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Structure of the cuspidal rational torsion subgroup of J1(p
n)

Yifan Yang and Jeng-Daw Yu

Abstract

Let p be a prime and let J1(p
n) denote the Jacobian of the modular curve X1(p

n). The Jacobian
J1(p

n) contains a Q-rational torsion subgroup generated by the cuspidal divisor classes [(a/pn) −
(∞)], where p � a. In this paper, we determine the structure of the p-primary subgroup of this
Q-rational torsion subgroup in the case where p is a regular prime.

1. Introduction and statements of results

Let Γ be a congruence subgroup of SL(2, Z). The modular curve X(Γ) and its Jacobian variety
J(Γ) are very important objects in number theory. For instance, the problem of determining
all possible structures of a (Q-)rational torsion subgroup of elliptic curves over Q is equivalent
to that of determining whether the modular curves X1(N) have non-cuspidal rational points.
Also, the celebrated theorem of Wiles and others shows that every elliptic curve over Q is
a factor of the Jacobian J0(N). In the present paper, we are concerned with the arithmetic
aspect of the Jacobian variety J1(N) of the modular curve X1(N). In particular, we will study
the structure of the (Q-)rational torsion subgroup of J1(N).

Recall that the modular curve X1(N) possesses a model over Q on which the cusp ∞ is a
(Q-)rational point (see [11, Chapter 6] for details). Thus, if P is another rational cusp, then
the image of P under the cuspidal embedding i∞ : X1(N) → J1(N) sending P to the divisor
class [(P ) − (∞)] will be a rational point on J1(N). Moreover, according to a result of Manin
[9], the point i∞(P ) is of finite order. In other words, the rational torsion subgroup of J1(N)
contains a subgroup generated by the image of rational cusps under i∞. More generally, if D is
a divisor of degree 0 defined over Q that is supported by cusps, then the divisor class of D gives
us a rational torsion point on the Jacobian. We refer to the rational torsion subgroup arising in
this way as the cuspidal rational torsion subgroup of J1(N). In general, it is believed that the
cuspidal rational torsion subgroup should be the whole rational torsion subgroup. (For primes
p, the conjecture was formally stated in [1, Conjecture 6.2.2]. The conjecture was verified for
a few cases in the same paper.) Note that, for the case J0(p), the Jacobian of X0(p) of prime
level p, Mazur [10, Theorem 1] has already shown that all rational torsion points are generated
by the divisor class [(0) − (∞)].

On the aforementioned model of X1(N), all the cusps of type k/N with (k,N) = 1 are
rational over Q (see, for example, [12, Theorem 1.3.1]). Moreover, if the level N is relatively
prime to 6, then these cusps are the only rational cusps. Since these cusps are precisely those
lying over ∞ of X0(N), for convenience, we shall call them the ∞-cusps. Now suppose that we
are given a divisor D of degree 0 supported by the ∞-cusps on X1(N). Then the order of the
divisor class [D] in J1(N) is simply the smallest positive integer m such that mD is a principal
divisor, that is, the divisor of a modular function on X1(N). Therefore, to determine the group
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structure of the cuspidal rational torsion subgroup of J1(N) generated by the ∞-cusps, it is
vital to study the group of modular units on X1(N) having divisors supported on the ∞-cusps.
(In the literature, if a modular function f on a congruence subgroup Γ has a divisor supported
on cusps, then f is called a modular unit.)

In a series of papers [3–7], Kubert and Lang studied the group of modular units on X(N) and
X1(N). For the curves X1(N), in [8, Chapter 3] they showed that all modular units on X1(N)
with divisors supported on the ∞-cusps are products of a certain class of Siegel functions (see
Subsection 3.1 for details). Furthermore, in [7] they also determined the order of the torsion
subgroup of J1(pn) generated by the ∞-cusps for the case p is a prime greater than 3. (The
case N = p was first obtained in [2]). Then Yu [18] gave a formula for all positive integers N .
(Note that all the results mentioned above dealt with modular units with divisors supported
on the cusps lying over 0 of X0(N), instead of the ∞-cusps, but it is easy to translate the
results using the Atkin–Lehner involution

(
0 −1
N 0

)
.)

In a very recent paper [17], we applied Yu’s divisor class number formula to determine an
explicit basis for the group of modular units on X1(N) with divisors supported on the ∞-cusps
for any positive integer N . As applications, we used the basis to compute the group structure
of the cuspidal rational torsion subgroup of J1(N) with divisors supported on the ∞-cusps. A
remarkable discovery is that, when p is a regular prime, the structure of the p-primary subgroup
of the cuspidal rational torsion subgroup of J1(pn) seems to follow a simple pattern. (Recall
that an odd prime p is said to be regular if p does not divide the numerators of the Bernoulli
numbers B2, B4, . . . , Bp−3.)

More precisely, let p be a prime, let n be a positive integer and let C∞
1 (pn) be the subgroup of

J1(pn) generated by the ∞-cusps. Consider the endomorphism [p] : C∞
1 (pn) → C∞

1 (pn) defined
by multiplication by p. Define the p-rank of C∞

1 (pn) to be the integer k such that the kernel
of [p] has pk elements.

Conjecture (Yang [17]). Assume that p is a regular prime. Then the p-rank of C∞
1 (pn) is

1
2
(p − 1)pn−2 − 1

for prime power pn � 8 with n � 2. More precisely, the number of copies of Z/p2kZ in the
primary decomposition of C∞

1 (pn) is given by
1
2
(p − 1)2pn−k−2 − 1 if p = 2 and k � n − 3,

1
2
(p − 1)2pn−k−2 − 1 if p � 3 and k � n − 2,

1
2
(p − 5) if p � 5 and k = n − 1,

0 else.

and the number of copies of Z/p2k−1Z is given by

1 if p = 2 and k � n − 3,

1 if p = 3 and k � n − 2,

1 if p � 5 and k � n − 1,

0 otherwise.

Example. For the primes p = 2, 3, 5, the above conjecture asserts that the p-parts of
C∞

1 (pn) follow the pattern depicted in Table 1. Here the notation (pe1)n1 . . . (pek)nk means
that the primary decomposition of C∞

1 (pn) contains ni copies of Z/peiZ.
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Table 1. The p-primary part of C ∞
1 (pn).

pn p-primary subgroups

24 (2)
25 (2)(22)(23)
26 (2)(22)3(23)(24)(25)
27 (2)(22)7(23)(24)3(25)(26)(27)

33 (3)(32)
34 (3)(32)5(33)(34)
35 (3)(32)17(33)(34)5(35)(36)
36 (3)(32)53(33)(34)17(35)(36)5(37)(38)

52 (5)
53 (5)(52)7(53)
54 (5)(52)39(53)(54)7(55)
55 (5)(52)199(53)(54)39(55)(56)7(57)

The main purpose of the present paper is to prove this conjecture.

Theorem A. The conjecture is true.

We note that the assumption that p is a regular prime is crucial in the proof of Theorem A.
This assumption is used to establish an exact formula for the p-rank of C∞

1 (pn) and to
determine the kernel of the homomorphism C∞

1 (pn) → C∞
1 (pn−1) induced from the covering

X1(pn) → X1(pn−1). At present, we do not know how to extend our method to the case of
irregular primes.

On the other hand, it is possible to obtain a similar result for modular curves X1(pnqm),
where q is another prime, under the assumption that the product

p
∏
χ

1
4
B2,χ

of generalized Bernoulli numbers B2,χ associated with even Dirichlet characters χ mod pqm is
a p-unit. For example, following the argument in the present paper, we can show that the 2-
primary subgroup of the torsion subgroup of J1(3 · 2n) generated by the ∞-cusps is isomorphic
to

n−2∏
k=1

(Z/22kZ)2
n−k−2

.

However, we will not pursue this direction here because it does not constitute a significant
extension of Theorem A and the proof of some key lemmas in these cases is much more
complicated than the prime power cases. (For instance, it takes more than one page just
to describe the basis for the group of modular units on X1(pnqm).)

Remark. Note that in a recent work [13], Sun considered the �-adic evaluation
v�(|C∞

1 (Npn)|) for a prime � �= p. His result showed that there exists an integer ν such that

v�(|C∞
1 (Npn)|) = τpn−1 + ν

for all sufficiently large n, where

τ =

{
(p − 1)φ(N/�v�(N))(�v�(N)−1 − 1) if � | N,

0 if � � N.
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This formula in particular implies that if �2 � N , then the �-adic valuation of |C∞
1 (Npn)|

eventually becomes a constant for all sufficiently large n. This result is comparable to
Washington’s theorem [14] on the boundedness of the �-part of ideal class groups in a Zp

extension of an abelian number field.

The rest of the article is organized as follows. In Section 2, we describe our strategy in proving
Theorem A. We will show that Theorem A will follow immediately from five properties of the
divisor groups, namely, Propositions 1–5. In Section 3, we review our basis for the group of
modular units on X1(N), which constitutes the cornerstone of our argument. In Section 4, we
study the natural maps between the cuspidal groups in different levels. We then give the proof
of the five propositions in Section 5.

2. Outline of proof of Theorem A

In this section, we first collect all the notation and conventions used throughout the paper.
We then describe our strategy in proving Theorem A. Our arguments depend crucially on
our explicit knowledge on the basis for the group of modular units on X1(N), which will be
reviewed in Subsection 3.2.

2.1. Notation and conventions

Let p be a prime. We fix an integer α that generates (Z/pn+1Z)×/ ± 1 for all integers n � 0.
Explicitly, for p = 2, we choose α = 3, and for an odd prime p, we let α be an integer that
generates (Z/pZ)× but satisfies αp−1 �≡ 1mod p2. For n � 0, we define

Xn = the modular curve X1(pn+1),
Cn = the set of cusps of Xn lying over ∞ of X0(pn+1), that is, the set of ∞-cusps,
φn = |Cn| = φ(pn+1)/2 = pn(p − 1)/2,
Pn,k = the cusp αk/pn+1 in Cn,
Dn = the group of divisors of degree 0 on Xn having support on Cn,
Fn = the group of modular units on Xn having divisors supported on Cn,
Pn = div Fn, the subgroup of principal divisors on Xn having support on Cn,
Cn = Dn/Pn, the rational torsion subgroup of J1(pn+1) generated by Cn,
πn = the canonical homomorphism from Dn to Dn−1 induced from the covering

Xn → Xn−1,

ιn = the embedding Dn−1 → Dn defined by

ιn(P ) = p
∑

Q: πn(Q)=P

Q.

Note that Pn,k and Pn,m represent the same cusp on Xn if and only if k ≡ m mod φn. Then
we have Cn = {Pn,k : k = 0, . . . , φn − 1}, and

πn(Pn,k) = Pn−1,k, ιn(Pn−1,k) = p

p−1∑
h=0

Pn,k+hφn−1 .

Since we are mainly interested in the orders of a function at the ∞-cusps, for a modular
function f on Xn, we introduce the notation div∞ denoting the Cn-part

div∞ f =
∑

P∈Cn

ordf (P )P

of the divisor of f .



CUSPIDAL RATIONAL TORSION SUBGROUP OF J1(pn) 207

Finally, the generalized Bernoulli numbers Bk,χ associated with a Dirichlet character χ mod
N , not necessarily primitive, are defined by the series

N∑
r=1

χ(r)tert

eNt − 1
=

∞∑
k=0

Bk,χ
tk

k!
.

In particular, we have

B2,χ = N

N∑
r=1

χ(r)B2

( r

N

)
= N

N∑
r=1

χ(r)
(

r2

N2
− r

N
+

1
6

)
.

Here B2(x) = {x}2 − {x} + 1/6 and {x} denotes the fractional part of a real number x. The
readers should be mindful that our definition differs from some other authors’ definition. See
the remark following Theorem E for details.

2.2. Outline of proof of Theorem A

In this section, we will describe our strategy in proving Theorem A.
Intuitively, just by looking at Table 1, one immediately realizes that if the conjecture is

to hold, then the p-primary subgroup of Cn/ ker[p2] must have the same structure as that of
Cn−1, where [p2] denotes the multiplication-by-p2 homomorphism for an additive group, and
one expects that there should be a canonical isomorphism between the p-primary subgroups
of the two groups. The only sensible candidate for such an isomorphism is the one induced by
the covering Xn → Xn−1. To establish this isomorphism, we first show that πn induces an iso-
morphism between the p-part of Cn = Dn/Pn and that of πn(Dn)/πn(Pn) = Dn−1/πn(Pn).
We then show that the kernel of [p2] of the latter group is Pn−1/πn(Pn), and thereby
establish the isomorphism. The following diagram illustrate the relations between various
groups:

Cn = Dn/Pn Dn−1/πn(Pn)

Cn/ ker[p2] Cn−1 = Dn−1/Pn−1

�πn

p-part �

�
/ ker[p2]

�
/ ker[p2]

�
p-part �

Now assume that the isomorphism between the p-parts of Cn/ ker[p2] and Cn−1 is established.
This would show that if the p-part of Cn−1 is

∏
(Z/peiZ)ri , then the p-part of Cn is (Z/pZ)s1 ×

(Z/p2Z)s2 × ∏
(Z/pei+2Z)ri for some non-negative integers s1 and s2. If we can determine the

p-ranks of Cn−1 and Cn and the index of πn(Pn) in Pn−1, this will yield information about
s1 + s2 and s1 + 2s2, respectively, which in turn will give us the exact values of s1 and s2.
Finally, if we know the structure of C0 (C1 for p = 3 and C2 for p = 2), then the structure of
the p-primary subgroup of Cn is determined for all n.

In summary, to establish Theorem A, it suffices to prove the following propositions.

Proposition 1. If p is a regular prime, then p does not divide |C0|. Also, if p = 2 and
p = 3, then p � |C1|, and if p = 2, then p � |C2|.

Proposition 2. Let p be a regular prime. If pn+1 � 5, then the p-rank of Cn is pn−1

(p − 1)/2 − 1.
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Proposition 3. For all primes p, we have πn(Pn) ⊂ Pn−1, and the index of πn(Pn) in
Pn−1 is ppn−1(p−1)−3 if pn+1 � 5. Moreover, the structure of the factor group Pn−1/πn(Pn)
is given by

(Z/p2Z)pn−1(p−1)/2−2 × (Z/pZ).

Proposition 4. Assume that p is a regular prime. Then the p-part of Cn = Dn/Pn is
isomorphic to the p-part of Dn−1/πn(Pn).

Proposition 5. Let p be a prime. Then the kernel of the multiplication-by-p2 endomor-
phism [p2] of Dn−1/πn(Pn) is Pn−1/πn(Pn).

Remark. We remark that the assumption that p is a regular prime is crucial in the proof
of Propositions 1, 2 and 4. In fact, the assumption is a necessary and sufficient condition for
the three propositions. For example, by carefully examining the proof of Proposition 2, one sees
that if p is an irregular prime, then the p-rank of Cn is strictly greater than pn−1(p − 1)/2 − 1.

The proof of these propositions will be postponed until Section 5. Here let us formally
complete the proof of Theorem A, assuming the truth of the propositions.

Proof of Theorem A. By Propositions 4 and 5, when p is a regular prime, we have

p-part of Cn/ ker[p2] � p-part of (Dn−1/πn(Pn))/ ker[p2]
= p-part of (Dn−1/πn(Pn))/(Pn−1/πn(Pn))
� p-part of Dn−1/Pn−1 = Cn−1,

Thus, if the structure of the p-part of Cn−1 is given by
k∏

i=1

(Z/peiZ)ri ,

then, according to the structure theorem for finite abelian groups, the structure of the p-part
of Cn is as follows:

(Z/pZ)s1 × (Z/p2Z)s2 ×
k∏

i=1

(Z/pei+2Z)ri

for some non-negative integers s1 and s2. Here the sum of ri is what we call the p-rank of
Cn−1, and the sum of s1, s2 and ri is the p-rank of Cn. Using Proposition 2, we find that the
integers s1 and s2 satisfy

s1 + s2 =
1
2
pn−2(p − 1)2. (1)

On the other hand, by Propositions 3 and 4, we know that

p-part of |Cn|/|Cn−1| = |Pn−1/πn(Pn)| = ppn−1(p−1)−3,

which, together with Proposition 2, implies that

s1 + 2s2 = (pn−1(p − 1) − 3) − 2(pn−2(p − 1)/2 − 1) = pn−2(p − 1)2 − 1.

Combining this with (1), we get s1 = 1 and s2 = pn−2(p − 1)2/2 − 1. Finally, Proposition 1
shows that the p-part of C0 (C1 for p = 3 and C2 for p = 2) is trivial. Then an induction
argument gives the claimed result.
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3. Group of modular units on X1(N)

In this section, we will introduce our basis for the group Fn, which is essential in our proof of
Theorem A. The construction of our basis utilizes the Siegel functions.

3.1. Siegel functions

The Siegel functions are usually defined as products of the Klein forms and the Dedekind eta
function. For our purpose, we only need to know that they have the following infinite product
representation.

For a pair of rational numbers (a1, a2) ∈ Q2\Z2 and τ ∈ H, set z = a1τ + a2, qτ = e2πiτ and
qz = e2πiz. Then the Siegel function G(a1,a2)(τ) satisfies

G(a1,a2)(τ) = −e2πia2(a1−1)/2qB(a1)/2
τ (1 − qz)

∞∏
n=1

(1 − qn
τ qz)(1 − qn

τ /qz),

where B(x) = x2 − x + 1/6 is the second Bernoulli polynomial. To construct modular units on
X1(N) with divisors supported on the ∞-cusps, we consider a special class of Siegel functions.

Given a positive integer N and an integer a not congruent to 0 mod N , we set

E(N)
a (τ) = −G(a/N,0)(Nτ) = qNB(a/N)/2

∞∏
n=1

(1 − q(n−1)N+a)(1 − qnN−a),

where q = e2πiτ . If the integer N is clear from the context, then we write Ea in place of E
(N)
a .

We now review the properties of Ea. The material is mainly taken from [16]. For more details
see [16]. In the first lemma, we describe two simple, but yet very important, relations between
Siegel functions of two different levels.

Lemma 6. Let M and N be two positive integers. Assume that N = nM for some integer
n. Let a be an integer not congruent to 0 mod N . Then

E(N)
na (τ) = E(M)

a (nτ). (2)

Moreover, for all integers a with 0 < a < M , we have

N
n−1∑
k=0

B2

(
kM + a

N

)
= MB2

( a

M

)
, (3)

and consequently
n−1∏
k=0

E
(N)
kM+a(τ) = E(M)

a (τ). (4)

Proof. Relation (2) follows trivially from the definition of E
(N)
g . Property (3) can be verified

by a direct computation. Relation (4) is an immediate consequence of (3) and the definition
of E

(N)
a .

The next lemma gives the transformation law for Ea under the action of matrices in Γ0(N).

Lemma 7 [16, Corollary 2]. For integers g not congruent to 0mod N , the functions Eg

satisfy

Eg+N = E−g = −Eg. (5)
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Moreover, let γ =
(

a b
cN d

) ∈ Γ0(N). For c = 0, we have

Eg(τ + b) = eπibNB(g/N)Eg(τ),

and, for c > 0, we have

Eg(γτ) = ε(a, bN, c, d)eπi(g2ab/N−gb)Eag(τ), (6)

where

ε(a, b, c, d) =

{
eπi(bd(1−c2)+c(a+d−3))/6 if c is odd,

−ieπi(ac(1−d2)+d(b−c+3))/6 if d is odd.

Remark. Note that Property (5) implies that there are only 	(N − 1)/2
 essentially
distinct Eg, indexed over the set (Z/NZ)/ ± 1 − {0}. Hence, a product

∏
g or a sum

∑
g

is understood to be running over g ∈ (Z/NZ)/ ± 1 − {0}.

The functions Eg clearly have no poles or zeros in the upper half-plane. The next lemma
describes the order of Eg at cusps of X1(N).

Lemma 8 [16, Lemma 2]. The order of the function Eg at a cusp a/c of X1(N) with (a, c) =
1 is (c,N)B2(ag/(c,N))/2, where B2(x) = {x}2 − {x} + 1/6 and {x} denotes the fractional
part of a real number x.

The following theorem of Yu [18] characterizes the modular units on X1(N) with divisors
supported at the ∞-cusps in terms of Eg.

Theorem B [18, Theorem 4]. Let N be a positive integer. A modular function f on
Γ1(N) has a divisor supported on the cusps k/N , (k,N) = 1, if and only if f =

∏
g E

eg
g with

the exponents eg satisfying the two conditions

∑
g

g2eg ≡ 0mod

{
N if N is odd,

2N if N is even,
(7)

and ∑
g≡±a mod N/p

eg = 0 (8)

for all prime factors p of N and all integers a.

Again, we remark that Theorem 4 of [18] was stated in the setting of modular units with
the divisor supported on the 0-cusps, that is, the cusps lying over 0 of X0(N). Here we use the
Atkin–Lehner involution

(
0 −1
N 0

)
to get Theorem B from Yu’s result.

3.2. Basis for Fn

We now describe our basis for Fn constructed in [17]. The case of an odd prime p and the
case of p = 2 are stated in Theorems C and D, respectively.

Theorem C [17, Theorem 2]. Let n � 0 and let N = pn+1 be an odd prime power. For
a non-negative integer �, we set φ� = φ(p�+1)/2. Let α be a generator of the cyclic group
(Z/pn+1Z)×/ ± 1 and let β be an integer such that αβ ≡ 1mod p. Then a basis for Fn mod C×
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is given by

fi =
Eαi−1Eβ2

αi+φn−1

Eαi+φn−1−1Eβ2

αi

, i = 1, . . . , φn − φn−1 − 1,

fi =
Ep

αi−1

Ep

αi+φn−1−1

, i = φn − φn−1,

fi =
E

(pn)
αi−1(pτ)

E
(pn)

αi+φn−2−1(pτ)
, i = φn − φn−1 + 1, . . . , φn − φn−2,

...
...

fi =
E

(p2)
αi−1(pn−1τ)

E
(p2)

αi+φ0−1(pn−1τ)
, i = φn − φ1 + 1, . . . , φn − φ0,

fi =
E

(p)
αi−1(pnτ)

E
(p)
αi (pnτ)

, i = φn − φ0 + 1, . . . , φn − 1.

Theorem D [17, Theorem 3]. Let n � 2 and N = 2n+1. Let α = 3 be a generator of the
cyclic group (Z/2n+1Z)×/ ± 1. For � � 1, set φ� = φ(2�+1)/2 = 2�−1. Then a basis for Fn

mod C× is given by

fi =
Eαi−1Eαi+φn−1

EαiEαi+φn−1−1
, i = 1, . . . , φn − φn−1 − 1,

fi =
E2

αi−1

E2
αi+φk−1−1

, i = φn − φn−1,

fi =
E

(2n)
αi−1(2τ)

E
(2n)

αi+φn−2−1(2τ)
, i = φn − φn−1 + 1, . . . , φn − φn−2,

...
...

fi =
E

(8)
αi−1(2n−2τ)

E
(8)
αi (2n−2τ)

, i = φn − 1.

The proofs of these two theorems use the following divisor class number formula of Kubert,
Lang and Yu, which will also be used in the present paper. Note that the cases p � 5 were
proved in [7], while the cases p = 2 and p = 3 were settled in [18]. In the same paper [18], Yu
also obtained a divisor class number formula for general N , although the general result is not
needed in the present paper.

Theorem E [7, Theorem 3.4; 18, Theorem 5]. Let N = pn+1 be a prime power greater
than 4. We have the divisor class number formula

|Cn| = pL(p)
∏

χ�=χ0 even

1
4
B2,χ, (9)
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where

L(p) =

{
pn−1 − 2n + 2 if N = pn and p is odd,

2n−1 − 2n + 3 if N = 2n � 8,

and the product runs over all even non-principal Dirichlet characters modulo pn+1.

Remark. We should remark that the definition of generalized Bernoulli numbers used in
[7, 18] is different from ours; namely, if an even Dirichlet character χ mod N has a conductor
f , then their definition is given by

1
2

f∑
r=1

χf (r)tert

eft − 1
=

∞∑
k=0

B2,χ
tk

k!
,

where χf is the Dirichlet character modulo f that induces χ. When N is a prime power pn

and χ is not principal, the two definitions differ by a 1/2 factor.
Moreover, the readers are reminded that there were slight errors in the original statement

of [18, Theorem 5]. See the discussion following Theorem B of [17] for details.

4. Properties of πn and ιn

Throughout this section, we follow the notation specified in Subsection 2.1. The main results
in this section are Lemmas 11 and 15, which state that πn maps a principal divisor to a
principal divisor, and that if ιn(D) is a principal divisor, then D itself is principal. In addition,
in Lemma 12 we will prove the converse of Lemma 15, that is, if D is a principal divisor in
Dn−1, then ιn(D) is a principal divisor.

The first lemma is rather trivial, but it plays a crucial role in the proof of Proposition 5.

Lemma 9. We have

πn ◦ ιn = [p2], (10)

the multiplication-by-p2 endomorphism of Dn−1

Proof. The proof is obvious.

In the next lemma we compute the image of the divisor of E
(pn+1)
g under πn. Here we recall

that the notation div∞ f means the Cn-part of the divisor of f .

Lemma 10. Let g be an integer. For g �≡ 0 mod pn+1, we have

πn(div∞ E(pn+1)
g ) =

⎧⎨
⎩

div∞ E
(pn)
g if p � g,

p2 div∞ E
(pn)
g/p if p|g.

Proof. By Lemma 8, we have

div∞ E(pn+1)
g =

pn+1

2

φn−1∑
k=0

B2

(
gαk

pn+1

)
Pn,k.
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Recall that πn(Pn,k) = πn(Pn,h) if and only if h ≡ k mod φn−1. Thus, we have

πn(div∞ E(pn+1)
g ) =

pn+1

2

φn−1−1∑
k=0

Pn−1,k

p−1∑
h=0

B2

(
gαk+hφn−1

pn+1

)
.

Now assume that p does not divide g; then as h goes through 0 to p − 1, the residue classes of
gαk+hφn−1 mod pn+1 go through gαk, gαk + pn, . . . , gαk + (p − 1)pn. Hence, by equation (3),
we find that

πn(div∞ E(pn+1)
g ) =

pn

2

φn−1−1∑
k=0

B2

(
gαk

pn

)
Pn−1,k = div∞ E(pn)

g .

When p | g, all gak+hφn−1 are congruent to gak mod pn+1. Therefore, we have

πn(div∞ E(pn+1)
g ) = p2 · pn

2

φn−1−1∑
k=0

B2

(
(g/p)αk

pn

)
Pn−1,k = p2 div∞ E

(pn)
g/p .

This proves the lemma.

Lemma 11. Assume that n � 1. If D is a principal divisor in Dn, then πn(D) is a principal
divisor in Dn−1.

More precisely, if fi, with i = 1, . . . , φn − 1, is the basis for Fn given in Theorem C, then
for p � 3 we have

πn(div fi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i = 1, . . . , φn − φn−1,

div
E

(pn)
αi−1(τ)p2

E
(pn)

αi+φn−2−1(τ)p2
, i = φn − φn−1 + 1, . . . , φn − φn−2,

...
...

div
E

(p2)
αi−1(pn−2τ)p2

E
(p2)

αi+φ0−1(pn−2τ)p2
, i = φn − φ1 + 1, . . . , φn − φ0,

div
E

(p)
αi−1(pn−1τ)p2

E
(p)
αi (pn−1τ)p2

, i = φn − φ0 + 1, . . . , φn − 1.

A similar result also holds for p = 2.

Proof. Here we prove that the case p is an odd prime; the proof of the case p = 2 is similar,
and is omitted.

We first show that πn(div fi) = 0 for i = 1, . . . , φn − φn−1. By Lemma 10, we have

πn(div∞ E
(pn+1)
αi−1 ) = div∞ E

(pn)
αi−1 , πn(div∞ E

(pn+1)

αi+φn−1−1) = div∞ E
(pn)

αi+φn−1−1 .

However, since αφn−1 ≡ 1 mod pn, we have E
(pn)
αi−1 = ±E

(pn)

αi+φn−1−1 by Lemma 7. It follows
that

πn(div fi) = πn(div∞ fi) = πn(div∞ E
(pn+1)
αi−1 /E

(pn+1)

αi+φn−1−1) = 0

for i = 1, . . . , φn − φn−1.
For i = φn − φn−1 + 1, . . . , φn − φn−2, by (2) we have

fi = E
(pn)
αi−1(pτ)/E

(pn)

αi+φn−2−1(pτ) = E
(pn+1)
pαi−1 (τ)/E

(pn+1)

pαi+φn−2−1(τ).
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By Lemma 10, we have

πn(div fi) = πn(div∞ fi) = div∞ E
(pn)
αi−1(τ)p2

E
(pn)

αi+φn−2−1(τ)p2
.

Using the criteria given in Theorem B, we find the last function is in Fn−1 and

πn(div fi) = div
E

(pn)
αi−1(τ)p2

E
(pn)

αi+φn−2−1(τ)p2
.

This proves the case i = φn − φn−1 + 1, . . . , φn − φn−2. The remaining cases i = φn − φn−2 +
1, . . . , φn − 1 can be proved in the same way. This gives us the lemma.

In the next few lemmas, we will establish the fact that D ∈ Dn−1 is principal if and only
if ιn(D) ∈ Dn is principal.

Lemma 12. If D is a principal divisor in Dn−1, then ιn(D) is a principal divisor in Dn.

Proof. Let f∗ be one of the functions in the basis of Fn−1 given in Theorem C (or
Theorem D if p = 2). Define f(τ) = f∗(pτ). From the explicit description of the basis, we
see that f(τ) is either one or a product of the functions appearing in our basis for Fn. We now
show that div f = ιn(f∗).

Assume that f∗(τ) =
∏

g E
(pn)
g (τ)eg . For a cusp αk/pn+1 ∈ Cn, we choose a matrix σ =(

αk b
pn+1 d

)
in Γ0(pn+1). Then we have

E(pn)
g (pστ) = E(pn)

g

((
αk pb
pn d

)
(pτ)

)
.

Using Lemma 7, we find

E(pn)
g (pστ) = εE

(pn)

αkg
(pτ)

for some root of unity ε, and consequently the order of E
(pn)
g (pτ) at αk/pn+1 is given by

p · pn

2
B2

(
αkg

pn

)
,

which is the same as p times the order of E
(pn)
g (τ) at αk/pn. From this, we conclude that

div f = ιn(div f∗). This proves the lemma.

The proof of the converse statement is more difficult. It relies on the next two lemmas.

Lemma 13. Let N � 4 be a prime power, let m = φ(N)/2 and let ai, with 1 � i � m, be
the integers in the range 1 � ai � N/2 such that (ai, N) = 1. Let M be the m × m matrix
which has an (i, j)th entry that is NB2(aia

−1
j /N)/2, where a−1

j denotes the multiplicative
inverse of aj mod N . Then we have

det M =
∏
χ

1
4
B2,χ �= 0,

where χ runs over all even characters modulo N .
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Proof. The proof of

det M =
∏
χ

1
4
B2,χ

can be found in [17, Lemma 7], and will not be repeated here. To see why the determinant is
non-zero, by a straightforward computation we observe that

B2,χ0 =
1
6
(1 − p) �= 0, (11)

where χ0 is the principal character. Also, Theorem E in particular implies that∏
χ�=χ0 even

B2,χ �= 0.

Therefore, we conclude that det M �= 0.

Lemma 14. Assume that pn+1 � 5. Assume that f(τ) =
∏

g E
(pn+1)
g (τ)eg is a modular unit

in Fn, where g ∈ (Z/pn+1Z)×/ ± 1. Suppose that, for each integer k, the orders of f(τ) at
αk+hφn−1/pn+1 take the same values for all h = 0, . . . , p − 1. Then we have eg = 0 for all g
satisfying p � g.

Proof. By Lemma 8, if p | g, then the orders of Eg at αk+hφn−1/pn+1, with h = 0, . . . , p − 1,
are all pn+1B2(αk(g/p)/pn)/2. Therefore, if f(τ) =

∏
g E

(pn+1)
g (τ)eg has the same order at

αk+hφn−1/pn+1 for all h = 0, . . . , p − 1 for any fixed k, then the partial product
∏

p � g E
eg
g also

has the same property. Now given k, let us assume that the order of
∏

p � g E
eg
g at αk+hφn−1/pn+1

is A. Then, by Lemma 8, we have

pA =
p−1∑
h=0

∑
p�g,g�pn+1/2

eg
pn+1

2
B2

(
gαk+hφn−1

pn+1

)
.

Then, by (3) in Lemma 6, we have

pA =
∑
p�g

eg
pn

2
B2

(
gαk

pn

)
=

∑
g�pn/2,p�g

pn

2
B2

(
gαk

pn

) p−1∑
h=0

eg+hpn .

Now since f(τ) is assumed to be in Fn, by Theorem B, we have
∑p−1

h=0 eg+hpn = 0 for all g.
Therefore, we have A = 0. This is true for all αk/pn+1. In other words, we have

∑
g�pn+1/2,p � g

egB2

(
gαk

pn+1

)
= 0

for all non-negative integers k. Now write g = αj and consider the square matrix which has an
(j, k)-entry that is B2(αj+k−2/pn+1). By Lemma 13, the determinant of this matrix is non-zero.
Therefore, all eg, p � g, are equal to 0. This completes the proof.

With the above lemmas, we are now ready to prove the converse to Lemma 12.

Lemma 15. Assume that p is a prime and n � 1 is an integer such that pn � 5. Let D be
a divisor in Dn−1. If ιn(D) ∈ Dn is principal, then D is a principal divisor in Dn−1.
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Proof. Let

D =
φn−1−1∑

k=0

nkPn−1,k ∈ Dn−1.

Assume that ιn(D) is principal; that is, assume that there exists a function f(τ) =∏
g E

(pn+1)
g (τ)eg ∈ Fn such that

div f = p

φn−1−1∑
k=0

p−1∑
h=0

nkPn,k+hφn−1 .

In other words, we have
pn+1

2

∑
g

egB2

(
gαk+hφn−1

pn+1

)
= pnk

for all h for a given k. Since ιn(D) has the same order at αk+hφn−1/pn+1 for all h = 0, . . . , p − 1
for a fixed k, we have eg = 0 whenever p � g by Lemma 14. Thus, we have

pn

2

∑
p|g

egB2

(
(g/p)αk

pn

)
= nk,

which in turn implies that the function

f∗(τ) =
∏
p|g

E
(pn)
g/p (τ)eg

satisfies div f∗ = D. It remains to show that f∗ is a modular unit contained in Fn−1, that is,
that f∗ satisfies conditions (7) and (8) of Theorem B.

Since f ∈ Fn, by Theorem B, the exponents eg satisfy∑
g≡±ap mod pn

eg = 0

for all a. The same exponents eg then satisfy∑
g: g/p≡±a mod pn−1

eg = 0,

which is condition (8) for the level N = pn. It remains to consider condition (7).
Observe that ιn(D) is a multiple of p, whence we have

p

∣∣∣∣∣∣
∑
p|g

eg
pn+1

2
B2

(
gαk

pn+1

)
(12)

for all k. We first consider the cases p � 3. Setting k = 0 in (12), we have∑
p|g

eg(g2 − gpn+1) ≡ 0 mod pn+2,

or equivalently ∑
p|g

eg(g/p)2 ≡ 0 mod pn.

In other words, f∗ satisfies the quadratic condition (7) of Theorem B. This settles the cases
p � 3.

For p = 2, we see that equation (12) with k = 0 yields∑
2|g

eg(g2 − 2n+1g) ≡ 0 mod 2n+3,
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that is, ∑
2|g

eg

(
(g/2)2 − 2n(g/2)

) ≡ 0 mod 2n+1.

Partition the sum
∑

g eg(g/2) into two parts
∑

g≡0 mod 4 and
∑

g≡2 mod 4. For the terms with
4|g, we clearly have ∑

g≡0 mod 4

eg(g/2) ≡ 0 mod 2.

For the terms with g ≡ 2 mod 4, we have∑
g≡2 mod 4

eg(g/2) ≡
∑

g≡2 mod 4

eg mod 2.

Since eg satisfy condition (8) for N = 2n+1, we must have∑
g≡2 mod 4

eg = 0.

Therefore, we have ∑
2|g

eg(g/2) ≡ 0 mod 2.

It follows that ∑
2|g

eg(g/2)2 ≡
∑
2|g

eg

(
(g/2)2 − 2n(g/2)

) ≡ 0 mod 2n+1,

which is (7) for N = 2n. This proves the case p = 2, and the proof of the lemma is complete.

From Lemmas 12 and 15, we immediately get the following corollary.

Corollary 16. The homomorphism ιn induces an embedding ι∗n : Cn−1 → Cn given by
ι∗n([D]) = [ιn(D)].

5. Proof of Propositions

5.1. Proof of Proposition 1

Lemma 17. Let p � 3 be an odd prime. Let ω be a generator of the group of Dirichlet
characters modulo p. Then we have the congruence

p

(p−1)/2−1∏
i=1

B2,ω2i ≡

⎧⎪⎪⎨
⎪⎪⎩
−

(p−1)/2−2∏
i=1

B2i+2

i + 1
mod p if p � 5,

−1 mod 3 if p = 3,

where B2,ω2i are the generalized Bernoulli numbers and B2i+2 are Bernoulli numbers.

Proof. The case p = 3 can be verified directly. We now assume that p � 5.
Since the product is a rational number, we may regard ω as the Teichmüller character

ω : Z×
p → μp−1 from Z×

p to the group of (p − 1)st roots of unity in Zp characterized by ω(a) ≡ a
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mod p for all a ∈ Z×
p . For 2i �= p − 3 it is well known that B2,ω2i is contained in Zp and satisfies

B2,ω2i ≡ B2i+2

i + 1
mod p.

(For a proof, follow the argument in [15, Corollary 5.15].) Also, for 2i = p − 3, we have

pB2,ωp−3 =
p−1∑
a=1

ω−2(a)(a2 − pa + p2/6) ≡
p−1∑
a=1

ω−2(a)a2 ≡
p−1∑
a=1

1 ≡ −1 mod p.

Then the lemma follows.

Proof of Proposition 1. The cases p = 2 and p = 3 can be easily seen from the fact that the
modular curves X1(8) and X1(9) have genus zero. Now assume that p � 5. By Theorem E, the
order of the divisor group C0 is given by

|C0| = p

(p−3)/2∏
i=1

1
4
B2,ω2i .

Using Lemma 17, we obtain

|C0| ≡ − 1
4(p−3)/2

(p−5)/2∏
i=1

B2i+2

i + 1
mod p.

By the assumption that p is a regular prime, none of B4, . . . , Bp−3 is divisible by p. Therefore,
p does not divide |C0|.

5.2. Proof of Proposition 2

Among the five propositions, this proposition is perhaps the most complicated to prove.
Recall that, given a free Z-module Λ of finite rank r with basis {a1, . . . , ar} and a submodule

Λ′ generated by b1, . . . , bs with bi =
∑

rijaj , the standard method to determine the group
structure of Λ/Λ′ is to compute the Smith normal form of the matrix (rij). Then the p-rank of
the group Λ/Λ′ is simply the number of diagonals in the Smith normal form that are divisible by
p. Thus, in order to prove Proposition 2, we need to know very precisely the linear dependence
over Fp among the divisors of modular units generating Fn. In the first two lemmas, we
will show that the divisors of the first φn − φn−1 functions in the basis for Fn are linearly
independent over Fp.

Lemma 18. Let p be a prime and let n � 1 be an integer such that pn+1 � 5. Let α be
a generator of (Z/pn+1Z)×/ ± 1. Let fi, with i = 1, . . . , φn − 1, be the basis for Fn given in
Theorem C or Theorem D. Let M = (mij) be the square matrix of size φn − φn−1 such that
mij is the order of fi at the cusp αj−1/pn+1. Then we have

det M = εp
∏

χ even primitive

1
4
B2,χ,

where χ runs over all even primitive Dirichlet characters modulo pn+1 and ε is either 1 or −1.
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Proof. Let A = (aij) be the φn × φn matrix with aij = pn+1B2(αi+j−2/pn+1)/2, which is
the order of Eαi−1 at Pn,j−1 = αj−1/pn+1. Define

V1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I −I 0 · · · · · · · · ·
0 I −I · · · · · · · · ·
...

...
...

...
· · · · · · · · · I −I 0
· · · · · · · · · 0 I −I
I I · · · · · · I I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where the matrix consists of p2 blocks, each of which is of size φn−1 × φn−1, and I is the
identity matrix of dimension φn−1. Let β be an integer such that αβ ≡ 1 mod p. Set also

V2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −β2 0 · · · · · · · · ·
0 1 −β2 · · · · · · · · ·
...

...
...

...
· · · · · · · · · 1 −β2 0
· · · · · · · · · 0 p 0
0 0 · · · · · · 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where the identity matrix at the lower right corner has dimension φn−1. Then, for i =
1, . . . , φn − φn−1, the (i, j)-entry of the matrix V2V1A is the order of fi at Pn,j−1, while for
i = φn − φn−1 + 1, . . . , φn, the (i, j)-entry of V2V1A is

pn+1

2

p−1∑
h=0

B2

(
αi+j+hφn−1−2

pn+1

)
.

By equation (3) in Lemma 6, this is equal to

pn

2
B2

(
αi+j−2

pn

)
. (13)

Observe that B2(αi+j−2/pn) = B2(αi+j+kφn−1−2/pn) for all integers k; that is, V2V1A takes
the form

V2V1A =

⎛
⎝ order of fi at αj−1/pn+1

for i = 1, . . . , φn − φn−1

A′ A′ · · · · · · A′ A′

⎞
⎠,

where A′ is a square matrix of size φn−1 which has an (i, j)-entry that is given by (13).
Now let

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 · · · · · · 0 I
0 I · · · · · · 0 I
...

...
...

...
...

...
...

...
0 0 · · · · · · I I
0 0 · · · · · · 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and consider V2V1AU1. For i = 1, . . . , φn − φn−1 and j = φn − φn−1 + 1, . . . , φn, the (i, j)-entry
of V2V1AU1 is given by

p−1∑
h=0

(order of fi at Pn,j+hφn−1−1).
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By Lemma 11, this sum is equal to 0. In other words,

V2V1AU1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0

M
...
0
0

A′ · · · · · · · · · A′ pA′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where M is the (φn − φn−1) × (φn − φn−1) matrix specified in the lemma. This shows that

det(V2V1AU1) = pφn−1(det M)(det A′).

On the other hand, by Lemma 13, we have

det A = ±
∏

χ mod pn+1

1
4
B2,χ, det A′ = ±

∏
χ mod pn

1
4
B2,χ.

Also,
det V1 = pφn−1 , det V2 = p, det U1 = 1.

Combining everything, we conclude that

det M = ±p
∏

χ mod pn+1

1
4
B2,χ

/ ∏
χ mod pn

1
4
B2,χ = ±p

∏
χ even primitive mod pn+1

1
4
B2,χ,

as claimed in the lemma.

Here we give an example to exemplify the above argument.

Example. Consider the case p = 3 and n = 2. We choose α = 2 and β = −1. With the
notation as above, we have

A =
1

108

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

191 143 59 −61 −109 23 −97 −37 −121
143 59 −61 −109 23 −97 −37 −121 191
59 −61 −109 23 −97 −37 −121 191 143

−61 −109 23 −97 −37 −121 191 143 59
−109 23 −97 −37 −121 191 143 59 −61

23 −97 −37 −121 191 143 59 −61 −109
−97 −37 −121 191 143 59 −61 −109 23
−37 −121 191 143 59 −61 −109 23 −97
−121 191 143 59 −61 −109 23 −97 −37

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the (i, j)-entry is 27B2(2i+j−2/27)/2,

V2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 1 0 0 −1 0 0 0
0 0 0 1 0 0 −1 0 0
0 0 0 0 1 0 0 −1 0
0 0 0 0 0 1 0 0 −1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Then

V2V1A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 1 −2 4 −1 0 −4
2 0 1 −2 4 −1 0 −4 0
0 1 −2 4 −1 0 −4 0 2
1 −2 4 −1 0 −4 0 2 0

−2 4 −1 0 −4 0 2 0 1
4 −8 −5 −5 7 7 1 1 −2
a b c a b c a b c
b c a b c a b c a
c a b c a b c a b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

a = 11/36 = 9B2(1/9)/2,

b = −1/36 = 9B2(2/9)/2,

c = −13/36 = 9B2(4/9)/2.

Here the first six rows are the orders of

E1E11

E2E8
,

E2E5

E4E11
,

E4E10

E8E5
,

E8E7

E11E10
,

E11E13

E5E7
,

E3
5

E3
13

at the cusps 2j−1/27. Then the matrices U1 and V2V1AU1 are

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V2V1AU1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 1 −2 4 0 0 0
2 0 1 −2 4 −1 0 0 0
0 1 −2 4 −1 0 0 0 0
1 −2 4 −1 0 −4 0 0 0

−2 4 −1 0 −4 0 0 0 0
4 −8 −5 −5 7 7 0 0 0
a b c a b c 3a 3b 3c
b c a b c a 3b 3c 3a
c a b c a b 3c 3a 3b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We find

det M = det

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 0 1 −2 4
2 0 1 −2 4 −1
0 1 −2 4 −1 0
1 −2 4 −1 0 −4

−2 4 −1 0 −4 0
4 −8 −5 −5 7 7

⎞
⎟⎟⎟⎟⎟⎟⎠

= −5833 = −3
∏

χeven primitive mod27

1
4
B2,χ.

Lemma 19. Let p be a regular prime and let n � 1 be an integer. Then we have

p
∏

χ even primitive

1
4
B2,χ ≡ 1 mod p,

where the product runs over all even primitive Dirichlet characters modulo pn+1.

Proof. First of all, for any non-trivial even Dirichlet character χ we have

pn+1∑
a=1

χ(a) = 0

and
pn+1∑
a=1

aχ(a) =
1
2

pn+1∑
a=1

(
aχ(a) + (pn+1 − a)χ(pn+1 − a)

)
=

pn+1

2

pn+1∑
a=1

χ(a) = 0.
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Thus, we have

B2,χ = pn+1

pn+1∑
a=1

(
a2

p2n+2
− a

pn+1
+

1
6

)
χ(a) =

1
pn+1

pn+1∑
a=1

χ(a)a2. (14)

Now we consider that the case p is an odd regular prime first.
Fix a generator α of the multiplicative group (Z/pn+1Z)×. For a non-negative integer m,

write r(m) = �αm/pn+1 and s(m) = αm/pn+1 − r(m). We have

pn+1s(m)2 =
α2m

pn+1
− 2αmr(m) + pn+1r(m)2

Therefore, if a is the integer in the range 0 < a < pn+1 such that αm ≡ a mod pn+1, then

a2

pn+1
− α2m

pn+1
= −2αmr(m) + pn+1r(m)2 (15)

is an integer. Denote this integer by δ(m). Then, by (14), we may write

B2,χ =
1

pn+1

pn+1∑
a=1

χ(a)a2

=
1

pn+1

pn(p−1)−1∑
m=0

χ(αm)α2m +
pn(p−1)−1∑

m=0

χ(αm)δ(m)

=
1 − α2pn(p−1)

pn+1(1 − χ(α)α2)
+

pn(p−1)−1∑
m=0

χ(αm)δ(m). (16)

Note that the number (1 − α2pn(p−1))/pn+1 is an integer. Therefore, (1 − χ(α)α2)B2,χ is an
algebraic integer.

Let ω and θ denote the Dirichlet characters satisfying

ω(α) = ζp−1, θ(α) = ζpn ,

respectively, where ζm = e2πi/m. Set χij = ω2iθj . Then the set of even primitive Dirichlet
characters modulo pn+1 is precisely

{χij = ω2iθj : 0 � i < (p − 1)/2, 0 � j < pn, p � j}.
From (16), for all j not divisible by p, we have

(1 − ω2i(α)α2)B2,ω2i − (1 − χij(α)α2)B2,χij

= (1 − ω2i(α)α2)
pn(p−1)−1∑

m=0

ω2i(αm)δ(m) − (1 − χij(α)α2)
pn(p−1)−1∑

m=0

χij(αm)δ(m)

= (1 − ω2i(α)α2)
pn(p−1)−1∑

m=0

ω2i(αm)δ(m)(1 − θj(αm))

− ω2i(α)α2(1 − θj(α))
pn(p−1)−1∑

m=0

χij(αm)δ(m)

≡ 0 mod 1 − ζpn .

(Note that when i = 0, we find that ω0 = χ0 is principal, and (14) does not hold in this case.
However, the difference is pn times a p-unit, and the above congruence still holds.) In other
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words,

pn∏
j=1, p�j

(1 − χij(α)α2)B2,χij
≡ (

(1 − ω2i(α)α2)B2,ω2i

)pn−1(p−1) mod 1 − ζpn .

It follows that

∏
χ even primitive

(1 − χ(α)α2)B2,χ =
(p−1)/2−1∏

i=0

pn∏
j=1, p�j

(1 − χij(α)α2)B2,χij

≡
⎛
⎝(p−1)/2−1∏

i=0

(1 − ω2i(α)α2)B2,ω2i

⎞
⎠

pn−1(p−1)

mod 1 − ζpn .

Now consider the product in the last expression. We have

(p−1)/2−1∏
i=0

(1 − ω2i(α)α2) = 1 − αp−1.

Since α is a generator for (Z/pn+1Z)×, we have 1 − αp−1 = pu for some integer u relatively
prime to p. Also, according to (11) and Lemma 17, we have

p

(p−1)/2−1∏
i=0

B2,ω2i ≡

⎧⎪⎪⎨
⎪⎪⎩
−1

6

(p−1)/2−2∏
i=1

B2i+2

i + 1
mod p if p � 5,

−1 if p = 3.

By the assumption that p is a regular prime, this product is relatively prime to p. Therefore,
we have ⎛

⎝(p−1)/2−1∏
i=0

(1 − ω2i(α)α2)B2,ω2i

⎞
⎠

p−1

≡ 1 mod p,

and consequently ∏
χ even primitive

(1 − χ(α)α2)B2,χ ≡ 1 mod 1 − ζpn .

Since the product is a rational integer, the congruence actually holds modulo p. Finally, because
α is a generator of (Z/pn+1Z)×, there exists an integer u relatively prime to p such that
αpk(p−1) ≡ 1 − upk+1 mod pk+2 for all k � 0. Thus,

∏
χ even primitive

(1 − χ(α)α2) =
1 − αpn(p−1)

1 − αpn−1(p−1)
=

upn+1 + · · ·
upn + · · · ≡ p mod p2. (17)

From this we conclude that

p
∏

χ even primitive

1
4
B2,χ ≡ 1 mod p.

This completes the proof of the case where p is an odd regular prime.
Now consider the case p = 2 with n � 2. Choose α = 3 to be a generator of (Z/2n+1Z)×/ ± 1.

Set ζ = e2πi/2n−1
, and let θ be the Dirichlet character satisfying θ(−1) = 1 and θ(3) = ζ. Then

the set of even primitive Dirichlet characters modulo 2n+1 is given by

{θj : 1 � j � 2n−1, 2 � j}.
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Since θ is even, we have

1
4
B2,θj =

2n+1

2

∑
a∈(Z/2n+1Z)×/±1

θj(a)B2

( a

2n+1

)
.

By a similar calculation as before, we find that if θj is not principal, then
1
4
B2,θj =

1
2n+2

∑
a∈(Z/2n+1Z)×/±1

θj(a)a2.

Now for a non-negative integer m, define

δ(m) = − 32m

2n+1
+ 2n+1

{
3m

2n+1

}2

as in (15). Following the computation in (16), we get

1
4
B2,θj =

1 − 32n

2n+2(1 − 9ζj)
+

1
2

φ(2n+1)/2−1∑
m=0

θj(3m)δ(m).

Now we have 32n

= (1 + 8)2
n−1 ≡ 1 + 2n+2 mod 2n+3. Also, from (15), we see that δ(m) is

always even. Thus, (1 − 9ζj)B2,θj /4 is an algebraic integer. By the same argument as before,
we find

1 − 9
4

B2,χ0 −
1 − 9ζj

4
B2,θj ≡ 0 mod 1 − ζ,

for all odd j, and thus ∏
χ even primitive

1 − 9χ(3)
4

B2,χ ≡ 1 mod 2.

Finally, from (17), we have ∏
χ even primitive

(1 − 9χ(3)) ≡ 2 mod 4.

This proves the case p = 2.

Proof of Proposition 2. Let α be a generator of (Z/pn+1Z)×/ ± 1. Specifically, for p = 2, we
set α = 3 and, for an odd prime p, we let α be an integer such that α generates (Z/pZ)×, but
αp−1 �≡ 1 mod p2. Let fi, with i = 1, . . . , φn − 1, be the generators of Fn given in Theorem C
or Theorem D. Let M be the (φn − 1) × φn matrix which has an (i, j)-entry that is the order
of fi at αj−1/pn+1. Let U and V be the unimodular matrices such that M ′ = UMV is in the
Smith normal form; that is, if M ′ = (mij), then we have the following:

(1) m11|m22| . . .;
(2) mij = 0 if i �= j.

Also (mii �= 0 for all i since the rank of M is φn − 1.) Then the p-rank of Cn is equal to the
number of mii that are divisible by p. In other words, if we consider M as a matrix over Fp,
then our p-rank is actually equal to

φn − 1 − (the rank of M over Fp).

We now determine the rank of M over Fp.
From Lemmas 18 and 19, we know that the first φn − φn−1 rows of M are linearly

independent over Fp. Thus, the rank of M over Fp is at least φn − φn−1 = pn−1(p − 1)2/2.
It remains to prove that the remaining rows are all linearly dependent of the first φn − φn−1

rows modulo p.
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We first consider row φn − φn−1 + 1 to row φn − φ0. (For p = 2, consider row φn − φn−1 + 1
to row φn − φ2.) Let � be an integer between 1 and n − 1. (For p = 2, let 1 � � � n − 3.) By
Theorems C and D, for i from φn − φn−� + 1 to φn − φn−�−1, the ith row of M is the divisor
of the function

fi = E
(pn−�+1)
αi−1 (p�τ)/E

(pn−�+1)

αi+φn−�−1−1(p�τ),

which by Lemma 8 is given by

p� · pn−�+1

2

φn−1∑
k=0

(
B2

(
αi+k−1

pn−�+1

)
− B2

(
αi+φn−�−1+k−1

pn−�+1

))
Pn,k. (18)

Now αφn−�−1 ≡ −(1 + upn−�) mod pn−�+1 for some integer u not divisible by p. (For p = 2,
we have αφn−�−1 ≡ 1 + 2n−� mod 2n−�+1 instead when n − � � 3.) Then a straightforward
calculation gives

pn−�+1

2

(
B2

(
αi+k−1

pn−�+1

)
− B2

(
αi+φn−�−1+k−1

pn−�+1

))
≡ −uα2(i+k−1)

p
mod 1.

This shows that if � � 2, then the divisor of fi for i from φn − φn−� + 1 to φn − φn−�−1 is
divisible by p. For such �, the rows do not contribute anything to the rank of M over Fp.

When � = 1, the above computation shows that the ith row of M for i from φn − φn−1 + 1
to φn − φn−2 is congruent to

−uα2(i−1)(1, α2, α4, . . . , α2φn−2) mod p.

On the other hand, the (φn − φn−1)th row of M is the divisor of

Ep

αφn−φn−1−1/Ep
αφn−1 .

By a similar computation, we find that it is congruent to

−uα2(φn−φn−1−1)(1, α2, α4, . . . , α2φn−2).

From this we see that row φn − φn−1 + 1 to row φn − φ0 of M are all multiples of the
(φn − φn−1)th row of M mod p.

Finally, for i = φn − φ0 + 1, . . . , φn − 1, we find that the ith row is congruent to the 0 vector.
Therefore, the rank of M over Fp is precisely φn − φn−1. We conclude that the p-rank of Cn is
given by

φn − 1 − (φn − φn−1) = φn−1 − 1 = pn−1(p − 1)/2 − 1.

This completes the proof of the proposition.

5.3. Proof of Proposition 3

Let fi, with i = 1, . . . , φn − 1, denote the basis for Fn given in Theorem C or Theorem D and
let f ′

i , with i = 1, . . . , φn−1 − 1, be the basis for Fn−1. By Lemma 11, we have

πn(div fi) = 0

for i = 1, . . . , φn − φn−1, and⎛
⎜⎝

div f ′
1

...
div f ′

φn−1−1

⎞
⎟⎠ =

1
p2

(
R 0
0 I

)⎛
⎜⎝

πn(div fφn−φn−1+1)
...

πn(div fφn−1)

⎞
⎟⎠ , (19)
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where I is the identity matrix of size φn−2 − 1 and

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −β2 0 · · · · · · · · ·
0 1 −β2 · · · · · · · · ·
...

...
· · · · · · · · · 1 −β2 0
· · · · · · · · · 0 1 −β2

· · · · · · · · · 0 0 p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is a square matrix of size φn−1 − φn−2 which has superdiagonals that are all −β2 and which
has diagonals that are all 1, except for the last one, which is p. Therefore, the index of πn(Pn)
in Pn−1 is given by

p2(φn−1−1)−1 = ppn−1(p−1)−3.

The structure of the factor group Pn−1/πn(Pn) can be easily seen from the matrix above.
This completes the proof of the proposition.

5.4. Proof of Proposition 4

Consider the group homomorphism

π : Dn → πn(Dn)/πn(Pn) = Dn−1/πn(Pn)

sending D ∈ Dn to the coset πn(D) + πn(Pn). The homomorphism is clearly onto, and the
kernel is the group ker π = Pn + ker πn. Thus, we have

Dn/(Pn + ker πn) � Dn−1/πn(Pn).

Now the group on the left-hand side is isomorphic to

Dn/(Pn + ker πn) � (Dn/Pn)
/
((Pn + ker πn)/Pn).

Therefore, to prove that the p-part of Cn = Dn/Pn is isomorphic to that of Dn−1/πn(Pn), it
suffices to show that the order of (Pn + ker πn)/Pn is not divisible by p.

From the definition of πn, it is easy to see that the kernel of πn is generated by divisors of
the form

D = Pn,k − Pn,k+φn−1 .

Let fi, with i = 1, . . . , φn − 1, be the basis for Fn given in Theorem C or Theorem D. If we
write D as a linear combination

D =
φn−1∑
i=1

ri div fi, ri ∈ Q,

of div fi, then the order of D + Pn in the divisor class group Cn divides the least common
multiple of the denominators of ri. We need to show that this number is not divisible by p.

We first prove that ri = 0 for i = φn − φn−1 + 1, . . . , φn − 1. By Lemma 11, we have

0 = πn(D) =
φn−1∑

i=φn−φn−1+1

riπn(div fi). (20)

Let A = ( R 0
0 I ) be the square matrix of size φn−1 − 1 in (19). Then we have⎛

⎜⎝
πn(div fφn−φn−1+1)

...
πn(div fφn−1)

⎞
⎟⎠ = p2A−1

⎛
⎜⎝

div f ′
1

...
div f ′

φn−1−1

⎞
⎟⎠,
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where f ′
i , with i = 1, . . . , φn−1 − 1, is the basis for Fn−1 given in Theorem C or Theorem D,

and (20) can be written as

0 = p2(rφn−φn−1+1, . . . , rφn−1)A−1

⎛
⎜⎝

div f ′
1

...
div f ′

φn−1−1

⎞
⎟⎠ .

Since div f ′
i are linearly independent over Q, we must have

(rφn−φn−1+1, . . . , rφn−1)A−1 = (0, . . . , 0).

It follows that ri = 0 for all i = φn − φn−1 + 1, . . . , φn − 1, and

D =
φn−φn−1∑

i=1

ri div fi.

Now, without loss of generality, we may assume that the integer k in D = Pn,k − Pn,k+φn−1

satisfies 0 < k < φn − 2φn−1. (Let b and d be integers such that αd − bpn+1 = 1. Note that if
a modular unit f(τ) ∈ Fn has a divisor mD for some integer m, then the function f((ατ +
b)/(pn+1τ + d)) has a divisor m(Pn,k−1 − Pn,k+φn−1−1). Thus Pn,k − Pn,k+φn−1 and Pn,k−1 −
Pn,k+φn−1−1 have the same order in the divisor class group Cn.) Let M be the square matrix of
size φn − φn−1 which has an (i, j)-entry that is the order of fi at Pn,j−1. Then the order of D in
the divisor class group Cn will divide the determinant of the matrix M . By Lemmas 18 and 19
and the assumption that p is a regular prime, the determinant of M is not divisible by p. This
shows that the order of D + Pn in Cn is not divisible by p, and therefore |(Pn + ker πn)/Pn|
is not divisible by p. This proves the proposition.

5.5. Proof of Proposition 5

By Proposition 3, we see that Pn−1/πn(Pn) is clearly contained in ker[p2]. Now suppose that
D + πn(Pn) ∈ Dn−1/πn(Pn) is in the kernel of [p2]. We have p2D ∈ πn(Pn). With (10), this
can be written as πn(ιn(D)) ∈ πn(Pn), or equivalently

ιn(D) ∈ Pn + ker πn.

Let fi, with i = 1, . . . , φn − 1, be the basis for Fn given in Theorem C or Theorem D. By
Lemma 11, we have div fi ∈ ker πn for i = 1, . . . , φn − φn−1. Hence,

ιn(D) =
φn−1∑

i=φn−φn−1+1

mi div fi + D′

for some integers mi and some divisor D′ in kerπn. Now note that if we define an inner product
〈·, ·〉 on Dn by

〈c0Pn,0 + c1Pn,1 + . . . , d0Pn,0 + d1Pn,1 + . . .〉 = c0d0 + c1d1 + . . . ,

then, for i = φn − φn−1 + 1, . . . , φn − 1, div fi is in the orthogonal complement of ker πn. The
same thing is also true for ιn(D) for any D ∈ Dn−1. It follows that the divisor D′ above is
actually 0 and we have ιn(D) ∈ Pn. Finally, by Lemma 15, the fact that ιn(D) is principal
implies that D itself is principal. This completes the proof of the proposition.
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