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Abstract—The stability analysis via the Lyapunov theorem for
Autonomous Ratio-Memory Cellular Nonlinear Networks (ARM-
CNNs) is proposed. A conservative domain of attraction (DOA)
is found from the stability analysis through a graphical method
without complicated numerical analysis. The stability analysis
shows that ARMCNNs can tolerate large ratio weight varia-
tions. This paper also presents the ARMCNN with self-feedback
(SARMCNN) to overcome the problem of isolated neurons due to
low correlation between neighboring neurons. The SARMCNN
recognition rate (RR) is compared with other CNN constructed
via the singular value decomposition technique (SVD-CNN).

Index Terms—Cellular nonlinear network (CNN), domain of at-
traction (DOA), Lyapunov stability, ratio memory (RM), Hebbian
learning rule.

I. INTRODUCTION

I NFORMATION storage is called associative memory if it
permits the recall of information on the basis of a partial

knowledge of its contents [1]. Some researchers believe that
our memories correspond to attractors in the brain’s huge phase
space, since the human brain has more than neurons [2].
From this perspective, convergence to an appropriate attractor
is called recognition. Hopfield proposed a model of a large fully
connected network with symmetrical weights [3] that functions
as an associative memory with the capability to recognize pat-
terns. One of Hopfield’s most important contributions [3] was
to introduce the idea of an energy function into neural network
theory [4]. However, the limitation of Hopfield’s approach is
that it requires fully connected symmetrical weights, which
makes it difficult to connect wires in integrated circuits. Another
limitation is the difficulty of finding the domain of attraction
(DOA) in such a fully connected network. This problem can
be addressed if such a decision boundary line for the DOA can
be approximately located. Therefore, this paper aims to solve
the fully connected problem and provide a conservative DOA
which can be found easily through a graphical method without
complicated numerical analysis.

Because of its connectivity, researchers consider the Cellular
Nonlinear Network (CNN) [5] to be a potential architecture in
future nano-electronic systems. To implement the associative
memory by CNN, two key aspects of Hebb’s postulate, locality
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and cooperativity [6], are fully exploited in the Ratio Memory
CNN (RMCNN) or Autonomous-RMCNN (ARMCNN)
[7]–[16]. Locality means that the change of synaptic efficacy
only depends on local variables, which is the main point of
CNN. Cooperativiy [6] means that the presynaptic and post-
synaptic neurons must be active simultaneously for a synaptic
weight to change, which is the learning rule in RMCNNs or
ARMCNNs. The RM weight (or ratio weight) can be deter-
mined either through the elapsed time, as in [9]–[11], or can be
determined without the elapsed time, as in [8], [17].

For pattern recognition, stability analysis is important to
understand steady state values. However, previous studies
regarding RMCNNs and ARMCNNs [7]–[16] do not guarantee
that neuron states will converge to the equilibrium states. In
[18], [19], the analysis of equilibrium points is mainly based on
both the standard activation function [5] and the space-invariant
templates whose center element is larger than 1.

While previous studies have proposed several different
CNNs on associative memory [20]–[24], few have actually
been implemented in analog VLSI [25], mainly due to com-
plex mathematics required to make this possible. In literature,
[20], [21] proposed a design method for the realization of
associative memories through singular value decomposition
technique (SVD). Another study [22], [23] showed the weights
through solving linear matrix inequality (LMI) and generalized
eigenvalue (GE) problems, whereas the work in [24] com-
puted the CNN parameters by solving a set of linear equations
via pseudo-inversion techniques. In particular, the CNNs in
[20]–[24] require mathematical operations such as SVD, LMI,
and pseudo-inversion. In [26], eigenvector methods are applied
to extract pattern features of medical information. These oper-
ations are more complex than the simple methods proposed in
this paper, and more difficult to implement in analog VLSI [25].

Section II describes the learning algorithm of ARMCNNs.
Section III defines the dynamical state space equation for
ARMCNN and discusses the ranges of all possible equilibrium
points. Section IV provides the stability analysis. Section V
discusses the effects of ratio weight variations. Section VI
compares ARMCNNs with other CNN [20] constructed via
the SVD technique (SVD-CNN). Future research efforts are
summarized in Section VII.

II. ARMCNN

Fig. 1 depicts the basic neuron model of ARMCNN [7] at
the th row and th column with the piecewise-linear (PWL)
activation function shown in Fig. 2 where is the neuron gain,

is the neuron state voltage, is the neuron output current,
is the output saturation current, and are the resistor

and capacitor associated with the neuron respectively.
is the ratio weight from neuron to neuron .
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Fig. 1. The neuron model of ARMCNN located at the �th row and �th column.

The activation function is actually a voltage to current converter
(V/I) with a transconductance value of for the PWL
case.

The operation procedures of a ARMCNN without self-feed-
back [7] can be divided into three periods: learning, elapsed, and
recognition. The elapsed period is not required in [8], [17]. In the
learning period, assume that the ARMCNN must learn pat-
terns. The learned weight from neuron to neuron

can be determined by the Hebbian learning rule [6]

(1)

where is the learning pixel image at the th row and th
column of the th pattern out of input patterns, and is the
learning pixel image at the th row and th column in the set
of . is the set of a Ra-neighborhood system
without the neuron . The Ra-neighborhood system

of the neuron is defined as the set of all neu-
rons including and its neighboring neurons.

where Ra is an integer called the radius of the sphere of
influence. Besides, the correlation between two neighboring
neurons at and is positively correlative if

for (2)

or negatively correlative if

for (3)

For example, for a ARMCNN without self-feedback, assume
four learning patterns with for a black pixel image and
for a white pixel image. All possible learned weights are

. occurs when the input image pair at
and are positively correlative for all four input

patterns. 4 occurs when the input image pair at and
are negatively correlative for all four input patterns.

After learning all input patterns, the learned weight is
transformed into the ratio weight [7]–[16]

For a ARMCNN with self-feedback (SARMCNN), simply re-
place with . If , then
is the self-feedback weight and is the self-feedback ratio
weight. The sum of the absolute values of the ratio weights for
a SARMCNN is also equal to one.

In the elapsed period, the inevitable leakage current [11], [27]
associated with the stored weight reduces the absolute value of

. However, this leakage enhances the ratio weights whose
absolute values are larger than the average of the absolute values
of connected to [12]. This feature enhancement
effect was shown in [12]–[15] as a result of storing weights as
ratios.

In the ARMCNN recognition period, the neuron or cell dy-
namic equation is

(4)

as shown in Fig. 1, where ARMCNN variables are represented
as electrical signals such as voltages and currents [17], [27] for
hardware implementation. The input initial states (input images)
are defined as

(5)

If is normalized with respect to is normalized
with respect to , and is unity, then (4) is expressed as
follows,

(6)

where

Equation (6) is the standard CNN dynamic equation if
[5]. Compared with other works in [5], [20]–[24], the neuron
gain of a ARMCNN must be greater than unity for the PWL
type activation function. And the sum of the absolute values of
the ratio weights is equal to unity. Therefore, one difference
between ARMCNNs and [5], [20]–[24] is that for ARMCNNs,
the absolute value of the neuron state must be greater than
or equal to with to produce the binary outputs.

Furthermore, since the neuron is a first order par-
allel circuit, and the maximum charging or discharging current
to the neuron is by the requirement of the ratio
weights, the normalized neuron state is confined between
and . This implies that both the output and the state variables
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Fig. 2. The transfer characteristic of the PWL activation function, �� � �.

are confined for ARMCNN, which favors the analog circuit de-
sign [17], [28].

In [20], any equilibrium point in the total saturation region is
asymptotically stable if is equal to unity. However, [20] does
not indicate that it is to have binary outputs given any activation
function. Also, the resulting weights in [20] could be any real
number, which may not be feasible to implement in hardware
circuits. On the other hand, the ratio weights found in ARM-
CNNs are fixed ratio numbers that can be easily realized in hard-
ware circuits using replicas of current mirrors [17], [28].

This paper assumes that and are constant for all neu-
rons, . This is because only affects the
convergent speed, and the mismatch of can be combined
with the mismatch of to form an effective as , which is

The algorithm for determining the ratio weights in ARM-
CNNs (or SARMCNNs), which requires no elapsed time, is
summarized as follows: [17]

1) Find the weights of (1) after patterns are learned.
2) Set

where and are defined in (1).
3) Compare with . The weight with its ab-

solute value equal to will be kept. On the contrary,
the weight with its absolute value less than will be
set to zero.

4) Transform the connecting weights of neuron as

if

where is the number of preserved weights
in with respect to neuron .

if .
For SARMCNNs, simply replace with
and if , then is the self-feedback weight.

To simplify wire connections, only neighboring neurons
located on horizontal and vertical positions are connected,
that is, up, down, left, right. Neurons located on diagonal sites
are not connected. The algorithm without the elapsed time is

Fig. 3. A 1-D three-neuron (3N) subsystem with two binary equilibrium points
of black-black-white and white-white-black, or �� ���� � ���� � ���� �
��� �� � ���� ��.

used in this paper. Therefore, the possible ratio weights are
for a ARMCNN without self-feedback,

whereas for a SARMCNN, the possible ratio weights are
. The resultant ratio weights gen-

erate many small subsystems. Each subsystem has two binary
equilibrium points in the form of . The
choice of the sign is determined as follows. Set the equilibrium
state of the first neuron to . If a neg-
atively correlative input image is found between and

, then set the equilibrium state of the connected neuron
to . Otherwise, if positively correlative,

then set the equilibrium state of the connected neuron
to . This is true for any number of neurons
[7]. For example, Fig. 3 shows that two equilibrium points
are and . The
thick bond in Fig. 3 is due to a negatively correlative input
image at the two connected neurons and the thin bond is due
to a positively correlative input image at the two connected
neurons. The dynamic equations of Fig. 3 are

(7)

Assume . If we let

then the right hand side of (7) becomes

Therefore is indeed an equilibrium
point.

Fig. 4 shows an example of survived ratio weights [7] after
learning the three Chinese characters in Fig. 5. There are one
2-D 18N subsystem (top two rows), one 2-D 25N subsystem
(indicated with an arrow), six 1-D 2N subsystems, one 2-D 8N
subsystem and two 1-D 9N systems (bottom two rows). Two bi-
nary equilibrium points for the one 2-D 18N subsystem (top two
rows) are and , since
the connecting bonds are all positively correlative. The thick
bond in Fig. 4 is due to a negatively correlative input image at
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Fig. 4. The survived ratio weights in the 9� 9 ARMCNN without self-feed-
back after learning three Chinese characters ONE, TWO, and FOUR. These
three Chinese characters are shown in Fig. 5.

Fig. 5. (a) Chinese character ONE. (b) Chinese character TWO. (c) Chinese
character FOUR.

the two connected neurons and the thin bond is due to a posi-
tively correlative input image at the two connected neurons.

III. DYNAMIC STATE SPACE EQUATIONS FOR ARMCNN

To perform the ARMCNN stability analysis, it is necessary to
represent the ARMCNN with the following dynamic state space
equations:

and (8)

where is the state vector, is the output vector,
and is the connection matrix.

, with
for , and represents
the activation function. The input image, that is, the initial state,
satisfies for . for a

pattern. Note that this study represents the two-dimen-
sional indices of and by one dimensional and
using the following rule:

For the ratio memory requirement,

(9)

where is the ratio weight from neuron to neuron multi-
plied by . If PWL is used for the activation function,
is required for the ARMCNN to have binary equilibrium points.
Theorem 2 in Section IV explains this requirement.

Fig. 6. A 1-D five-neuron (5N) subsystem having two binary
equilibrium points �� ���� � ���� � ���� � ���� � ���� as
��� �� � �� � �� � �� � ��. The definitions of the thin bonds
between neurons are the same as in Fig. 3.

The equilibrium points of (8) can be obtained by solving

(10)

In general, we can have equilibrium points, . Fur-
ther, the ratio memory requirement shown in (9) confines the
ranges of all possible equilibrium states as:

for

where is the th equilibrium neuron state for the
th equilibrium point. This is because, for the th neuron

for

Because is possible to be greater than 2, some undesired
equilibrium points, that is, spurious memory points, may
exist besides two binary equilibrium points. To show spurious
memory points, consider the 1-D 5N subsystem example shown
in Fig. 6, with the corresponding circuit implementation in
Fig. 7. The neuron resistor , capacitor and voltage to
current converter (V/I) are as defined in Figs. 1 and 2. For
each synapse connection between two neightboring neurons,
two voltage to current converters and two current mirrors are
required. If , then one possible spurious memory point is
at .
Another possible spurious memory point is at

. These spurious memory points
are obtained by solving (10).

IV. ARMCNN STABILITY ANALYSIS

Whether or not the initial state can successfully converge
to the desired equilibrium point determines recognition perfor-
mance. Therefore it is important to find the domain of attraction
(DOA), or at least a conservative DOA. Without loss of gener-
ality, and in (8) are normalized to unities. This is
because these parameters only affect the convergent time which
is proportional to , and the state values and output cur-
rents can be normalized as and as shown in
(6). The normalized binary equilibrium point is expressed as:

where is in the form of . Consider the behavior around
one normalized binary equilibrium point using new state vari-
able . The new state variable with respect to the normalized
binary equilibrium point is defined as

for (11)
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Fig. 7. Circuit implementation of a 1-D 5N ARMCNN subsystem in Fig. 6. For each synapse connection between two neightboring neurons, two voltage to current
converters (V/I) and two current mirrors are required.

Fig. 8. The shifted PWL activation function, ��� � ��.

For instance, if the normalized equilibrium state in the th
neuron is , then

After this transformation from to , the new system has a
equilibrium point at the origin and is represented as

(12)

where

(13)

Figs. 8 and 9 show the shifted PWL activation functions. For
these shifted activation functions in Figs. 8 and 9, (14) and (15),
must be satisfied in the following stability analysis.

for

and

for (14)

for

and

for (15)

Theorem 1: For the PWL activation function defined in
Fig. 2, (14) and (15) are satisfied if and only if the slope is
greater than 1.

Proof: From Fig. 2, it is obvious that for the
normalized ARMCNN. The fact that must be greater than 1
can be argued from the following analysis.

Fig. 9. The shifted PWL activation function, ��� � ��.

1) If , then . The PWL activation function in
Fig. 2 is monotonically increasing from to

. Therefore,

which does not meet (14), that is, .
2) If , then

for

therefore,

for

which does not meet (14), that is,

for

3) If , then is divided into the following
two ranges to show the PWL activation function defined
in Fig. 2 satisfies (14).
Range 1: If , then

for .
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Range 2: If , then

In a similar way, is divided into the following two
ranges to show that the PWL activation function defined in
Fig. 2 satisfies (15).
Range 3: If , then

for .
Range 4: If , then

For the PWL activation function, the above case (3) shows
that if then (14) and (15) are satisfied. And the above
case (1) and case (2) show that for the PWL activation
function, if (14) and (15) are satisfied, then and

are not possible. Therefore, for the PWL activation
function defined in Fig. 2, (14) and (15) are satisfied if and
only if the slope is greater than 1.

Let be the solution of (12) that starts at initial state
at time . And is defined for . The DOA is
defined by

The domain of attraction (DOA) required to guarantee the
asymptotic stability of a dynamical system in (12) around the
origin can be found in [29]. First, determine a domain about
the origin where is negative definite and a constant
such that

is a subset of . In other words, if there is a closed and bounded
region

such that
1) for all except
2)
3) is positive definite for all

then is asymptotically stable and is a conservative
Domain of Attraction (DOA).

The ARMCNN defined in (8) is generated after performing
the algorithm in Section II without elapsed time. The ratio
weights of this ARMCNN satisfy (9), and the activation func-
tions of each neuron are required to satisfy (14) and (15).
Theorem 2 shows that the resultant ARMCNN converges to
one of the binary equilibrium points.

Theorem 2: ARMCNN stability analysis with a conservative
Domain of Attraction (DOA). For the normalized ARMCNN

defined in (12) with
the activation function satisfying (14) and (15), there exists a
conservative domain of attraction (DOA), i.e., , so that
the ARMCNN will converge to one of the normalized binary
equilibrium points for .

Proof: We need to first prove the asymptotic stability of
(12), that is,

Define a positive quadratic Lyapunov function

Choosing , where is the identity matrix,
we have

It is obvious that determines the sign of the derivative of
. To find , the range of is analyzed first from

(13) as

(16)

where

The absolute values of various are shown in Figs. 8 and 9.
The reason for the validity of (16) is as follows. Denoting

these two opposite equilibrium states as and : the index
set of all neurons with the normalized equilibrium states equal
to 1 is and the index set of all neurons with the normalized
equilibrium states equal to is , then

(17)
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If the equilibrium state in the th neuron is 1, then

for positively correlative

for negatively correlative

and from (9), we have

so (17) is expressed as

which is (13).
If the equilibrium state in the th neuron is , then

for positively correlative

for negatively correlative

and from (9), we have

so (17) is expressed as

which is (13).
Therefore, (16) is proved. From (16) and equations of (14)

and (15), we have

for

(18)

This implies that for any , there exists an , such
that

for

In fact can be found from Figs. 8 and 9 given the value. Let

(19)

then

if for

or

if for

From (9), we can see that

(20)

From (18), (19) and (20) and let

the upper bound of the norm of can be found as

for

(21)

where . Using (21), we have

for

If , then which will yield an asymptotic stable
ARMCNN defined in (12). Since

we have

(22)

Therefore, by choosing a proper from the above (22), we can
find from (19) to yield a conservative DOA so that

that is, is the conservative DOA.
The above derivation is applicable to any activation function

satisfying (14) and (15) that includes the PWL function of gain
greater than unity, as Theorem 1 shows. Furthermore, only the
unity sum of the absolute values of the ratio weights is required.
The ratio weights can vary a lot as long as the signs of the cor-
responding ratio weights in the above proof are kept. Therefore,
the ARMCNN can converge to the correct equilibrium states
even when there are deviations in the ratio weights due to dif-
ferent VLSI processes.
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Example 1: Ratio weight variations do not change the equi-
librium points. For the 1-D 3N system in (7) of Fig. 3 under

, we see that

(23)

It has been shown in Section II that the is an equilib-
rium point. If the process variation perturbs the system into

(24)

then after substitution of the original equilibrium point of
into the right hand side of (24), we have

Therefore is still an equilibrium point.
Example 2: Finding a DOA for a three-neuron system in

Fig. 3. The new state variable with respect to the normalized
equilibrium point is defined as

After this transformation from to , the new system exhibits
equilibrium at the origin and is described as

(25)

where

Assume that the activation function is the sinusoidal
type defined as

if

if

if (26)

Also assume that each neuron has the same activation function
of (26). Fig. 10 shows the shifted sinusoidal activation func-
tion of . Equation (26) satisfies the activation func-
tion requirement in (14) and (15). To show this, consider first

. It follows that

(27)

(28)

Next consider . It follows that

and

The sinc function of [30] is monotoni-
cally decreasing from to . So we have the following:

(29)

Hence the limit as approaches from is

(30)

Equation (30) is from L’Hospital’s rule [31]. From (27), (28),
(29) and (30), we have shown that (26) satisfies the activation
function requirement in (14). In a similar way, (26) can be shown
to satisfy (15).

From Theorem 2, the finding of the conservative DOA is to
find the such that

for (31)

where

for a three-neuron system. Because of the odd symmetry prop-
erty of (26), it suffices to use and to find the . Fig. 10
illustrates this process in finding the such that if , then

, which can be solved iteratively in the following:
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Fig. 10. Shifted sinusoidal activation function of ��� � ��. The sinusoidal
activation function is defined in (26).

1) Try , we have

2) Then select , we have

3) Finally, the following converged solution is

Equation (26) has the property that

for

or

for

So it follows that is a conservative DOA for this
three-neuron system. This same conservative DOA also holds
for the case in Example 1 due to ratio weight variations.

V. EFFECTS OF RATIO WEIGHT VARIATIONS

Consider the nonideal effect of ratio weight variations. The-
orem 2 shows that if there are variations in ratio weights but the
sum of the absolute values of ratio weights is kept at unity, then
the ARMCNN is stable with a DOA. The other case in which the
sum of the absolute values of ratio weights is not kept at unity
is as follows. To have a correct recognition at , assume
that all neighboring neurons produce the correct output or

. After multiplied by the corresponding ratio weights, a
necessary condition for a correct recognition of the ARMCNN
at is

(32)

Fig. 11. Equation (32) (solid circle) predicts the RR (solid square) well at
smaller neuron gains, while at larger gains, the RR (solid square) is approxi-
mately the same as the RR (empty square) with ideal ratio weights.

The neuron gain must be adjusted to overcome the effects of
ratio weight variations to satisfy the necessary condition in (32).
Fig. 11 shows the simulation results with the three learning pat-
terns of 9 9 Chinese characters ONE, TWO, and FOUR in
Fig. 5. is set to 5.5 A, is 500 fF, and is 130 k in
Fig. 11.

Each input pattern is added with a Gaussian noise or
with a standard deviation (STD) of defined in (33) as
following,

for a black pixel

for a white pixel (33)

where

if then

if then

One hundred noisy patterns for each character were gener-
ated as defined in (33). The RR of a group of patterns at
a fixed standard deviation is the number of sucessful recog-
nitions divided by . The normalized output variable

is compared with for a black and a
white pixel, respectively. To consider ratio weight vari-
ations in a VLSI process, the ratio weight was added with a
Gaussian noise having a STD of . This is because

is assumed to be the maximum possible noise. This
study also assumes that the ratio weight noise can not invert the
sign of the ratio weight.

Fig. 11 shows that for smaller gains, the RR under this ratio
weight variation is close to the RR based on (32). On the other
hand, in the high gain region, (32) is satisfied easily. And the
RR under this ratio weight variation is close to the RR without
variation. However, in this high gain region, more spurious
memory points are generated. Thus, neuron gain should be
tuned large enough to satisfy the necessary condition of (32)
and small enough to avoid the generation of many spurious
memory points. So an optimal neuron gain exists in the case of
ratio weight variations.
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Fig. 12. The RR of recognizing three 9� 9 Chinese characters ONE, TWO,
and FOUR by ARMCNNs and SARMCNNs at different neuron gains. The RR
decreases as the neuron gain increases.

VI. RECOGNITION RATE COMPARISON

A. Comparison of ARMCNN and SARMCNN

Based upon the mathematical equations of a 9 9-neuron
ARMCNN, this study performs behavior simulations for ARM-
CNNs and SARMCNNs with PWL activation functions at dif-
ferent neuron gains. The input patterns to be learned and recog-
nized are three Chinese characters of ONE, TWO, and FOUR, as
Fig. 5 shows. Fig. 4 shows the survived ratio weights. Fig. 4 also
shows that no isolated neurons are generated. In Fig. 12, is
set to 5.5 A, is 500 fF, and is 130 k for the practical
realization of integrated circuits [17]. One hundred noisy pat-
terns for each Chinese character were generated at a fixed stan-
dard deviation of the noise level as defined in (33). The x-axis
of Fig. 12 shows that the standard deviations of and are
in units of . The RR of a group of patterns is the number
of successful recognitions divided by . The output vari-
able is compared with the correct one. All the 81 pixels
must be correct to produce a successful recognition. Fig. 12
shows that when the standard deviation of the input noise level
is smaller than , the RR is almost unity for both ARM-
CNNs and SARMCNNs. Fig. 12 also shows that at larger neuron
gains, SARMCNNs have a lower RR compared to ARMCNNs,
and at lower neuron gains, both SARMCNN and ARMCNN
have approximately the same RR. The RRs for ARMCNNs and
SARMCNNs at lower neuron gains are close to . This is
as expected, because the RR is dominated by the smallest sub-
systems [7] and there are six 1-D 2N subsytems in Fig. 4. At a
larger neuron gain, more spurious memory points are generated.
Hence, the RR decreases as the neuron gain increases.

B. Comparison of SARMCNN and SVD-CNN

A potential problem in ARMCNNs without self-feed-
back is the possibility of isolated neurons. This is caused
by low correlation between neurons. In this case, the charge
on the neuron capacitor will decay to zero. A self-feedback
ARMCNN (SARMCNN) can resolve this issue through the
positive self-feedback. The self-feedback ratio weight is pre-
served for each SARMCNN neuron because each neuron is
always positively correlative with itself. This study compares
the SARMCNN with the work in [20], which is called the

Fig. 13. The four test patterns in [20].

Fig. 14. Simulation results of RR between SARMCNN and SVD-CNN.

SVD-CNN in this paper. Fig. 13 shows the same four test
patterns of from [20]. These four test patterns
are expressed as

The CNN architecture in [20] for this example is
and . Using the same Sparse Design Pro-

cedure with produces the same T matrix as in [20].
The other cases of and 3.0 are also generated for
comparison. is a parameter defined in [20]. Fig. 14 provides
simulation results, which shows that the SARMCNN achieves
the highest RR. The simulation parameters are the same for
SVD-CNN and SARMCNN in that is set to 5.5 A,
is 500 fF, and is 130 k for each neuron. The normal-
ized output variable is compared with for a black
pixel and for a white pixel. Performing the ARMCNN (or
SARMCNN) algorithm in Section II generates three isolated
neurons. The ARMCNN can not recognize these four patterns
due to these three isolated neurons, whereas the SARMCNN can
resolve this issue due to the self-feedback of each neuron. These
three isolated neurons occur because of low correation between
them and their neighbors. Therefore, the RR of SARMCNN is
dominated by these three isolated neurons as,

(34)

Fig. 14 shows that (34) sets an upper bound for the RR of
SARMCNN with good accuracy.

VII. CONCLUSION

This study proposes the stability analysis of the ARMCNN
via the Lyapunov theorem. Results show that the ARMCNN can
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TABLE I
COMPARISON OF VARIOUS CNN WORKS ON ASSOCIATIVE MEMORY

tolerate large ratio weight variations and the activation function
can vary as long as (14) and (15) are satisfied. In addition to the
robustness of ARMCNNs, the learning rule is simple and there-
fore is suitable for analog VLSI implementation. Further, a con-
servative DOA can easily be determined from the stability proof
using a simple graphical method. Table I shows the comparison
between ARMCNNs and other CNNs on associative memory.
The signal range ratio (SR ratio) is defined as divided
by . As shown in Table I, for ARMCNNs, the generation
of weights is from Hebbian learning, which is biology like and
was integrated into each CNN cell as analog VLSI. This Heb-
bian learning depends on the correlation between neighboring
neurons. If after learning, many isolated neurons are generated,
then the RR is dominated by these isolated neurons. For other
CNNs, the generations of weights are from computer programs
to perform SVD, LMI, GEVM, and pseudo-inverse operations.
To integrate these operations into each CNN cell as analog VLSI
is more difficult.

The primary problem for a ARMCNN without self-feedback
is the occurrence of isolated neurons due to low correlation be-
tween neighboring neurons. Therefore, this study proposes the
SARMCNN to solve the problem of isolated neurons. Further,
for each subsystem, spurious memory points may exist besides
the two binary equilibrium points. The occurence of spurious
memory points will reduce the RR. Another issue is that the
synapse weight circuit between neighboring neurons is com-
posed of two V/Is and two current mirrors. The layout area is
still too large for a high density CNN array.

The above two issues regarding spurious memory points
and the layout area of synapse weight circuits originate from
building ARMCNNs directly by the dynamic state equations
with . However, at , ARMCNNs dynamic state
equations approximate heat diffusion equations. And a single
MOSFET transistor can be used as the synapse weight circuit.
The steady state value of each neuron can be utilized to decide
the final binary output image. Therefore, we are currently
exploring the diffusion property of ARMCNNs to solve, at
least, the above two issues to further improve the performance
of ARMCNNs. This will be a future research effort.
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