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This study aims to develop an intelligent algorithm by integrating the independent component analysis
(ICA) and support vector machine (SVM) for monitoring multivariate processes. For developing a success-
ful SVM-based fault detector, the first step is feature extraction. In real industrial processes, process vari-
ables are rarely Gaussian distributed. Thus, this study proposes the application of ICA to extract the
hidden information of a non-Gaussian process before conducting SVM. The proposed fault detector will
be implemented via two simulated processes and a case study of the Tennessee Eastman process. Results
demonstrate that the proposed method possesses superior fault detection when compared to conven-
tional monitoring methods, including PCA, ICA, modified ICA, ICA–PCA and PCA–SVM.

Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Quality is an important issue for today’s competitive industries,
so development of on-line process monitoring methods for main-
taining the yield of products is required. Statistical process control
(SPC) is a well-recognized tool for on-line monitoring of the pro-
cess status. However, when the process contains several variables,
the SPC will fail to detect process faults due to high correlations be-
tween process variables. Multivariate statistical process control
(MSPC) provides a way for engineers to judge the process status.
In general, two types of MSPC methods are available: extended tra-
ditional univariate SPC, and latent variable projection methods.
The former uses original process variables to construct monitoring
statistics, such as Hotelling’s T2 chart, exponentially weighted
moving average (EWMA) and cumulative sum (CUMSUM) charts.
Montgomery (2005) presents the details for related methods.

Nowadays, hundreds or thousands of variables can be recorded
on-line every day due to the rapid advancement of computer tech-
nology. Thus, dimension reduction by using latent variable projec-
tion methods is an important pre-processing step before
conducting MSPC. Principal Component Analysis (PCA) is primarily
used in the area of chemometrics (e.g., Kourti & MacGregor, 1996;
010 Published by Elsevier Ltd. All r
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Wasterhuis, Gurden, & Smilde, 2000) but it is also very promising
in any kind of multivariate analysis. Jackson (1959) initially devel-
oped a T2 control chart based on PCA-extracted components. Fur-
thermore, Jackson and Mudholkar (1979) introduced a residual
analysis for PCA-based MSPC. Nomikos and MacGregor (1994,
1995) presented a multiway PCA method for batch process moni-
toring. Ku, Storer, and Georgakis (1995) proposed a dynamic PCA
method by adding time-lagged variables to augment the original
data matrix in order to capture the dynamic characteristics. Jia,
Martin, and Morris (1998) proposed a non-linear PCA method for
non-linear process fault detection. Furthermore, Shao, Jia, and Mor-
ris (1999) integrated wavelets and non-linear PCA for non-linear
process monitoring. Lee, Yoo, and Lee (2004b) developed multiway
kernel PCA for monitoring non-linear batch processes. As men-
tioned above, PCA has been successfully applied to multivariate
process monitoring. However, PCA is limited to dealing with a
Gaussian process because the PCA-extracted components are as-
sumed to follow a Gaussian distribution. Martin and Morris
(1996) reported that PCA-extracted components rarely conform
to a multivariate Gaussian distribution in real industrial processes.

More recently, a newly developed feature extraction technique
named independent component analysis (ICA) was proposed to
deal with non-Gaussian processes. ICA was originally developed
for signal processing applications, including speech signal process-
ing, communications, medical image processing, financial engi-
neering and so forth. ICA can be seen as an extension of PCA.
However, the objectives for both algorithms are quite different.
ights reserved.
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PCA can only impose independence up to second order statistics
information (i.e. covariance) and hence its objective is to decorre-
late variables. Oppositely, ICA imposes statistical independence on
the individual components by considering higher-order statistics.
Generally speaking, the PCA possesses ‘‘weak” independence,
whereas the ICA possesses ‘‘strong” independence. Thus, ICA can
provide more information than PCA (Lee, Yoo, & Lee, 2004a).

Kano, Tanaka, Hasebe, Hashimoto, and Ohno (2003) compared
the monitoring results by applying SPC charts to the components
of PCA and ICA, respectively. Their results indicated that it is more
efficient to monitor ICA components than PCA components when
the behavior of process variables follows a non-Gaussian distribu-
tion. Although their work showed that the ICA technique can mon-
itor a non-Gaussian process, it may produce false alarms when the
components are individually monitored by SPC charts. Thus, Lee
et al. (2004a) developed three ICA-based monitoring statistics to
monitor the process. Furthermore, Lee, Qin, and Lee (2006) pro-
posed a modified ICA to overcome the drawbacks of the original
ICA algorithm such as pre-determination of both the number of ex-
tracted independent components and the proper order of indepen-
dent components. Yoo, Lee, Vanrolleghem, and Lee (2004)
developed a multiway ICA-based monitoring scheme for batch pro-
cess monitoring. Lu, Wu, Keng, and Chiu (2006) applied ICA to inte-
grating SPC and engineering process control (EPC). Ge and Song
(2007) proposed a PCA–ICA method to extract Gaussian and non-
Gaussian information for fault detection, and developed a similar-
ity factor for fault diagnosis. Hsu, Chen, and Liu (2009) developed a
process monitoring scheme based on ICA and adjusted outliers.

For a PCA-based monitoring method, the control limit for the
monitored statistic (i.e. T2) can be determined by an F distribution
according to the Gaussian assumption. However, the control limits
for ICA-based monitoring statistics cannot be determined by any
specific distribution. Traditionally, the kernel density estimation
(KDE) is used to determine the control limits for ICA-based moni-
toring statistics. However, KDE has two main limitations, the
requirement of a large dataset and high sensitivity to the choice
of smoothing parameter (Yoo et al., 2004). In addition, it does
not perform well if the data are autocorrelated. Even though the
use of a dynamic ICA method (DICA) (Lee, Yoo, & Lee, 2004c) could
eliminate the autocorrelation of data, the pre-processing data ma-
trix should be extended to contain the lagged variables, which will
greatly increase the complexity of ICA computation and will re-
quire that more ICs be extracted for analysis.

In this study, a novel intelligent fault detector integrating two
historical data-driven techniques, ICA and support vector machine
(ICA–SVM), will be proposed. SVM is a supervised learning method
which requires no assumption of data structure and which has
been widely used for classification problems. There are many suc-
cessful applications of SVM – for example, Shin, Eom, and Kim
(2005) applied one-class SVM for machine fault detection and clas-
sification. Shieh and Yang (2008) applied fuzzy SVM to build clas-
sification model for product form design. Li (2009) used SVM for
copper clad laminate defects classification. For developing a suc-
cessful SVM-based fault detector, the first step is feature extrac-
tion. Liu (2009) proposed a novel wavelet feature extraction
technique for reducing dimensionality of high-dimensional micro-
array data before conducting SVM. Widodo, Yang, Gu, and Choi
(2009) developed an intelligent fault diagnosis system of induction
motor by using ICA and PCA to extract the optimal features for SVM
based classification process. Zhang (2009) applied KPCA, KICA and
SVM for non-linear processes fault detection and diagnosis. Several
literatures regarding component analysis and SVM can refer to
Song and Wyrwicz (2009), Kwak (2008), Lu and Zhang (2007)
and Widodo and Yang (2007).

The aforementioned literatures have showed advantages of
integrating components analysis and SVM in many application
areas. However, their works directly utilize extracted components
as the inputs of SVM. Thus, this study further proposes to combine
components into a statistic as the input feature of SVM. Generally
speaking, the basic idea of this study first uses ICA to reduce the
dimensions and extract independent components. Then, the ex-
tracted components are utilized to calculate the systematic statis-
tic. To take the autocorrelation into account, the inputs of SVM are:
(1) present time systematic statistic, (2) one time delay of system-
atic statistic and (3) the difference between two successive sys-
tematic statistics. The proposed ICA–SVM fault detector will be
implemented via three examples: a simulated five-variable dy-
namic process, a simulated non-linear process and a case study
of the Tennessee Eastman (TE) benchmark process. Results indicate
that the proposed method possesses superior fault detection when
compared to several monitoring schemes, including PCA, ICA, mod-
ified ICA, ICA–PCA and PCA–SVM.

The organization of this article is as follows. Section 2 first re-
views the ICA algorithm and related process monitoring statistics;
the modified ICA and ICA–PCA monitoring methods are also de-
scribed. The SVM algorithm for a classification problem is intro-
duced in Section 3. The proposed ICA–SVM fault detector is
specified in Section 4. Section 5 first reports the simulation results
of the proposed algorithm. Then, a case study of the Tennessee
Eastman benchmark process is used to confirm the efficiency of
the proposed methodology by comparing it to several traditional
methods. The conclusion is finally given in Section 6.
2. ICA-based process monitoring methods

2.1. Theory of ICA algorithm

Fig. 1 shows the flowchart of the ICA algorithm. Consider a cen-
tered data matrix X = [x(1), x(2), ... , x(n)] e Rd�n, where x e Rd is a
column vector with d measured variables and n is the number of
measurements which can be expressed as a linear combination
of m unknown independent components (ICs) s = [s1, s2, ... , sm] e Rm

(i.e. assume E(ssT) = I) that is,

x ¼ Asþ E ð1Þ

where A e Rd�m is the mixing matrix and E e Rd�n is the residual ma-
trix. ICA tries to estimate A and s from the only known x. It is nec-
essary to find a de-mixing matrix W which is given as

ŝ ¼Wx ð2Þ

such that the reconstructed vector ŝ becomes as independent as
possible.

The eigen-decomposition of covariance matrix Rx = E(xxT) is gi-
ven as

Rx ¼ UKUT ð3Þ

where T denotes transpose operator, U e Rd�d is an orthogonal ma-
trix of eigenvectors, and K e Rd�d is the diagonal matrix of eigen-
values. All score principal components (PCs) can be expressed as:

t ¼ UT x 2 Rd ð4Þ

By using only the first few several eigenvectors in descending order
of the eigenvalues, the number of principal components in t can be
reduced, and the reduced t is denoted as t0 e Ra where a 6 d. Denote
P e Rd�a and D e Ra�a as the matrices of eigenvectors and eigen-
values, respectively. They are associated with the retained principal
components such that t0 = PTx.

Hotelling’s T2 can be used to measure the variation of the sys-
tematic part of the PCA model. T2 is the sum of the normalized
squared scores, that is



Fig. 1. Flowchart of ICA algorithm.

C.-C. Hsu et al. / Computers & Industrial Engineering 59 (2010) 145–156 147
T2 ¼ t0T D�1t0 ¼ xT PD�1PT x ð5Þ

The upper confidence limit for T2 is obtained by using F distribution

T2
a;n;a ¼

aðn� 1Þ
n� a

Fa;n�a;a ð6Þ

A measure of variation not captured by the PCA model can be mon-
itored by squared prediction error (SPE).

SPE ¼ eT e ¼ xTðI� PPTÞx ð7Þ

where residual is e ¼ x� x̂ ¼ x� Pt0 ¼ ðI� PPTÞx and e = 0 when
a = d. The upper control limit for SPE is

SPEa ¼ h1

ca

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2h2
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Pd

j¼aþ1k
g
j for g = 1, 2, 3, h0 ¼ 1� 2h1h3

3h2
2

and ca is the normal devi-
ate corresponding to the upper 1 � a percentile.

The initial step for ICA is whitening, also known as sphering.
The whitening transformation of x can be expressed as

z ¼ Qx ¼ QAs ¼ Bs ð9Þ

where the whitening matrix Q = K�1/2UT and B is an orthogonal de-
mixing matrix (i.e.E(zzT) = BE(ssT)BT = 1). The relationship between
W and B is

W ¼ BT Q ð10Þ

Therefore, Eq. (2) becomes

ŝ ¼Wx ¼ BT z ¼ BT Qx ¼ BTK�1=2UT x ð11Þ

According to Eq. (11), the ICA problem has therefore reduced the
problem of finding an arbitrary W to the simpler problem of finding
the matrix B.

The objective of found B is to make ŝ becomes as independent as
possible. Two non-Gaussian measurements methods can be ap-
plied: kurtosis and negentropy. The kurtosis method is simple
but it is sensitive to outliers. The negentropy method is based on
the information theoretic algorithm. Hyvärinen (1997) proposed
a fix-point algorithm for ICA (fastICA). The algorithm calculates
the column vector bi (i = 1, 2, ... , m) of B through iterative steps.
For the detailed procedure, refer to Hyvärinen (1999), Hyvärinen
and Oja (2000) and Hyvärinen, Karhunen, and Oja (2001). After B
was obtained, we can calculate ŝ by using Eq. (11).
2.2. ICA-based process monitoring

To divide de-mixing matrix W into two parts: dominant part
(Wd) and excluded part (We), three monitoring statistics were
developed by Lee et al. (2004a) and they are shown as follows:
I2 ¼ ŝT
e ŝd ð12aÞ

I2
e ¼ ŝT

e ŝe ð12bÞ

SPE ¼ eT e ¼ ðx� x̂ÞTðx� x̂Þ ð12cÞ

where ŝd ¼Wdx; ŝe ¼Wex and x̂ ¼ Q�1Bdŝ ¼ Q�1BdWdx.
In PCA monitoring, the latent variables are assumed to be

Gaussian distributed; hence the upper control limit for T2 can be
directly determined from the fitted distribution. However, the
ICA components do not follow a specific distribution. Lee et al.
(2004a) proposed to use the non-parametric technique, kernel
density estimation (KDE), to determine the control limits for ICA.
But using KDE has some shortcomings, such as the performance
depending on the choice of window width, and KDE does not oper-
ate well when the dataset is autocorrelated. Thus, this study will
apply an intelligent method, SVM, for detecting the faults. The next
section will introduce the related algorithm.

3. Support vector machine

Support vector machine (SVM) is an effective machine learning
method for classification problems, and eventually results in better
generalization performance than most traditional methods (Cao,
Chua, Chong, Lee, & Gu, 2003). SVM first maps input vectors into
a higher feature space, either linearly or non-linearly, where a
maximum separating hyperplane is constructed. Two parallel
hyperplanes are constructed on each side of the hyperplane that
separates the data. The separating hyperplane maximizes the dis-
tance between the two parallel hyperplanes. An excellent descrip-
tion of the SVM theory can be seen in Vapnik’s book (1995). We
give a brief overview of SVM for binary classification problem
herein.

3.1. The linearly separable case

The input vectors xi e Rd (i = 1, 2, ... , n) correspond to labels
yi e {�1, +1}. There exists a separating hyperplane, the function of
which is

dxþ b ¼ 0 ð13Þ

where d e Rn is a normal vector, the bias b is a scale. Two parallel
hyperplanes can be represented as

Yiðdxi þ bÞP 1 ð14Þ

SVM tries to maximize the margin between two classes, where the
margin width between the two parallel hyperplanes equals 2

kdk.
Therefore, for a linearly separable case, one can find the optimal
hyperplane by solving the following quadratic optimization
problem:

Min
1
2
kdk2

s:t: yiðdxi þ bÞP 1
ð15Þ
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By introducing Lagrange multipliers ai (i = 1, 2, ... , n) for the con-
straint, the primal problem becomes a task of finding the saddle
point of Lagrange. Thus, the dual problem becomes

Max LðaÞ ¼
Xn

i¼1

ai �
1
2

Xn

i;j

aiajyiyjðxi � xjÞ

s:t:
Xn

i¼1

aiyi ¼ 0

ai P 0

ð16Þ

By applying Karush–Kukn–Tucker (KKT) conditions, the following
relationship holds.

ai½yiðdxi þ bÞ � 1� ¼ 0 ð17Þ

If ai > 0, the corresponding data points are called support vectors
(SVs). Hence, the optimal solution for the normal vector is given by

d� ¼
XN

i¼1

aiyixi ð18Þ

where N is the number of SVs. By choosing any SVs (xk, yk), we can
obtain b� = yk � d�xk. After (d�, b�) is determined, the discrimination
function can be given by

f ðxÞ ¼ sgn
XN

i¼1

aiyiðx � xiÞ þ b�
 !

ð19Þ

where sgn(.) is the sign function.

3.2. The linearly non-separable case

SVM tries to map input vector xi e Rd into a higher feature space,
and can thus solve the linearly non-separable case. The mapping
process is based on the chosen kernel function. Some popular ker-
nel functions are listed as follows:

Linear kernel Kðxi;xjÞ ¼ xixj ð20aÞ
Polynomial kernel of degree g Kðxi;xjÞ ¼ ðcxixj þ rÞg ;

c > 0 ð20bÞ
Radial basis function Kðxi;xjÞ ¼ expf�ckxi � xjk2g;

c > 0 ð20cÞ
Sigmoid kernel Kðxi; xjÞ ¼ tanhðcxixj þ rÞ; c > 0 ð20dÞ

where r, c and g are kernel parameters. Hence, the discrimination
function takes the form

f ðxÞ ¼ sgn
XN

i¼1

aiyi � Kðx � xiÞ þ b�
 !

ð21Þ

Unlike most of the traditional methods which implement the
empirical risk minimization principle, SVM implements the struc-
tural risk minimization principle, which can eventually result in
better generalization performance. Besides, SVM makes no assump-
tions regarding the dataset, and only requires ‘normal’ and ‘abnor-
mal’ data. Therefore, this study applies SVM as the classifier for
fault detection. The next section interprets the proposed
methodology.

4. Develop ICA–SVM fault detection method

The ICA-based statistic, I2, is usually time dependent, especially
for chemical or biological processes, for example, a dataset from
the Tennessee Eastman (TE) benchmark process, which was gener-
ated by Chiang, Russell, and Braatz (2001) and can be downloaded
from http://brahms.scs.uiuc.edu. To execute FastICA for the TE nor-
mal operation dataset (i.e. IDV(0)) and then plot the autocorrela-
tion function (ACF) to I2, Fig. 2 demonstrates high autocorrelation
of I2. Even though the dynamic ICA (Lee et al., 2004c) can eliminate
the autocorrelation of data, the original data matrix should be ex-
tended to include lagged variables which will increase the compu-
tation complexity, and more ICs should be extracted for analysis.

Therefore, this study aims to develop an ICA–SVM fault detec-
tion method for a non-Gaussian multivariate process. Fig. 3 shows
the architecture of the proposed methodology. At first, the feature
extraction based on ICA is used to project the high dimension data-
set into a lower one. The extracted ICs are then used to calculate
the systematic part statistic. To take autocorrelation into account,
the time delay and time difference of systematic statistics are also
considered as input vectors for ICA–SVM. Development of ICA–
SVM fault detector contains two phases, off-line training and on-
line testing. The detailed procedure is described as follows.

4.1. Phase I: off-line ICA–SVM training

This phase attempts to build a referenced knowledge for ICA–
SVM which considers the development of normal operation condi-
tion (NOC) and fault operation condition (FOC) datasets.

4.2. NOC training dataset development

Step 1: Scale NOC dataset

Obtain a NOC dataset (without shifts in the process), denoted as
xnormal. The first step focuses on centering and whitening xnormal,
and then denoted as znormal. This step eliminates most cross-corre-
lation between the observed variables.

Step 2: Execute FastICA algorithm

Initially let d = m. By using the FastICA algorithm over znormal,
we can obtain the de-mixing matrix Wnormal and the corresponding
orthogonal de-mixing matrix Bnormal. Therefore, the reconstructed
signal is given by ŝnormal ¼ BT

normalznormal.

Step 3: Perform dimension reduction

The order of ŝnormal is determined by the largest sum of squares
coefficient, that is

ArgiMaxkwik2 ð22Þ
where k � k denotes Euclidean norm (L2) and wi is the row vector in
Wnormal. There are several methods for selecting the number of ICs
such as cross-validation (Wold, 1978), majority of non-Gaussianity,
and variance of reconstruction error (Valle, Li, & Qin, 1999). How-
ever, there is no standard criterion to determine the number of ICs.

Step 4: Calculate the systematic part statistics

After performing dimension reduction, the dominant de-mixing
matrix Wd can be obtained and the relationship to Bd is

Bd ¼ ðWdQ�1ÞT ð23Þ

Hence, the dominant ICs are calculated by

ŝnormal d ¼ BT
dznormal ð24Þ

The systematic part statistic at sample t is

I2
normalðtÞ ¼ ŝT

normal dðtÞŝnormal dðtÞ ð25Þ

Eq. (25) is one of the input features for ICA–SVM. Additionally, the
time delay and time difference are also considered as input features
for ICA–SVM, that is

I2
normal ¼ ½I

2
normalðtÞ; I

2
normalðt � 1Þ; I2

normalðtÞ � I2
normalðt � 1Þ� ð26Þ

http://www.brahms.scs.uiuc.edu
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Fig. 3. Architecture of ICA–SVM fault detector.
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4.3. FOC training dataset development

FOC dataset is also scaled at first, denoted as zfault. The dominant
ICs under FOC can be calculated by

ŝfault d ¼ BT
dzfault ð27Þ

The systematic part statistic at sample t under FOC is

I2
faultðtÞ ¼ ŝT

fault dðtÞŝfault dðtÞ ð28Þ
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The time delay and time difference are considered as ICA–SVM in-
put vectors,

I2
fault ¼ ½I

2
faultðtÞ; I

2
faultðt � 1Þ; I2

faultðtÞ � I2
faultðt � 1Þ� ð29Þ

After separately developing the NOC and FOC datasets, the training
dataset merges Eqs. (26) and (29) for ICA–SVM training, and de-
noted as I2

train ¼ ½I
2
normal; I

2
fault�.

4.4. Phase II: on-line ICA–SVM testing

The objective of this phase is to test the trained ICA–SVM mod-
el. Once the new data are obtained, the same scaling is then ap-
plied, and the scaled dataset is then denoted as znew. The
dominant ICs of znew can be obtained from

ŝnew d ¼ BT
dznew ð30Þ

The statistic of systematic part at time t is

I2
newðtÞ ¼ ŝT

new dðtÞŝnew dðtÞ ð31Þ

The testing input vector for ICA–SVM is

I2
new ¼ ½I

2
newðtÞ; I

2
newðt � 1Þ; I2

newðtÞ � I2
newtðt � 1Þ� ð32Þ
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Table 1
Comparison between PCA–SVM and ICA–SVM.

PCA–SVM ICA–SVM

C 0.5 2048
c 2.0 0.0078125
Detection rate (%) 50.75 92.5
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and the discrimination function is given by

f ðI2
newÞ ¼ sgn

X
i¼1

aiyi � KðI2
train;i � I

2
newÞ þ b�

 !
ð33aÞ

I2
new 2

þ1 if f ðI2
newÞ > 0

�1 if f ðI2
newÞ < 0

(
ð33bÞ

When I2
new 2 1, it denotes that the process is under NOC condition,

whereas I2
new 2 �1 indicates the process is in an FOC condition.

The proposed method is verified in the next section by imple-
menting two simulated multivariate processes and a case study
of the TE process, which characterize non-Gaussian property.
Fig. 7. Process layout of the TE
Besides, several traditional methods are also performed in order
to describe the efficiency of the proposed methodology.

5. Implementation

At first, the ICA–SVM fault detector was implemented via a sim-
ulated five-variable dynamic process in which the step and linear
disturbance models were introduced in the process. Further, the
proposed ICA–SVM is also applied to monitor the non-linear pro-
cess. After that, a case study of Tennessee Eastman (TE) benchmark
process was implemented to illustrate the efficiency of ICA–SVM,
in which several traditional methods including PCA, ICA, modified
ICA and ICA–PCA were also implemented in order to make a
comparison.

5.1. A five-variable simulation example

Consider a multivariate process with five variables similar to
Lee et al. (2004a)

RðkÞ ¼

0:118 �0:191 0:287

0:847 0:264 0:943

�0:333 0:514 �0:217

2
6664

3
7775Rðk� 1Þþ

1 2

3 �4

�2 1

2
6664

3
7775Hðk� 1Þ

CðkÞ ¼ RðkÞ þEðkÞ
ð34Þ

where E is assumed to be normally distributed, with zero mean and
variance of 0.1. H is the input that can be obtained as follows:

HðkÞ ¼
0:811 �0:226
0:477 0:415

� �
Hðk� 1Þ þ

0:193 0:689
�0:320 �0:749

� �
Gðk� 1Þ

ð35Þ

G = [g1, g2] is the input that follows a uniform distribution between
�2 and 2. Both input H = [h1, h2] and output C = [c1, c2, c3] are used
for analysis.

Two faults of step and linear change for g1 were introduced
respectively after sampling 50 through 200 observations. Three
process (Lee et al., 2006).



Table 2
Monitored variables in the TE process.

No. Process measurements No. Manipulated variables

XMEAS(1) A feed (stream 1) XMV(1) D feed flow (stream 2)
XMEAS(2) D feed (stream 2) XMV(2) E feed flow (stream 3)
XMEAS(3) E feed (stream 3) XMV(3) A feed flow (stream 1)
XMEAS(4) A and C feed (stream 4) XMV(4) A and C feed flow

(stream 4)
XMEAS(5) Recycle flow (stream 8) XMV(5) Compressor recycle

valve
XMEAS(6) Reactor feed rate

(stream 6)
XMV(6) Purge valve (stream 9)

XMEAS(7) Reactor pressure XMV(7) Separator pot liquid
flow (stream 10)

XMEAS(8) Reactor level XMV(8) Stripper liquid product
flow (stream 11)

XMEAS(9) Reactor temperature XMV(9) Stripper steam valve
XMEAS(10) Purge rate (stream 9) XMV(10) Reactor cooling water

valve
XMEAS(11) Product separator

temperature
XMV(11) Condenser cooling

water flow
XMEAS(12) Product separator level
XMEAS(13) Product separator

pressure
XMEAS(14) Product separator

underflow (stream 10)
XMEAS(15) Stripper level
XMEAS(16) Stripper pressure
XMEAS(17) Stripper underflow

(stream 11)
XMEAS(18) Stripper temperature
XMEAS(19) Stripper steam flow
XMEAS(20) Compressor work
XMEAS(21) Reactor cooling water

outlet temp
XMEAS(22) Separator cooling water

outlet temp

Table 3
Process disturbance.

No. State Disturbance

IDV(1) A/C feed ratio, B composition constant (stream 4) Step
IDV(2) B composition, A/C ratio constant (stream 4) Step
IDV(3) D feed temperature (stream 2) Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet temperature Step
IDV(6) A feed loss (stream 1) Step
IDV(7) C header pressure loss – reduced availability

(stream 4)
Step

IDV(8) A, B, C feed composition (stream 4) Random
variation

IDV(9) D feed temperature (stream 2) Random
variation

IDV(10) C feed temperature (stream 4) Random
variation

IDV(11) Reactor cooling water inlet temperature Random
variation

IDV(12) Condenser cooling water inlet temperature Random
variation

IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16) Unknown Unknown
IDV(17) Unknown Unknown
IDV(18) Unknown Unknown
IDV(19) Unknown Unknown
IDV(20) Unknown Unknown
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PCs were selected that capture approximately 88.1% of the vari-
ance. Also, the three ICs were chosen for analysis. The PCA-based
SVM (PCA–SVM) is used as the benchmark for comparison, and
the input vector for PCA–SVM is [T2(t), T2(t � 1), T2(t) � T2(t � 1)].
To perform SVM, the RBF is utilized which is one of the most
widely used kernel functions in SVM applications (Keerthi & Lin,
2003; Lessmann & Voß, 2009). The RBF kernel function only needs
to tune of its two parameters penalty cost C and c, which facilitate
adapting the classifier to a particular task. However, there is no
theoretical framework to specify the optimal values of kernel
parameters. In LIBSVM (Chang & Lin, 2001), the optimal settings
of these two parameters can be found by using grid search. Readers
can find more detailed information regarding gird search in (Hsu,
Chang, & Lin, 2006).

Fig. 4 shows the detection rates against step changed sizes. It
indicates ICA–SVM can detect the fault more efficiently than
PCA–SVM, irrespective of shift sizes. It is noted that even with
small shifts of process (say, 1.5), the ICA–SVM can achieve a high
detection rate.

Fig. 5 shows the detection rates against slope sizes. It indi-
cates that ICA–SVM and PCA–SVM can get good results for
the large slope sizes (>0.2). It is noted that ICA–SVM has the
capability to achieve above a 90% detection rate when the slope
size is near 0.05. In the next section, the efficiency of proposed
ICA–SVM will be further verified via implementing a non-linear
process.

5.2. A simulated non-linear process

In this section, the proposed method will be implemented to
monitor a non-linear process. Consider a non-linear system given
by (Dong & McAvoy, 1996; Ge & Song, 2008):

y1 ¼ t þ e1

y2 ¼ t2 � 3t þ e2

y3 ¼ �t3 þ 3t2 þ e3

ð36Þ

where e1, e2, e3 are independent random noises following the distri-
bution of N(0, 0.01) and the system input is t e [0.7, 1.2]. In the first
200 samples, data are calculated according to Eq. (36) and these
data are taken as the normal operating condition. After the first
200 samples, the system is then changed to

y1 ¼ t þ e1

y2 ¼ t2 � 3t þ e2

y3 ¼ �1:1t3 þ 3:2t2 þ e3

ð37Þ

From Eq. (37), it is known that there is a small change in y3. This
condition can be viewed as a fault condition for the system. Fig. 6
shows the data sets for the normal and condition and fault condi-
tion. Clearly, it is difficult to directly discriminate the two
conditions.

To perform SVM, 400 samples are obtained to build the model.
Besides, 400 samples are simulated as the testing dataset in which
the first 200 samples are simulated according to Eq. (36) and the
latter 200 samples are simulated from Eq. (37). The RBF kernel
function is used to conduct SVM and the optimal settings of param-
eters can be found by using grid search.

To compare the performance between PCA–SVM and ICA–SVM,
the percentage of correctly identify abnormal samples after the
fault occurrence (i.e. after sample 200) will be calculated. Table 1
shows the comparison result along with the optimal settings of
SVM parameters. It can be seen from the results that ICA–SVM
can be used to monitor the non-linear system more effectively than
PCA–SVM. This is because the ICA considers higher-order statistics
than PCA, so can provide more information for SVM to detect
faults. The next section is a case study of the TE benchmark pro-
cess, and several multivariate monitoring methods will be com-
pared to interpret the efficiency of ICA–SVM.
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5.3. A case study: Tennessee Eastman benchmark process

5.3.1. Description of Tennessee Eastman process
The Tennessee Eastman (TE) process proposed by Downs and

Vogels (1993) has been a benchmark problem for testing the per-
formance of various multivariate monitoring approaches (Chen &
Liao, 2002; Ge & Song, 2007; Lee et al., 2004c; Lee et al., 2006).
Fig. 7 shows the layout of the TE process. The process contains five
major parts: reactor, condenser, compressor, separator and strip-
0 100 200 300 400
0

50

100

150

200

250

(a

0 100 200 300 400
0

5000

10000

(b

2
newT

2
newI

Fig. 8. Monitoring r

-4 -2 0
0.001
0.003
0.01 
0.02 
0.05 
0.10 
0.25 
0.50 

0.75 
0.90 
0.95 
0.98 
0.99 

0.997
0.999

Pr
ob

ab
ilit

y

Normal P(a)  

-8 -6 -4 -2 0
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

First PC

(b) 

D
en

si
ty

 e
st

im
at

e 

Fig. 9. (a) Normal probability plot (b) den
per. The gaseous A, C, D and E and the inert B are fed to the reactor,
where the liquid products G and H are formed and a byproduct F is
also produced. The reactions in the reactor are

AðgÞ þ CðgÞ þ DðgÞ ! GðlÞ; product 1

AðgÞ þ CðgÞ þ EðgÞ ! HðlÞ; product 2

AðgÞ þ EðgÞ ! FðlÞ; byproduct

3DðgÞ ! 2FðlÞ; byproduct
500 600 700 800 900 1000

) PCA 

500 600 700 800 900 1000

) ICA 

esult of IDV(5).

2 4 6

robability Plot

2 4 6 8 10
A score value 

sity estimate for the first PCA score.



Table 4
Related information of compared methods.

Methods Statistics Discrimination method

PCA T2
T2

a;n;a ¼
aðn�1Þ

n�a Fa;n�a;a

SPE
SPEa ¼ h1

ca

ffiffiffiffiffiffiffiffiffiffi
2h2h2

0

p
h1

þ 1þ h2 h0ðh0�1Þ
h2

1

� �1=h0

ICA I2 99% upper control limit (KDE)
SPE 99% upper control limit (KDE)

Modified ICA T2 99% upper control limit (KDE)
SPE

SPEa ¼ h1
ca

ffiffiffiffiffiffiffiffiffiffi
2h2h2

0

p
h1

þ 1þ h2 h0ðh0�1Þ
h2

1

� �1=h0

ICA–PCA I2 99% upper control limit (KDE)
T2

T2
a;n;a ¼

aðn�1Þ
n�a Fa;n�a;a

SPE
SPEa ¼ h1

ca

ffiffiffiffiffiffiffiffiffiffi
2h2h2

0

p
h1

þ 1þ h2 h0ðh0�1Þ
h2

1

� �1=h0

PCA–SVM None f ðT2
newÞ ¼ sgn

P
i¼1aiyi � KðT2

train;i � T
2
newÞ þ b�

� �
T2

new 2
þ1 if f ðT2

newÞ > 0
�1 if f ðT2

newÞ < 0

(
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The reactor product stream is cooled via a condenser and then
fed into a vapor–liquid separator. The vapor exiting the separator
is recycled to the reactor feed through the compressor. The con-
densed components from the separator stream 10 are pumped to
the stripper. Stream 4 is used to strip the remaining reactants in
stream 10 and is combined with the recycle stream. The products
G and H exiting the base of the stripper are sent to a downstream
process which is not included in this process. The TE process con-
tains 22 continuous process measurements, nineteen composition
measurements and 12 manipulated variables. Measurements are ta-
ken every 3 min. A detailed description of the TE process can been
found in Chiang et al. (2001).

In this study, we use the data set which is generated by Chiang
et al. (2001) and can be downloaded from http://brahms.scs.uiuc.e-
du. There are 33 monitored variables which are listed in Table 2: 22
continuous process measurements (XMEAS) and 11 manipulated
variables (XMV). The agitation speed is excluded, because it is
not manipulated. 19 composition measurements are also
excluded, because they are hard to measure on-line in practice.
There are 21 programmed process disturbance (IDV) models which
are listed in Table 3. Faults IDV(1)–IDV(7) are a step change in a
process variable. Faults IDV(8)–IDV(12) are an increase in the var-
iability of some process variables. Fault IDV(13) is a slow drift in
Table 5
Fault detection rates for testing dataset in TE process.

Fault PCA(15 PCs) ICA (9 ICs) Modified ICA(9 ICs)

T2 SPE I2 SPE T2 SPE

IDV(1) 99.3 99.6 99.4 99.8 100 100
IDV(2) 97.8 98.5 98.0 99.0 98.0 98.0
IDV(4) 2.5 95.5 96.5 100 65.0 96.0
IDV(5) 25.0 25.5 100 100 24.0 24.0
IDV(6) 99.0 100 100 100 100 100
IDV(7) 91.0 100 93.5 100 100 100
IDV(8) 96.5 97.5 97.0 97.9 97.0 98.0
IDV(10) 29.0 34.9 78.5 80.0 70.0 64.0
IDV(11) 18.9 63.3 24.4 81.8 43.0 66.0
IDV(12) 96.9 97.3 97.5 100 98.0 97.0
IDV(13) 93.5 95 97.5 100 95.0 94.0
IDV(14) 83.8 100 95.5 100 100 100
IDV(16) 18.8 22.5 78.7 87.5 76.0 73.0
IDV(17) 75.9 88.8 78.9 80.4 87.0 94.0
IDV(18) 88.8 90 89.8 91.5 90.0 90.0
IDV(19) 0.2 23.8 64.9 67.8 25.0 29.0
IDV(20) 28.8 47.6 57.4 64.2 70. 66.0

Average 61.5 75.3 85.1 91.2 78.7 81.7
the reaction kinetics. Faults IDV(14), IDV(15) and IDV(21) are asso-
ciated with sticking valves. IDV(16)–IDV(20) are unknown fault
types.
5.3.2. Implementation
Fig. 8 shows the PCA-based T2 and ICA-based I2 monitoring re-

sult for IDV(5) in which the condenser cooling water inlet temper-
ature (XMV(21) in Table 2) is step changed at sample 160. Fig. 8a
indicates PCA can detect the fault approximately at sample 160.
However, the T2 sequence returns within the control limit approx-
imately at sample 355. This result may confuse operators when
judging the process condition after sample 355. By plotting the
normal probability plot (Fig. 9a) and probability density estimation
plot (Fig. 9b) to the first PCA score and results clearly indicate the
PCA score does not follow the Gaussian assumption. Therefore, ICA
is more suitable to deal with TE process. Fig. 8b shows that ICA not
only can detect fault at sample 160, but also keeps the I2 sequence
all above the control limit after sample 160, which indicates that a
fault remains in the process. Besides, the I2 sequence can clearly
exhibit a step-changed fault type, but T2 cannot indicate the fault
type. Therefore, an ICA-based monitoring method can improve
monitoring performance and provide more information for opera-
tors to rectify the process. This is because PCA uses only the infor-
mation of the covariance matrix, whereas ICA uses information on
distribution which is not contained in the covariance matrix.

The TE process training dataset contains 500 observations
which were generated without faults (IDV(0)), so it is used to de-
velop the NOC dataset. The TE process training dataset for each
fault contains 480 observations and it is used to develop the FOC
dataset. Each TE process testing data set contains 960 observations,
and all faults were introduced at sample 160; we use it to test the
off-line built ICA–SVM fault detector. Because faults IDV(3), IDV(9)
and IDV(15) are quite small and have almost no effect on the over-
all process, these faults will not be analyzed in our study.

The efficiency of the ICA–SVM fault detector will be verified by
comparing it to PCA, original ICA, modified ICA and ICA–PCA mon-
itoring methods. The PCA–SVM is also compared. In this study, 15
PCs were selected for PCA, ICA–PCA and PCA–SVM methods. Nine
ICs were selected for ICA, modified ICA, ICA–PCA and ICA–SVM
methods. Table 4 summarizes the relevant information of these
compared methods.

For the data obtained after the fault occurrence, the percentage
of the samples detected by the applied method was calculated and
it was termed as the detection rate. Table 5 shows the fault detec-
ICA–PCA(9 ICs and 15 PCs) PCA–SVM(15 PCs) ICA–SVM(9 ICs)

I2 T2 SPE

99.5 99.7 100 99.4 99.6
98.2 98.5 99.2 98.3 98.1
96.8 98.0 100 96.1 99.1

100 100 100 95.1 99.0
100 100 100 99.3 100

95.0 96.5 100 99.3 99.1
97.2 97.8 98.9 97.8 97.8
78.8 84.4 83.8 57.7 89.4
28.8 47.4 81.8 68.6 82.7
97.6 99.5 100 97.6 99.5
98.4 98.9 100 95.5 95.5
95.8 98.7 100 90.7 99.0
81.5 85.4 87.5 63.8 93.0
79.4 89.3 80.5 62.9 95.7
90.0 91.5 90.2 90.4 91.5
65.4 76.2 79.2 56.0 96.6
58.8 75.3 69.4 75.4 92.7

86 90.4 92.4 84.9 95.8

http://www.brahms.scs.uiuc.edu
http://www.brahms.scs.uiuc.edu
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Fig. 10. TE process fault detection rates against the number of latent components (j: ICA–SVM fault detector, N: PCA–SVM fault detector).
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tion rates under several monitoring schemes. The detection rate of
ICA outperforms PCA, especially for faults IDV(5), IDV(10), IDV(11),
IDV(16), IDV(19) and IDV(20). The modified ICA also produces
higher detection rates than PCA for most faults. However, ICA per-
forms better than modified ICA, in particular for faults IDV(5),
IDV(11) and IDV(19). The detection rates of ICA–PCA are even high-
er than those of PCA, ICA and modified ICA, because ICA–PCA
considers both Gaussian and non-Gaussian information simulta-
neously. The PCA–SVM outperforms PCA and modified ICA in most
cases, but does not perform well when compared to ICA and ICA–
PCA. Overall, the excellent fault detection performance is observed
in the case of ICA–SVM, in particular, when compared to PCA, mod-
ified ICA, ICA/ I2, ICA–PCA/I2 and PCA–SVM.
Fig. 10 shows ICA–SVM fault detection rates against the number
of chosen ICs. In addition, the plots also exhibit results of PCA–SVM
in order to visualize the efficiency of ICA–SVM. It indicates that the
detection rate of PCA–SVM increases with the number of chosen
PCs, whereas the ICA–SVM changes with smaller variation, except
fault IDV(4), IDV(5) and IDV(7), which implies ICA–SVM can have
good results with a small number of ICs in most faults. It should
be noted that the overall detection rate of ICA–SVM is higher than
that of PCA–SVM, irrespective of the number of components.

Through this case study, results show that the proposed ICA–
SVM has superior capability in detecting faults when compared
to traditional methods. The use of the ICA–SVM fault detector
can help operators immediately rectify the process when a fault
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occurs. This is particularly important for the process industries
such as chemical or biological processes which may involve plant
safety problems.

6. Conclusion

In order to maintain yield and quality in a process, providing
correct information of process status for operators is an important
issue. A novel method based on integrating independent compo-
nent analysis and support vector machine (ICA–SVM) for multivar-
iate process fault detection has been developed in this study.
Through implementing two simulated multivariate processes, the
results show ICA–SVM is superior to PCA–SVM in terms of fault
detection rates. This is because the ICA considers higher ordered
statistics, so can provide more useful information for SVM to detect
faults. A case study of the Tennessee Eastman (TE) benchmark pro-
cess is also applied to evaluate ICA–SVM. The results clearly show
the superiority of proposed ICA–SVM over traditional monitoring
methods, including PCA, ICA, modified ICA and ICA–PCA for detect-
ing most TE fault models. Further research can extend the pro-
posed method to a batch process which is more complex in
contrast to a continuous process.
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