by an eigen-decomposition for finding

5Through our simulation study the normalized average bias per channel
tap, namely, 𝐸∥{ĥ − h}∥2/ [𝐸{∥h∥2}(𝐿 + 1)

]
, is below -75 dB for a

wide SNR range even if 𝑇𝑝 is as small as 𝑇𝑝 = 100. Hence, in the finite-
sample case, 𝐸{ĥ−h} = 0 is a plausible assumption, and the lower bound
(4.4) can be a valid capacity measure.

{
y𝑘 = GPs𝑘 + v𝑘, 1 ≤ 𝑘 ≤ 𝑇𝑝, (precoding & channel acquisition phase)
y𝑘 = Gs𝑘 + v𝑘, 𝑇𝑝 + 1 ≤ 𝑘 ≤ 𝑇, (direct data transmission phase).

(4.1)
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the associated dominant eigenvector. When only a sample
covariance matrix R̂y as in (4.1) is available, the channel
mismatch h̃ is entirely caused by the deviation of R̂y from
the true Ry. Although the outer-product ĥĥ𝐻 is linear in the
entries of R̂y (see (2.10)), the eigen-decomposition procedure
on ĥĥ𝐻 , however, will render the exact expression for ĥ in
terms of R̃y = R̂y − Ry intractable. By assuming 𝑇𝑝 to
be sufficiently large so that the deviation R̃y is small, we
can nonetheless leverage the matrix perturbation technique
[3], [21], [32] to find one approximate, yet tractable, such
expression; the result will further enable us to derive a formula
of 𝐸{h̃h̃𝐻}, and hence 𝐸{G̃P2G̃𝐻}, in terms of 𝑇𝑝. More
specifically, through first-order perturbation analysis we have
the following linear relation between h̃ and R̃y (see Appendix
C for a derivation)

h̃ = Avec(R̃y), (4.7)

where

A :=
1

∥h∥2ΣhΣ
𝐻
h

𝐿∑
𝑖=0

ℎ(𝑖)e𝑇𝑖 ⊗ I𝐿+1(Q̃
𝑇 Q̃)−1Q̃𝑇 ,

in which e𝑖 denotes the 𝑖th column of I𝐿+1 and Σh ∈
ℂ(𝐿+1)×𝐿 is a matrix whose columns are orthonormal and
span the 𝐿-dimensional subspace orthogonal to h. Based on
(4.7), we have the following lemma (see also Appendix C for
a proof).

Lemma 4.2: Assume that the source symbols are drawn from
a complex constellation with a finite forth-order cumulant 𝜅4s.
Then we have

𝐸
{
h̃h̃𝐻

}
=

1

𝑇𝑝
A

{
𝜅4s(G

∗P∗□GP)(G∗P∗□GP)𝐻

+ R∗
y ⊗Ry

}
A𝐻 , (4.8)

where the matrix A is defined in (4.7).

Combining (4.6) and (4.8) leads to the crucial relation (4.9),
shown at the bottom of this page. Equation (4.9) specifies
the weighted channel error covariance matrix in terms of the
precoding interval 𝑇𝑝. In particular, as 𝑇𝑝 increases, the error
covariance will decay at the rate 1/𝑇𝑝.

C. Capacity Lower Bound

With (4.4) and (4.9), the ergodic capacity lower bound (per
block transmission) during the precoding phase is thus

𝐼𝑝(𝑇𝑝) = 𝐸
{
log det

[
I+

[
R𝑒/𝑇𝑝 + 𝜎2

𝑣I
]−1

ĜP2Ĝ𝐻
]}

;

(4.10)

similarly one such bound for the direct data transmission phase
can be accordingly obtained from (4.10) by setting P = I:

𝐼𝑑(𝑇𝑝) = 𝐸
{
log det

[
I+

[
R𝑒/𝑇𝑝 + 𝜎2

𝑣I
]−1

ĜĜ𝐻
]}

.

(4.11)

Based on (4.10) and (4.11), the average ergodic capacity lower
bound over the entire 𝑇 symbol periods is given by

𝐼(𝑇𝑝) =
𝑇𝑝
𝑇

𝐼𝑝(𝑇𝑝) +
(𝑇 − 𝑇𝑝)

𝑇
𝐼𝑑(𝑇𝑝)

=
𝑇𝑝
𝑇

𝐸
{
log det

[
I+

[
R𝑒/𝑇𝑝 + 𝜎2

𝑣I
]−1

ĜP2Ĝ𝐻
]}

+
(𝑇 − 𝑇𝑝)

𝑇
𝐸

{
log det

[
I+

[
R𝑒/𝑇𝑝 + 𝜎2

𝑣I
]−1

ĜĜ𝐻
]}

.

(4.12)

The problem of selecting 𝑇𝑝 toward maximizing 𝐼(𝑇𝑝) is
addressed in the next section.

We note that the capacity measure (4.12) is a function
of not only the precoding interval 𝑇𝑝 but also the precoder
coefficients 𝑝(𝑛) (in particular, the power threshold 𝛿 if
the two-level precoder (2.16) is used). Hence, true capacity
maximization should be done based on joint optimization
over both 𝑇𝑝 and 𝛿. However, as one can see from (4.9),
the channel error covariance R𝑒 involves the multiplication
of column-wise Kronecker products of the precoding matrix
and is therefore a function of 𝑝(𝑛)2𝑝(𝑖)𝑝(𝑗)𝑝(𝑘)𝑝(𝑚). This
shows that the capacity metric (4.12) is highly nonlinear in
terms of 𝛿, and joint optimization 𝐼(𝑇𝑝) of over both 𝑇𝑝 and
𝛿 appears completely intractable. To overcome this difficulty,
a reasonable suboptimal approach as we shall adopt in the
sequel is to determine the best 𝑇𝑝 under a fixed 𝛿 (as we will
see later, even for such a suboptimal scheme the analysis turns
out to be totally nontrivial).

V. SELECTION OF PRECODING INTERVAL

To facilitate subsequent analysis and discussions, let us
define

𝜏𝑝 = 𝑇𝑝/𝑇, 0 < 𝜏𝑝 ≤ 1, (5.1)

to be the relative time fraction of the precoding phase nor-
malized with respect to the coherent interval 𝑇 . We can thus
alternatively express the capacity lower bound (4.12) in terms
of 𝜏𝑝 as

𝐼(𝜏𝑝) = 𝜏𝑝𝐸
{
log det

[
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

ĜP2Ĝ𝐻
]}

+ (1− 𝜏𝑝)𝐸
{
log det

[
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

ĜĜ𝐻
]}

.

(5.2)

For a given 𝑇 , the optimal tradeoff problem can be formulated
as maximizing 𝐼(𝜏𝑝) in (5.2) with respect to all 0 < 𝜏𝑝 ≤ 1.
We shall note that, since both 𝑇𝑝 and 𝑇 are positive integers,
0 < 𝜏𝑝 ≤ 1 is a rational number. To ease analysis 𝜏𝑝 is
relaxed to be a positive real number; once the best such
𝜏𝑝 is found, the corresponding 𝑇𝑝 (though suboptimal) can
be determined as the lower integer floor of 𝜏𝑝𝑇 . An exact
closed-form solution to the considered optimization problem,

𝐸
{
G̃P2G̃𝐻

}
=

1

𝑇𝑝

𝑁−1∑
𝑛=0

𝑝(𝑛)2J𝑛J2A
{
𝜅4s(G∗P∗□GP)(G∗P∗□GP)𝐻 +R∗

y ⊗Ry

}
A𝐻J𝑇2 (J

𝑇 )𝑛.︸ ︷︷ ︸
:=R𝑒

(4.9)
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however, is formidable to derive since the objective function
(5.2) is highly nonlinear in 𝜏𝑝. Even though one can instead
resort to numerical simulation to search for a solution, in what
follows we shall aim to analytically characterize the optimal
𝜏𝑝. Specifically, we will first derive an approximate, but more
tractable, expression of the capacity lower bound in (5.2). The
result will lead to very simple, and insightful, procedures for
determining a closed-form estimate of the optimal 𝜏𝑝.

A. Approximate Capacity Lower Bound Expression

The proposed approach is based on the key result shown in
the next lemma (see Appendix D for a proof).
Lemma 5.1: Let 𝐼(𝜏𝑝) be defined in (5.2). Assuming that SNR
is high, so that 𝜎2

𝑣 is small, and6 I/𝑇 ≪ 𝜎2
𝑣𝜏𝑝R

−1
𝑒 , we have

the following approximation

𝐼(𝜏𝑝) ≈ 𝐸
{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}

+
1

𝑇𝜎4
𝑣

𝐸

{
Tr

[(
I+ 𝜎−2

𝑣 GG𝐻
)−1

R𝑒GG𝐻

− (
I+ 𝜎−2

𝑣 GP2G𝐻
)−1

R𝑒GP2G𝐻
]}

− 𝑓(𝜏𝑝),

(5.3)

where

𝑓(𝜏𝑝) := 𝛼𝜏𝑝 +
𝛽

𝜏𝑝
(5.4)

with

𝛼 := 𝐸
{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}

− 𝐸
{
log det

[
I+ 𝜎−2

𝑣 GP2G𝐻
]}

(5.5)

and

𝛽 :=
1

𝑇𝜎4
𝑣

𝐸

{
Tr

[(
I+ 𝜎−2

𝑣 GG𝐻
)−1

R𝑒GG𝐻

]}
. (5.6)

Several important comments are in order.
1. Lemma 5.1 is quite appealing in that the dependency of

𝐼(𝜏𝑝) on the design parameter 𝜏𝑝 is completely character-
ized by 𝑓(𝜏𝑝) defined in (5.4). Compared with 𝐼(𝜏𝑝) in
(5.2), 𝑓(𝜏𝑝) is a simple rational function in 𝜏𝑝; it is such
an attractive feature that can facilitate analytical study
of the performance tradeoff, as will be shown later. We
also note that, even though the approximation (5.3) is
derived based on the high-SNR assumption, the proposed
analytic estimate based on (5.3) can well predict the
true optimal solution, as well as the resultant capacity
performance, over a wide SNR region (this will be seen
in the simulation section).

2. We observe that 𝛼 in (5.5) represents the capacity gap of
two Gaussian channels characterized by, respectively, the
channel matrices G and GP. Based on the discussions
in Section III we have 𝛼 ≥ 0, with equality attained
when P = I. Roughly speaking, we can think of 𝛼

6By A ≪ B ( A and B both Hermitian and positive definite) we mean (i)
B−A is positive definite and, (ii) if the eigenvalues of A and B are arranged
in the same (either increasing or decreasing) order, then 𝜆𝑘(A) ≪ 𝜆𝑘(B)
(we note that the positive-definiteness of B − A does guarantee 𝜆𝑘(A) <
𝜆𝑘(B) [13, p-471]). Hence, if A ≪ B, we have ∥A∥2𝐹 =

∑𝑛
𝑘=1 𝜆

2
𝑘(A) ≪∑𝑛

𝑘=1 𝜆
2
𝑘(B) = ∥B∥2𝐹 and ∥A∥22 = max

𝑘
𝜆2
𝑘(A) ≪ max

𝑘
𝜆2
𝑘(B) = ∥B∥22,

which are two commonly used conditions for “A is small when compared
with B” in the context of matrix perturbation analysis.

as the worst-case average capacity penalty induced by
precoding with 𝑇𝑝 = 𝑇 . In light of this point and since
0 < 𝜏𝑝 ≤ 1, the first term 𝛼𝜏𝑝 in 𝑓(𝜏𝑝) thus reflects
the proportional reduction in the penalty when symbol
precoding is performed only over a 𝜏𝑝 fraction of the
coherent time.

3. On the other hand, the quantity 𝛽 in (5.6) accounts for
the channel mismatch effect, and can be treated as the
minimal capacity loss incurred by channel estimation
errors (also attained when 𝑇𝑝 = 𝑇 ). The second term
𝛽𝜏−1

𝑝 in (5.4), therefore, specifies the enlargement of
the capacity penalty beyond this minimum if a mere
𝜏𝑝 portion of the coherent interval is spent for symbol
precoding to aid channel estimation.

4. With the above facts in mind, 𝛼𝜏𝑝 and 𝛽𝜏−1
𝑝 thus specify

the capacity loss due to, respectively, precoding over a 𝜏𝑝
fraction of the coherent interval and the resultant channel
estimation errors. The term 𝑓(𝜏𝑝) in (5.4), therefore, can
be deemed as the aggregate capacity penalty incurred
by the precoding-based blind channel estimation scheme
[31]. With the aid of Lemma 5.1 and the informative
interpretations of 𝑓(𝜏𝑝), there is a simple yet insightful
way of finding an analytic estimate of the optimal 𝜏𝑝, as
shown below.

B. Optimal Performance Tradeoff: An Analytic Characteriza-
tion

Based on (5.3) and (5.4), the first-order derivative of 𝐼(𝜏𝑝)
with respect to 𝜏𝑝 can be approximately obtained as

𝐼 ′(𝜏𝑝) ≈ −𝑓 ′(𝜏𝑝) =
(
𝛽 − 𝛼𝜏2𝑝

)
𝜏−2
𝑝 . (5.7)

With (5.7) it is straightforward to show that the maximum of
𝐼(𝜏𝑝) occurs nearby

𝜏𝑝 :=
√

𝛽/𝛼. (5.8)

When 𝜏𝑝 <
√

𝛽/𝛼, it is expected from (5.7) that 𝐼 ′(𝜏𝑝) > 0
and the capacity lower bound increases with 𝜏𝑝 . As 𝜏𝑝 is
enlarged beyond

√
𝛽/𝛼, we have 𝐼 ′(𝜏𝑝) < 0 and 𝐼(𝜏𝑝) will

instead be a decreasing function of 𝜏𝑝. Since we are only
concerned about 0 < 𝜏𝑝 ≤ 1, the selection of 𝜏𝑝 toward the
maximal capacity lower bound depends on whether

√
𝛽/𝛼

exceeds unity or not.

Case 1: If 1 ≤ √
𝛽/𝛼 and hence 𝛼 ≤ 𝛽, i.e., the worst-case

average capacity loss due to precoding is less severe
than the minimal capacity penalty caused by channel
mismatch, 𝐼(𝜏𝑝) is an increasing function in 0 < 𝜏𝑝 ≤ 1.
This implies that we shall simply set 𝜏𝑝 = 1, i.e.,
to precode the symbols throughout the entire coherent
interval, to maximize 𝐼(𝜏𝑝). This is intuitively reasonable
sine, as long as the channel mismatch effect is more
deleterious, a long precoding interval is needed to reduce
the channel estimation errors, and in turn enlarge the total
capacity.

Case 2: If 1 >
√

𝛽/𝛼 and hence 𝛼 > 𝛽, meaning that the
precoding-induced capacity loss is more harmful, in
this case placing 𝜏𝑝 at

√
𝛽/𝛼 can attain the maximal

capacity lower bound. This reflects the fact that,
when the precoding effect is more detrimental, symbol
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precoding throughout the entire coherent interval should
be avoided. Rather, one should limit the fraction of the
precoding phase to

√
𝛽/𝛼 in order to realize the largest

capacity gain.

Based on the above discussions, the proposed closed-form
estimate of the capacity-maximizing time fraction for precod-
ing is thus

𝜏𝑝 = min
{
1,

√
𝛽/𝛼

}
, (5.9)

where 𝛼 and 𝛽 defined, respectively, in (5.5) and (5.6).
We note that both 𝛼 and 𝛽 involve the average over the
true channel realizations, and can thus be computed off-line
once the channel statistics (e.g., Gaussian) are known. The
estimated optimal precoding interval is then given by the lower
integer floor of 𝑇𝜏𝑝. The accuracy of the proposed analytic
estimate (5.9) is assessed through numerical simulations as
shown in the next section.

Remark: Lemma 5.1 together with the analytic estimate of
the optimal precoding fraction (5.9) allow us to investigate
the achievable capacity performance in the asymptotic regime
𝑇 → ∞. Assume that the optimal precoding fraction 𝜏𝑝 is
adopted. Then, from (5.3), the difference between the idealized
capacity 𝐸

{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}

and the capacity lower
bound 𝐼(𝜏𝑝) when 𝑇 → ∞ can be immediately obtained as
(5.10), shown at the bottom of this page. Also, from (5.9) and
by definition of 𝛼 and 𝛽 in (5.5) and (5.6), it is easy to see
lim𝑇→∞ 𝜏𝑝 = 0. This result together with (5.10) assert

𝐸
{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}− 𝐼(𝜏𝑝) ≈ 0 , as 𝑇 → ∞.

(5.11)

i.e., the achievable capacity of the considered blind scheme
[31] converges to the idealized performance. An intuitive
reason for (5.11) is that, when the length of the coherent
interval grows without bound (𝑇 → ∞), an arbitrarily small
precoding fraction 𝜏𝑝 can provide a sufficient amount of
precoded data blocks for obtaining a quite accurate channel
estimate. As a result, the capacity penalty caused by both
precoding and channel mismatch can be kept arbitrarily small
if 𝑇 → ∞. Our simulation results (see Section VI-C) confirm
this tendency.

C. On Selection of the Threshold 𝛿

As mentioned in the last paragraph of Section IV, the
capacity lower bound (4.12) is a highly nonlinear function of
the power threshold 𝛿; the effect of different 𝛿 on the capacity
performance is thus extremely difficult to characterize. To
provide some guidelines about the selection of 𝛿 and to also

keep the analysis tractable, a plausible approach is to focus
on some special case in which the dependence of the lower
bound (4.12) on 𝜏𝑝 (or 𝑇𝑝) is suppressed. Specifically, we
will consider the situation that 𝜏𝑝 = 1 (or 𝑇𝑝 = 𝑇 ), i.e., the
entire coherent interval is used for precoding; based on our
simulation such a scenario typically occurs when the coherent
interval is not large, and thus accounts for the more realistic
mobile environment. Based on (5.3) and with 𝜏𝑝 = 1, the gap
between the idealized capacity 𝐸

{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}

and the lower bound 𝐼(1) can be approximated as (5.12)
shown at the bottom of this page (see Appendix E for a
derivation). A very rough interpretation of (5.12) is that, when
the entire coherent interval7 is dedicated to precoding, the
channel estimation error can be mitigated, and the performance
gap is mainly caused by the capacity loss due to precoding.
In this case, the achievable capacity can be enhanced if the
negative effect due to precoding can be reduced. In Section III-
A it has been shown that 𝐸

{
log det

[
I+ 𝜎−2

𝑣 GP2G𝐻
]} ≤

𝐸
{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}

, with equality attained by the
uniform precoding scheme 𝑝(𝑛) = 1, 0 ≤ 𝑛 ≤ 𝑁 − 1. Hence,
to limit the capacity loss when the two-level precoder (2.16)
is used, we shall enlarge the power threshold 𝛿 so that the
resultant power pattern is close to being uniform; however,
the selection 𝛿 = 1, which results in uniform power allocation,
should be precluded since this will render the channel uniden-
tifiable (cf. footnote 3). Hence, small 𝛿 should be disregarded
in the algorithm implementation. We shall note that the exact
𝛿 that can yield the maximal capacity remains difficult to
characterize even in the considered special case; the best 𝛿 is
a highly complicated function of several system parameters,
e.g., length of symbol block 𝑁 , coherent interval 𝑇 , and SNR.
Through simulation a rule of thumb is 0.6 ≤ 𝛿 ≤ 0.9 (𝛿 ≥ 0.9
usually leads to poor channel estimation error, and, thus, is not
plausible from the equalization perspective, cf., [31]).

VI. SIMULATION RESULTS

This section provides numerical results for corroborating the
proposed analytic guidelines for 𝜏𝑝 selection. In each coherent
interval the channel taps are drawn from i.i.d. complex Gaus-
sian random variables with zero mean and unit-variance. As in
[31] the system parameters are likewise set as 𝑁 = 32, 𝐿 = 8
(the length of CP is the same as the channel order 𝐿), the
symbol constellation is QPSK, and the optimal noise-resistant
precoder (2.16) is used for channel estimation. To remove the
scalar ambiguity we perform a least-squares fit between the
computed dominant eigenvector and the true channel; such

7Since (5.12) is derived on the basis of Lemma 5.1, the coherent interval
is implicitly assumed to be not too small, say, 𝑇 > 100, so that the channel
estimate is reasonably accurate and perturbation analysis is valid (cf. the
discussions before Lemma 4.1 and footnote 5).

𝐸
{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}− 𝐼(𝜏𝑝) ≈ 𝜏𝑝

[
𝐸

{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}− 𝐸

{
log det

[
I+ 𝜎−2

𝑣 GP2G𝐻
]}]

(5.10)

𝐸
{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}− 𝐼(1) ≈ 𝐸

{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}− 𝐸

{
log det

[
I+ 𝜎−2

𝑣 GP2G𝐻
]}

(5.12)
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TABLE I
THE ESTIMATED AND OPTIMAL PRECODING INTERVALS (SNR = 25 DB).

𝑇 = 200 𝑇 = 2000 𝑇 = 8000 𝑇 = 20000√
𝛽/𝛼 12.23 3.54 2.84 1.22

Estimated 𝜏𝑝 by (5.9) 1 1 1 1

Optimal 𝜏𝑝 by simulation 1 1 1 1

TABLE II
THE ESTIMATED AND OPTIMAL PRECODING INTERVALS (SNR =0 DB).

𝑇 = 200 𝑇 = 2000 𝑇 = 8000 𝑇 = 20000√
𝛽/𝛼 1.22 0.55 0.32 0.21

Estimated 𝜏𝑝 by (5.9) 1 0.55 0.32 0.21

Optimal 𝜏𝑝 by simulation 1 0.60 0.35 0.25
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Fig. 1. Capacity lower bounds for different coherent intervals (SNR = 25
dB).
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Fig. 2. Capacity lower bounds for different coherent intervals (SNR = 0
dB).

a technique has been adopted in, e.g., [9], [16], [17], for
fixing the channel estimate. The capacity lower bounds in all
figures are plotted in the unit of bits per channel use, that
is, 𝐼(𝜏𝑝)/(𝑁 + 𝐿). In Simulations A∼C the threshold of the
precoder (2.16) is set to be 𝛿 = 0.9.

A. Precoding Interval Selection in the High SNR Regime

We set SNR = 25 dB, and consider four different cases of
coherent intervals: 𝑇 = 200, 2000, 8000, 20000. Associated
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Fig. 3. Achievable capacity lower bounds versus SNR for different coherent
intervals.

with each 𝑇 the value of
√

𝛽/𝛼 are computed and listed
in Table I. As we can see from the table,

√
𝛽/𝛼 exceeds

unity for all 𝑇 . Hence, based on (5.9) 𝜏𝑝 = 1 is expected
to maximize the capacity lower bound. Figure 1 plots the
experimental 𝐼(𝜏𝑝) (computed based on (5.2) via averaging
the results of Monte-Carlo trials) with respect to the four
choices of 𝑇 . All the curves of 𝐼(𝜏𝑝)are seen to increase with
𝜏𝑝, and attain the maximum at 𝜏𝑝 = 1: This thus confirms
the analytical study. A rough interpretation of the observed
tendency of 𝐼(𝜏𝑝) is that, when SNR is high, the effective
background noise in the system (4.3) is dominated by channel
estimation errors, and the achievable capacity advantage can
be realized by mitigating channel uncertainty through a long
precoding period.

B. Precoding Interval Selection in the Low SNR Regime

We repeat the above experiment by instead setting SNR =
0 dB. The computed

√
𝛽/𝛼 with respect to the four different

𝑇 are listed in Table II. The results show that
√

𝛽/𝛼 > 1
when 𝑇 = 200; as 𝑇 increases, the value of

√
𝛽/𝛼 gradually

falls below unity. Toward the maximal capacity bound, (5.9)
implies that we shall thus set 𝜏𝑝 = 1 for 𝑇 = 200, and
place 𝜏𝑝 at

√
𝛽/𝛼 for the other three 𝑇 . Figure 2 plots the

experimental 𝐼(𝜏𝑝), based on which the true optimal 𝜏𝑝 for
each 𝑇 is determined and also included in Table II. The result
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Fig. 4. Achievable capacity lower bounds versus SNR for precoding
thresholds 0.1 ≤ 𝛿 ≤ 0.9.
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Fig. 5. Achievable capacity lower bounds versus SNR for different precoding
thresholds 0.91 ≤ 𝛿 ≤ 0.99.
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Fig. 6. Capacity lower bounds for 0.1 ≤ 𝛿 ≤ 0.9 with 𝑇𝑝 = 𝑇 (SNR = 25
dB).

shows that there is a good agreement between the estimated
solutions via (5.9) and the optimal 𝜏𝑝. Even tough a slight
discrepancy remains, as we will see in the next simulation the
difference between the resultant capacity performances turns

out to be negligible. A plausible rationale for the capacity
tendency seen in Figure 2 is that, when SNR is low and 𝑇 is
small, the quality of channel estimation is likely to be quite
poor and will be the dominant factor for capacity loss. The
entire coherent interval should then be dedicated to precoding
for improving channel estimation accuracy, and 𝜏𝑝 = 1 thus
maximizes the capacity bound. However, as 𝑇 gets larger,
spending too much coherent interval for precoding cannot
largely reduce the channel estimation errors (since the error
covariance decays only at the rate 1/𝑇𝑝 = 1/𝜏𝑝𝑇 , cf. (4.8)),
but, rather, will enlarge the precoding induced penalty. As a
result, 𝜏𝑝 should be kept below unity so that the maximal
capacity bound can be attained.

C. Achievable System Capacity

For each considered 𝑇 , the peak capacity lower bounds
at different SNR levels are further determined based on,
respectively, the simulated 𝐼(𝜏𝑝) and the proposed analytical
solution (5.9). The results are depicted in Figure 3; the
idealized performance measure

𝐼0 :=
1

(𝑁 + 𝐿)
𝐸

{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}

, (6.1)

where G is the exact channel matrix, is also included as the
benchmark. The figure shows that the analytic solutions via
(5.9) do accurately predict the experimental counterparts. Also
we can see that, when 𝑇 is small, there is a large capacity
gap between the achievable lower bound and the benchmark
performance (6.1). The reason is that, for small 𝑇 , the channel
estimation quality is likely to be poor, even when the entire
coherent interval (𝜏𝑝 = 1) is used for achieving the optimal
tradeoff. As a result, there tends to be a large capacity loss
due to potentially severe channel estimation errors as well as
the use of a large precoding time fraction. As 𝑇 increases,
the figure shows that the lower bounds then improve. This is
because, as 𝑇 is large, a relatively small 𝜏𝑝 will suffice to yield
a good channel estimate and achieve the maximal capacity
bound (recalling from (5.5) and (5.6) that

√
𝛽/𝛼 is inversely

proportional to
√
𝑇 and, eventually, 𝜏𝑝 =

√
𝛽/𝛼 < 1 as 𝑇

continuously increases). Hence the degradation due to both
channel mismatch and precoding can be limited, resulting in a
large average capacity gain. We thus conclude that, when the
coherent interval is large, the capacity performance attained
by the blind estimation scheme [31] approaches the idealized
bound (6.1).

D. Impact of the Precoding Threshold

In the last experiment we first test the achievable capacity
lower bounds when different thresholds 𝛿 of the precoder
(2.16) are used. For the coherent interval 𝑇 = 2000, Figures
4 and 5 show the achievable capacity results for two threshold
sets {0.1, 0.3, 0.6, 0.9} and {0.91, 0.93, 0.96, 0.99}. In Figure
4 the best capacity performance is seen to be attained with
𝛿 = 0.9. This reflects the fact that, although a large 𝛿 results
in a less accurate channel (see [31, Sec. V]), it can otherwise
limit the capacity loss due to pecoding (cf. Discussion 1
in Section III). However, if 𝛿 increases beyond 0.9, severe
channel estimation error occurs: this will then dominate the
performance and degrades the capacity, as can be seen from
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Fig. 7. Capacity lower bounds for 0.1 ≤ 𝛿 ≤ 0.9 with 𝑇𝑝 = 𝑇 (SNR = 0
dB).
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Fig. 8. Capacity lower bounds for 0.91 ≤ 𝛿 ≤ 0.99 with 𝑇𝑝 = 𝑇 (SNR =
0 dB).

Figure 5. We thus conclude that 𝛿 ≈ 0.9 is the compromising
choice for 𝑇 = 2000 under the current system setup. Recall
that, in the proposed scheme, the threshold 𝛿 is fixed and
optimization is conducted only with respect to 𝜏𝑝. We go on
to investigate the capacity performance by fixing 𝑇𝑝 = 𝑇
(i.e., the whole coherent interval is used for precoding) and
varying the parameter 𝛿. For SNR = 25 dB, Figure 6 plots
the proposed capacity lower bound as a function of 𝛿 for
𝑇 = 200, 2000, 8000, 20000. Notably it is seen that, for
𝑇 = 200, 𝛿 ≈ 0.6 (but not 𝛿 = 0.9 as used in the
previous simulation) attains the maximal capacity. Our further
simulation confirms that, for 𝑇 = 200, the optimal precoding
fraction is 𝜏𝑝 = 1 for all considered 𝛿. Hence, when SNR is
high and 𝑇 is small, it is plausible to just set 𝑇𝑝 = 𝑇 and
choose 𝛿 to maximize the capacity. However, even though
the formula of the proposed capacity lower bound (4.12) is
somewhat simplified with 𝑇𝑝 = 𝑇 (or 𝜏𝑝 = 1), it is still a
quite involved function of 𝛿 and exact characterization of the
optimal 𝛿 in this scenario remains difficult. For SNR= 0 dB,
the capacity results corresponding to the two threshold sets
0.1 ≤ 𝛿 ≤ 0.9 and 0.91 ≤ 𝛿 ≤ 0.99 are, respectively, shown

in Figures 7 and 8. As we can see, for 𝑇 = 200, 𝛿 = 0.9
attains the maximal capacity. When 𝑇 is large (𝑇 = 8000
and 20000), the peak capacity through varying 𝛿 is below
0.7 bits/channel use, and is less than the achievable capacity
via optimal precoding fraction design with fixed 𝛿 = 0.9
(above 0.7 bits/channel use, from Fig. 2). Hence, in this case,
optimization with respect to 𝜏𝑝 should be explicitly taken into
account in order to realize the maximal capacity advantage.

VII. CONCLUSION

This paper, to the best of our knowledge, is the first
contribution in the literature that investigates the capacity
performance for wireless communication systems in the blind
channel estimation setup. We focus on the CP-based single-
carrier system scenario which employs the diagonal-precoding
assisted blind channel estimation scheme [31]. When the
channel is perfectly known, we show that the optimal noise-
resistant two-level precoder proposed in [31] tends to incur
the largest capacity penalty. In case that the coherent time is
finite and the sample covariance matrix estimation is subject
to errors, the optimal tradeoff between channel estimation ac-
curacy and the achievable capacity through precoding interval
selection is addressed. By leveraging the matrix perturbation
techniques, we derived a closed-form capacity metric in the
presence of channel mismatch that is a complicated function
of the precoding interval. To simplify analysis an associated
tractable approximation of the considered capacity metric
is also given. The established results facilitate an analytic
approach for finding an estimate of the capacity-maximizing
precoding interval, and also allow for informative interpre-
tations regarding the optimal tradeoff. Computer simulations
show that the proposed analytic solution can very well predict
the experimental results. Also, it is seen that, for small co-
herent intervals (hence a high mobility environment), channel
estimation error is the dominant factor and a large precoding
fraction is needed, irrespective of the SNR.

APPENDIX A
PROOF OF THEOREM 3.1

The optimization problem considered is

Minimize
𝑁−1∏
𝑛=0

𝑝(𝑛)2 (A.1)

subject to the constraints (2.14) and (2.15),

or equivalently,

Minimize ln

(
𝑁−1∏
𝑛=0

𝑝(𝑛)2

)
=

𝑁−1∑
𝑛=0

ln
[
𝑝(𝑛)2

]
(A.2)

subject to the constraints (2.14) and (2.15),

since ln(⋅) is a monotone increasing function. Let us define
𝑞𝑛 := 𝑝(𝑛)2 − 𝛿, for 0 ≤ 𝑛 ≤ 𝑁 − 1. Then the optimization
problem (A.2) becomes

Minimize
𝑁−1∑
𝑛=0

ln [𝑞𝑛 + 𝛿]

subject to
𝑁−1∑
𝑛=0

𝑞𝑛 = 𝑁(1− 𝛿)

𝑞𝑛 ≥ 0 , for all 0 ≤ 𝑛 ≤ 𝑁 − 1. (A.3)
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Since the cost function in (A.3) is concave, the minimizer has
to either lie on the boundary or make the partial derivative
of the Lagrangian to be zero. Let us assume that there are
only 𝑘 components of the minimizer on the boundary, say,
𝑞0 = 𝑞1 = ⋅ ⋅ ⋅ = 𝑞𝑘−1 = 0 without loss of generality. Then
we must have

∂

∂𝑞𝑛

{
𝑁−1∑
𝑛=0

ln [𝑞𝑛 + 𝛿]− 𝜆

𝑁−1∑
𝑛=0

𝑞𝑛

}
𝑞𝑛=𝑞𝑛

= 0 ,

for 𝑘 ≤ 𝑛 ≤ 𝑁 − 1. (A.4)

By invoking the equality constraint in (A.3) to solve (A.4), it
is easy to check 𝑞𝑛 = 𝑁(1−𝛿)

𝑁−𝑘 , for 𝑘 ≤ 𝑛 ≤ 𝑁 − 1. Hence the
minimal cost function (as a function of 𝑘) is

𝑓(𝑘) =
𝑘−1∑
𝑛=0

ln(𝛿) +
𝑁−1∑
𝑛=𝑘

ln

[
𝑁(1− 𝛿)

𝑁 − 𝑘
+ 𝛿

]

= 𝑘 ln(𝛿) +

𝑁−1∑
𝑛=𝑘

ln

[
𝑁 − 𝑘𝛿

𝑁 − 𝑘

]
. (A.5)

It can be check that 𝑓(𝑘) is a decreasing function in 𝑘, because

𝑓(𝑘 + 1)− 𝑓(𝑘) = ln(𝛿)− ln

(
𝑁 − 𝑘𝛿

𝑁 − 𝑘

)
(A.6)

= ln

(
𝛿(𝑁 − 𝑘)

𝑁 − 𝑘𝛿

)
= ln

(
𝛿𝑁 − 𝑘𝛿

𝑁 − 𝑘𝛿

)
< 0.

This implies that the minimal value occurs when 𝑘 = 𝑁 − 1.
As a result,

𝑞0 = 𝑞1 = ⋅ ⋅ ⋅ = 𝑞𝑁−2 = 0 and 𝑞𝑁−1 = 𝑁(1− 𝛿) (A.7)

solves (A.3), and the optimal solution to (A.1) is{
𝑝(0)2 = 𝑝(1)2 = ⋅ ⋅ ⋅ = 𝑝(𝑁 − 2)2 = 𝛿,
𝑝(𝑁 − 1)2 = 𝑁(1− 𝛿) + 𝛿.

(A.8)

Due to the symmetric nature of the problem, the index at
which the peak value 𝑁(1−𝛿)+𝛿 occurs can be arbitrary, and
the two-level precoder (2.16) is thus the minimizing solution.

APPENDIX B
PROOF OF LEMMA 4.1

To derive (4.4), we first observe from (4.3) that the mutual
information between s𝑘 and y𝑘, for a given channel estimate
Ĝ, is by definition given by

𝐼(y𝑘; s𝑘∣Ĝ) = ℎ(s𝑘∣Ĝ)− ℎ(s𝑘∣Ĝ,y𝑘). (B.1)

For a fixed Ĝ, let us choose s𝑘 to be Gaussian (which is not
necessarily the capacity achieving distribution with imperfect
channel information). Then we have

𝐼(y𝑘; s𝑘∣Ĝ) ≥ log det(𝜋𝑒I) − ℎ(s𝑘∣Ĝ,y𝑘). (B.2)

It is known that the term ℎ(s𝑘∣Ĝ,y𝑘) can be upper bounded
as [12, p-963]

ℎ(s𝑘∣Ĝ,y𝑘) ≤ log det(𝜋𝑒R𝐿𝑀𝑀𝑆𝐸), (B.3)

where

R𝐿𝑀𝑀𝑆𝐸 := 𝐸
{[
s𝑘 − (𝐸{s𝑘y𝐻𝑘 })(𝐸{y𝑘y𝐻𝑘 })−1y𝑘

][
s𝑘 − (𝐸{s𝑘y𝐻𝑘 })(𝐸{y𝑘y𝐻𝑘 })−1y𝑘

]𝐻}
= I− (𝐸{s𝑘y𝐻𝑘 })(𝐸{y𝑘y𝐻𝑘 })−1(𝐸{s𝑘y𝐻𝑘 })𝐻

(B.4)

is the error covariance of the linear minimum-mean-square
error estimate of s𝑘. With the assumption 𝐸 {G} = 0 and by
computations, we have

𝐸{s𝑘y𝐻𝑘 } = P𝐻Ĝ𝐻 +P𝐻(𝐸{G̃})𝐻 = P𝐻Ĝ𝐻 , (B.5)

and

𝐸{y𝑘y𝐻𝑘 } = ĜP2Ĝ𝐻 + ĜP2(𝐸{G̃𝐻})
+ (𝐸{G̃})P2Ĝ𝐻 + 𝐸{G̃P2G̃𝐻}+ 𝜎2

𝑣I

= ĜP2Ĝ𝐻 + 𝐸{G̃P2G̃𝐻}+ 𝜎2
𝑣I. (B.6)

With (B.4) ∼ (B.6) direct manipulation shows

R𝐿𝑀𝑀𝑆𝐸 =

[
I+P𝐻Ĝ𝐻

(
𝐸{G̃P2G̃𝐻}+ 𝜎2

𝑣I
)−1

ĜP

]−1

.

(B.7)

Based on (B.1) ∼ (B.3), and (B.7) we have

𝐼(y𝑘; s𝑘∣Ĝ)

≥ log det(𝜋𝑒I)− ℎ(s𝑘∣Ĝ,y𝑘)

≥ log det(𝜋𝑒I)− log det(𝜋𝑒R𝐿𝑀𝑀𝑆𝐸)

= log det

(
I+P𝐻Ĝ𝐻

(
𝐸{G̃P2G̃𝐻}+ 𝜎2

𝑣I
)−1

ĜP

)
= log det

{
I+

(
𝐸{G̃P2G̃𝐻}+ 𝜎2

𝑣I
)−1

ĜP2Ĝ𝐻

}
.

(B.8)

The proof is thus completed.

APPENDIX C
PROOF OF LEMMA 4.2

When only a sample covariance matrix R̂y is available, the

outer product of the channel estimate is thus vec
(
ĥĥ𝐻

)
=(

Q̃𝑇 Q̃
)−1

Q̃𝑇 vec
(
R̂y

)
(cf. (2.10)), or equivalently,

ĥĥ𝐻 =
[
A1vec

(
R̂y

)
⋅ ⋅ ⋅ A𝐿+1vec

(
R̂y

)]
,

A𝑖 :=
(
e𝑇𝑖 ⊗ I𝐿+1

) (
Q̃𝑇 Q̃

)−1

Q̃𝑇 , 1 ≤ 𝑖 ≤ 𝐿+ 1.

(C.1)

Based on (C.1), the perturbation of the channel outer-product
matrix reads

ĥĥ𝐻 − hh𝐻 =
[
A1vec

(
R̃y

)
⋅ ⋅ ⋅ A𝐿+1vec

(
R̃y

)]
.

(C.2)

To prove (4.7) we need the next lemma, which characterizes
the first-order perturbation of the dominant singular vector
[32].
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Lemma C.1: Let h̃ = ĥ− h be the channel estimation error.
Then we have

h̃ =

[
1

∥h∥2ΣhΣ
𝐻
h

𝐿∑
𝑖=0

ℎ(𝑖)A𝑖

]
vec(R̃y). (C.3)

[Sketch Proof of Lemma C.1]: We observe that the equation
(2.12) is exactly (13) in [32] with 𝐽 = 1, 𝐾 = 0, and
𝑀 = 𝑁 . Hence the analysis shown in [32] applies to the
considered scenario. From (32) in [32], we can directly deduce
that h̃ = 1

∥h∥2ΣhΣ
𝐻
h

[
ĥĥ𝐻 − hh𝐻

]
h, which together with

the definition h =
[
ℎ(0) ⋅ ⋅ ⋅ ℎ(𝐿)

]𝑇
then yield (C.3).

APPENDIX D
PROOF OF LEMMA 5.1

For a coherent interval of length 𝑇 , within which the
channel realization G is fixed, the blind estimation algorithm
computes a channel estimate Ĝ = G − G̃. Subject to such
a channel acquisition mechanism, the capacity lower bound
(5.2) averaged with respect to (w.r.t.) the channel estimate Ĝ
should be interpreted as the average over both G̃ and G. The
computations can thus be done via the two-step approach: (I)
First fix the true channel G and perform expectation w.r.t. G̃;
(II) Then perform expectation w.r.t. to G. Toward this end let
us write, for a fixed pair of G and G̃ (to simplify notation in
what follows the dependency on 𝜏𝑝 is not explicitly shown),
the capacity lower bound as in (D.1), shown at the bottom of
this page. We shall first compute the average of 𝑓(G, G̃). For
this let us first expand 𝑓(G, G̃) into

𝑓(G, G̃) = log det
{
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

GP2G𝐻

+
[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

(
−GP2G̃𝐻 − G̃P2G𝐻 + G̃P2G̃𝐻

)}
.

(D.2)
We further note that the assumption I/𝑇 ≪ 𝜎2

𝑣𝜏𝑝R
−1
𝑒 is

equivalent to

R𝑒/(𝑇𝜏𝑝) = R𝑒/𝑇𝑝 ≪ 𝜎2
𝑣I. (D.3)

Since the quantity R𝑒/𝑇𝑝 accounts for the channel error
covariance (cf. (4.9)), inequality (D.3) together with the as-
sumption 𝜎2

𝑣 small thus assert that the channel estimate is
quite accurate so that G̃ is small. Using the approximation [5,
p-641]

log det [X+△X] ≈ log detX+ Tr
[
X−1△X

]
, for small △X, (D.4)

we have the following approximation based on (D.2):

𝑓
(
G, G̃

)
≈ log det

{
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

GP2G𝐻
}

+ Tr

{[
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

GP2G𝐻
]−1

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

(
−GP2G̃𝐻 − G̃P2G𝐻 + G̃P2G̃𝐻

)}
.

(D.5)
For a fixed G, we shall first take the expectation with respect
to G̃ of both sides of (D.5) to get

𝑓1 (G) := 𝐸
{
𝑓
(
G, G̃

)}
≈ log det

{
I+

{
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

GP2G𝐻
}

+ Tr

{[
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

GP2G𝐻
]−1

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

R𝑒/(𝜏𝑝𝑇 )
}
, (D.6)

where we have used the fact 𝐸 {G} = 0 and 𝐸{G̃P2G̃𝐻} =
R𝑒/(𝜏𝑝𝑇 ) (cf. (4.9)). From (D.3), we have[

R𝑒/(𝜏𝑝𝑇 ) + 𝜎2
𝑣I
]−1

R𝑒/(𝜏𝑝𝑇 )

≈ [
𝜎2
𝑣I
]−1

R𝑒/(𝜏𝑝𝑇 )

≪ I < I+
[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

GP2G𝐻 , (D.7)

and from (D.6),

𝑓1(G)
(𝑐)≈ log det

{
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

GP2G𝐻

+
[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

R𝑒/(𝜏𝑝𝑇 )
}

(𝑑)≈ log det
{
I+

[
I/𝑇 + 𝜎2

𝑣𝜏𝑝R
−1
𝑒

]−1[
𝜏𝑝R

−1
𝑒 GP2G𝐻 + I/𝑇

]}
, (D.8)

where (c) holds from (D.6), (D.7), and by again using (D.3),
and (d) follows via some manipulations. By assumptions
I/𝑇 ≪ 𝜎2

𝑣𝜏𝑝R
−1
𝑒 and 𝜎2

𝑣 is small, we have

I/𝑇 ≪ 𝜎2
𝑣𝜏𝑝R

−1
𝑒 ≪ 𝜏𝑝R

−1
𝑒 GP2G𝐻 . (D.9)

Also, by using the approximation (X + △X) = X−1 −
X−1△XX−1 for small △X, we have(

𝜎2
𝑣𝜏𝑝R

−1
𝑒 + I/𝑇

)−1

≈ 𝜎−2
𝑣 𝜏−1

𝑝 R𝑒 − 𝜎−2
𝑣 𝜏−1

𝑝 R𝑒(1/𝑇 )𝜎
−2
𝑣 𝜏−1

𝑝 R𝑒

= 𝜎−2
𝑣 𝜏−1

𝑝 R𝑒 − 𝜎−4
𝑣 𝜏−2

𝑝 R2
𝑒/𝑇. (D.10)

Based on (D.8), (D.9), and (D.10), we have (D.11) as shown
at the bottom of this page, where (e) follows from (D.3) and

𝐼(G, G̃) = 𝜏𝑝 log det
[
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

ĜP2Ĝ𝐻
]
+ (1 − 𝜏𝑝) log det

[
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

ĜĜ𝐻
]

= 𝜏𝑝 log det

[
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

(
G− G̃

)
P2

(
G− G̃

)𝐻]
︸ ︷︷ ︸

:=𝑓(G,G̃)

+ (1− 𝜏𝑝) log det

[
I+

[
R𝑒/(𝜏𝑝𝑇 ) + 𝜎2

𝑣I
]−1

(
G− G̃

)(
G− G̃

)𝐻]
︸ ︷︷ ︸

:=𝑔(G,G̃)

. (D.1)
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(D.4). Starting from 𝑔(G, G̃) in (D.1) and by following the
similar procedures, the expectation of 𝑔(G, G̃) w.r.t. G̃ can
be verified to be

𝑔1 (G) := 𝐸
{
𝑔
(
G, G̃

)}
≈ log det

[
I+ 𝜎−2

𝑣 GG𝐻
]

− 1

𝜏𝑝𝑇𝜎4
𝑣

Tr
[(
I+ 𝜎−2

𝑣 GG𝐻
)−1

R𝑒GG𝐻
]
.

(D.12)

Based on (D.1), (D.11), and (D.12), we have (D.13). Equation
(5.3) follows from taking expectation of both sides of (D.13)
w.r.t. to the true channel G followed by direct manipulations.

APPENDIX E
PROOF OF EQUATION (5.12)

From (5.3) we have

𝐸
{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}− 𝐼(1)

≈ 𝑓(1)− 1

𝑇𝜎4
𝑣

𝐸
{

Tr
[(
I+ 𝜎−2

𝑣 GG𝐻
)−1

R𝑒GG𝐻

− (
I+ 𝜎−2

𝑣 GP2G𝐻
)−1

R𝑒GP2G𝐻
]}

= 𝐸
{
log det

[
I+ 𝜎−2

𝑣 GG𝐻
]}

− 𝐸
{
log det

[
I+ 𝜎−2

𝑣 GP2G𝐻
]}

+
1

𝑇𝜎4
𝑣

𝐸
{

Tr
[(
I+ 𝜎−2

𝑣 GP2G𝐻
)−1

R𝑒GP2G𝐻
]}

.

(E.1)

Note that

1

𝑇𝜎4
𝑣

𝐸
{

Tr
[(
I+ 𝜎−2

𝑣 GP2G𝐻
)−1

R𝑒GP2G𝐻
]}

= 𝐸

{
Tr

[(
𝜎2
𝑣I+GP2G𝐻

)−1
(

R𝑒

𝑇𝜎2
𝑣

)
GP2G𝐻

]}
(𝑓)≈ log det

[
𝜎2
𝑣I+GP2G𝐻 +

(
R𝑒

𝑇𝜎2
𝑣

)
GP2G𝐻

]
− log det

[
𝜎2
𝑣I+GP2G𝐻

]
= log det

[
𝜎2
𝑣I+

(
I+

R𝑒

𝑇𝜎2
𝑣

)
GP2G𝐻

]
− log det

[
𝜎2
𝑣I+GP2G𝐻

]
(𝑔)≈ log det

[
𝜎2
𝑣I+GP2G𝐻

]− log det
[
𝜎2
𝑣I+GP2G𝐻

]
= 0, (E.2)

where (f) follows from (D.3) and (D.4), and (g) holds since
I + R𝑒

𝑇𝜎2
𝑣
≈ I (cf. (D.3)). Based on (E.1) and (E.2), equation

(5.12) then follows.
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