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a b s t r a c t

Small non-coding RNA genes have been shown to play important regulatory roles in a variety of cellular
processes, but prediction of non-coding RNA genes is a great challenge, using either an experimental or a
computational approach, due to the characteristics of sRNAs, which are that sRNAs are small in size, are
not translated into proteins and show variable stability. Most known sRNAs have been identified in Esch-
erichia coli and have been shown to be conserved in closely related organisms. We have developed an
integrative approach that searches highly conserved intergenic regions among related bacterial genomes
for combinations of characteristics that have been extracted from known E. coli sRNA genes. Support vec-
tor machines (SVM) were then used with these characteristics to predict novel sRNA genes.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past decade, RNA molecules that do not encode pro-
teins, called functional RNAs or non-coding RNAs (ncRNAs), have
been shown to play important structural and catalytic roles in
the cell (Rivas, Klein, Jones, & Eddy, 2001; Storz, Opdyke, & Zhang,
2004). The bacterial ncRNAs are smaller in size that eukaryote ncR-
NAs, ranging from �50 to �400 nt and are termed small RNAs
(sRNAs) or small regulatory RNAs (Gottesman, 2004). Small non-
coding RNAs have been found to be involved in the control of: tran-
scription, rRNA processing, RNA stability, mRNA translation, pro-
tein degradation and translocation (Wang, Ding, Meraz, &
Holbrook, 2006). All of the sRNAs of Escherichia coli that act by
base-pairing affect either the stability or translation of the mRNA
target; in most cases the mRNAs are encoded in trans at positions
on the chromosome distant from the sRNAs (Tjaden et al., 2006).

Small non-coding RNA (ncRNA) genes play critical regulatory
roles in a variety of cellular processes (Wang et al., 2006), but pre-
diction of non-coding RNA genes is a great challenge, either using
an experimental or a computational approach. This is due to the
characteristics of sRNAs, which include their small size, the fact
that they are not translated into proteins and their variable stabil-
ll rights reserved.
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ity. Until recently, most known sRNAs have been identified in E. coli
and shown to be conserved in closely related organisms. In this
study, we hope to use the various characteristics extracting from
known sRNAs genes of E. coli to predict novel sRNA genes in bacte-
ria. We developed an integrative approach for the prediction of
putative sRNA genes in the related bacterial genomes using sup-
port vector machines (SVM) based on a combination of character-
istics extracted from known sRNA genes.

2. Materials and methods

2.1. Genome sequence

We choose E. coli K12 MG1655 for our development, because
E. coli K12 is a well-studied model organism in microbiological re-
search. Researchers first identified and studied regulatory proteins
in E. coli and many global analysis of gene expression have been
documented for this organism (Gottesman, 2004). In addition,
most known sRNAs have been identified on E. coli. The complete
E. coli K12 MG1655 strain genome sequence was downloaded from
EcoGene database.

2.2. Intergenic regions

The intergenic regions of E. coli K12 MG1655 are available from
the EcoGene database. In addition, the intergenic regions of various
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other bacterial genomes can be downloaded from the JCVI-CMR
database. There are 2346 intergenic regions in E. coli K12
MG1655. Of these, 1583 (62%) intergenic regions are more than
50 nt in size. There are 3576 intergenic regions in Salmonella enter-
ica serovar Typhi Ty2 and of these, 2529 (71%) intergenic regions
are more than 50 nt in size.
2.3. sRNAs genes

Most known sRNAs have been identified on E. coli. Currently, 60
sRNAs identified in E. coli K12 MG1655 that are available from the
EcoGene database.
2.4. System organization

The process flow of our method is depicted in Fig. 1. After we
had collected genome sequences from various bacterial genomes,
we identified conserved regions among the intergenic regions of
related bacterial genomes. Next, we search for the existence of
putative Rho-independent terminators beside the conserved re-
gions we had found; if any Rho-independent terminator existed,
we assign to this sequence the possibility that it was a candidate
sRNAs, giving it a higher ranking score. Finally, we used the sup-
port vector machine model we had built to classify these sRNA
candidates.
2.5. Intergenic sequences extraction

All known sRNA are encoded within intergenic regions (defined
as regions between ORFs) (Wassarman, Repoila, Rosenow, Storz, &
Gottesman, 2001). In addition, previous studies have indicated that
no sRNAs gene resides in an intergenic region that is smaller than
50 nt and most of sRNAs genes are between 50 and 250 nt long
(Hershberg, Altuvia, & Margalit, 2003). Therefore, we set 50 nt as
threshold length for the selected intergenic regions during inter-
genic sequence extraction. We extract all intergenic regions with
a length that was more than 50 nt in size and 1583 intergenic re-
gions were pinpointed.
Fig. 1. System o
2.6. Finding conserved region of intergenic regions

We search for conserved regions within the intergenic regions
because previous studies have indicated that small RNAs resided
in intergenic regions and are generally conserved across closely re-
lated species (Gottesman, 2005; Hershberg et al., 2003; Luban &
Kihara, 2007; Rivas et al., 2001). Hershberg et al. (2003) have ob-
served conservation of sRNAs and adjacent genes among related
species. Furthermore, we can clearly observe that sRNA genes are
more conserved than coding genes by aligning E. coli with Salmo-
nella typhimurium LT2, Salmonella typhi CT18 and S. typhi Ty2; sRNA
genes have a higher ratio than coding-genes when sequence iden-
tity is over 85%.

Therefore, we use BLAST (Basic Local Alignment Search Tool)
program to make alignment between the 1583 intergenic regions
(length > 50 nt) identified in E. coli K12 and the 2529 intergenic re-
gions (length > 50 nt) identified in S. enterica serovar Typhi Ty2
organism. The result shows using a bit-score as threshold of more
than 80 as a filter, 809 conserved intergenic regions can be pin-
pointed remained between two species.

2.7. Conserved regions filtration

We download known tRNAs and rRNAs from the E. coli EcoGene
database and create a database for querying the non-coding RNAs.
After identifying the conserved interspecific intergenic regions the
two enterobacterial species, we search these conserved regions by
BLAST using the known tRNA/rRNA database from E. coli K12. If a
region conserved between the two enterobacterial species was also
similar to these known tRNAs or rRNAs, we remove these con-
served regions from the dataset.

2.8. Building of the support vector machine model

2.8.1. Support vector machine
Support vector machine (SVM) is a supervised learning method

used widely to solve classification problems. We use LibSVM, an
implementation version of SVM classifier that is supplied as part
of the Weka suite to perform training and prediction by the SVM
approach. Weka (Waikato Environment for Knowledge Analysis)
rganization.



Table 1
Selected features in SVM model.

Feature classes Selected features

Dinucleotide AT, GC, TC, TG
Trinucleotide GAG, GTG, GCA, GGT, GAC, ATG, AGA, AAA, ACA, AAT, AGC,

AAC, TGG, TAG, TCA, TGT, TTT, TAC, TTC, TCC, CAG, CGA,
CAA, CAT, CTT, CCT, CCC

Structural motif UNCG motif, CUYG motif
Sequence

conservation
Conservation with Salmonella Ty2

Sequence
pattern

CCCC, ACCC, AGGG, CGGC, CCAG, AACC, CGGC
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is a popular suite of machine learning software designed in the Java
programming language and was developed by the University of
Waikato.

The set types available for the kernel function were linear func-
tion, polynomial function, radial basis function (RBF) and sigmoid
function. We use the radial basis function (RBF) kernel for our ap-
proach. The two parameters in RBF kernel are c and C. c determines
the effective range of distances between points and C determines
the trade-off between margin maximization and training error
minimization (Wang et al., 2006). We use a grid-search method
supplied by LibSVM to identify a pair of c and C values that gave
optimal performance. The optimal parameters were c = 0.05 and
C = 10 and these were used in the SVM.

2.8.2. Building of training and testing set
Our positive set for the SVM training consisted of all 60 known

sRNAs identified from E. coli K12 MG1655. The negative set for the
SVM training consisted 120 coding genes randomly selected from
all the coding genes of E. coli K12 MG1655.

2.8.3. Features transformation
Each sequence in training and testing set were transformed into

a feature vector consisting of sequence composition, structural mo-
tifs, sequence conservation in related species, over-represented se-
quence patterns and folding minimum free energy (MFE). The
sequence composition consisted of the frequency of individual
nucleotide, dimers, trimers and GC content. The structural motifs
consisted of the UNCG, GNRA, CUYG, AAR, CTAG motifs. The se-
quence conservation was the identity computed by WU-BLAST
(window = 4) between the E. coli K12 MG1655 sequences and those
in related species of the same family. These reference species were
S. typhimurium LT2, S. typhi CT18 and S. typhi Ty2, which are mem-
bers of the same enterobacterial family as E. coli K12. Over-repre-
sented sequence patterns are over-represented oligonucleotides
in a set of sequences and these patterns were detected by the oli-
go-analysis tool found in regulatory sequence analysis tool (RSAT)
van Helden, 2003. The minimum free energy (MFE) of each se-
quence was calculated using the RNAfold program (Kingsford,
Ayanbule, & Salzberg, 2007).

2.8.4. Sequence composition
Sequence composition is the frequency of individual nucleo-

tides (A, T, G, C) (4 features), of dimers (AA, AT, . . ., CC) (16 fea-
tures), of trimers (AAA, AAT, . . ., CCC) (64 features) and the GC
content (the sum of G and C frequency).

2.8.5. Structural motif
This relies on a previous study where the occurrence frequency

of sequence motifs that are commonly found within RNA structural
elements were identified (Carter, Dubchak, & Holbrook, 2001). We
also use a set of structural motifs as features for prediction; it was
hoped that not only primary sequence, but also structural level
information could be useful during prediction. These structural
motifs consist of the well-known sequence motifs UNCG, GNRA
and CUYG (R, purine; Y, pyrimidine) found in RNA tetraloops and
the AAR subsequence of the tetraloop receptor motif. In addition,
the DNA sequence motif ‘CTAG’ (CUAG in RNA), which only occurs
rarely in bacterial protein genes and non-coding regions to com-
pared to RNA genes was included (Carter et al., 2001).

2.8.6. Sequence conservation in related species
The sequence conservation we used as a feature was the iden-

tity computed with WU-BLAST (window size = 4 with default
parameters) between E. coli K12 MG1655 and various related spe-
cies of the same family. The reference species used were S.
typhimurium LT2, S. typhi CT18 and S. typhi Ty2, which are in the
same enterobacterial family as E. coli K12.

2.8.7. Over-represented sequence patterns
Over-represented sequence patterns are those over-represented

oligonucleotides in a set of sequences. These patterns were de-
tected by oligo-analysis tool found in regulatory sequence analysis
tool (RSAT) (van Helden, 2003).

2.8.8. Minimum free energy
The minimum free energy (MFE) of each sequence was calcu-

lated using the RNAfold program (Kingsford et al., 2007). The RNA-
fold program provided through the Vienna RNA package is widely
used to predict possible RNA secondary structure through energy
minimization. RNAfold will read an input RNA sequence and calcu-
late its minimum free energy structure.

2.8.9. Features selection
We now had available the numerous features generated from the

feature transformation step described above. However, too many
features can often degrade the prediction performance of the dis-
crimination method by over-fitting the training data (Wang et al.,
2006). Therefore, we hoped to select the features from the full pool
that provide a significant contribution to the prediction of sRNAs
and discard the rest. We used a correlation-based feature subset
selection (CFS) method for machine learning supplied by the Weka
suite to select the meaningful features. After feature selection, a total
of 40 features remained and these are shown in Table 1.

3. Results

3.1. Support vector machine model performance

The performance of the SVM models using the different features
is shown in Table 2. The results show that our SVM model has a
high accuracy when predicting sRNA sequences and therefore we
used the model to identify putative sRNA sequences in conserved
intergenic regions.

3.2. Validation with identified sRNAs in the ncRNAdb

The non-coding RNA database (ncRNAdb) was created as a
source of information on RNA molecules that do not possess pro-
tein-coding capacity. Currently, the ncRNAdb contains >30,000
ncRNA sequences from Eukaryotes, Eubacteria and Archaea (Szy-
manski, Erdmann, & Barciszewski, 2007). The total number of
non-coding RNAs identified from the ncRNAdb database was 437,
including sRNA, tRNA, rRNA and these non-coding RNA are present
in 43 species across various bacterial genomes (as shown in
Table S1). Among these non-coding RNAs, there are 128 that are
classified as sRNAs, including 35 identified sRNAs in E. coli K12
and 43 in various other bacterial genomes. These 128 sRNAs form



Table 2
The performance of our support vector machine (SVM) model.

Used features Sn. (%) Sp. (%) Acc. (%)

Sequences compositions Tetraloop motif Sequence conservationa Sequence patterns Minimum free energy

U U U U U 90 100 96.6a

U U U U U 85 100 95.3
U U U U 85 100 95.3
U U U 83 97 92.6
U U 79 97 91.2
U 75 97 89.9

Performance is evaluated by 10-fold cross validation.
a Optimized after feature selection; Sn., sensitivity; Sp., specificity; Acc., accuracy.

Fig. 2. A comparison of the prediction tools performance.
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18 sRNAs classes made up of CsrB, CsrC, DsrA, GadY, GcvB, MicC,
MicF, OxyS, RprA, RybB, RydB, RyeB, RyeE, RyfA, RyhB, SraB, SraD,
SraG. We use these sRNAs as the testing set to validate whether
our approach was able to detect these sRNAs correctly. The result
shows that 96.9% (124/128) of ‘‘known sRNA” could be found cor-
rectly by our approach. This result indicates that our approach
shows good performance when discovering known sRNAs, not
only in E. coli, but also in other related bacterial species (Vogel &
Sharma, 2005).

3.3. Validation using sRNAs candidates predicted by the PSoL tool

We use the 421 sRNA genes predicted by PSoL (Wang et al.,
2006), available from the supplementary data, as a testing set to
observe how many candidates can be detected by our approach.
It was found that 81% of the sRNAs genes predicted by PSoL were
identified by our approach. The result demonstrates our approach
can reliably pinpoint putative sRNA genes and is probably at least
as good as the PSoL method.

3.4. Performance comparison with sRNAFinder

For comparison with a previous study, namely sRNAFinder, we
use the same dataset and criteria to evaluate our approach. Accord-
ing to the criteria of sRNAFinder when measuring performance,
intergenic regions in which sRNAs were correctly predicted by
the program were deemed true-positive predictions. There are up
to 85% of known sRNAs that overlapped with conserved regions
(bit-score >40) between related species. In contrast, the intergenic
regions that contained no sRNAs genes in the evaluation set of
known sRNAs were deemed false-positive or true-negative predic-
tions, if the program predicted a sRNA gene in the region or not,
respectively. Intergenic regions that contain sRNAs not predicted
by the program were deemed false-negatives (Tjaden, 2008).

The dataset of sRNAs was made up of the 49 documented sRNAs
in E. coli K12. Fig. 2 shows the performance of three different tools,
namely QRNA, sRNAFinder and our approach. sRNAFinder gave a
sensitivity of 78% and a specificity of 76%. Our approach gave a sen-
sitivity of 84% and a specificity of 72%.

3.5. Criteria for selecting putative sRNAs

Although we found the conservation-based approach to be the
most productive in identifying sRNA genes, a high level of conser-
vation is not sufficient to indicate the presence of an sRNA gene
(Wassarman et al., 2001). One the one hand, therefore, we selected
these highly conserved regions (with high sequence similarity be-
tween related species) as our sRNA candidates. On the other hand;
we also hoped to include the cases that do not show relatively high
conservation between related species but did contain additional
biological signals, like existence of putative or known promoters,
Rho-independent terminators (an intrinsic terminator) and attenu-
ators beside the sRNA candidate. For example, one sRNA candidate
obtained only a 60 bit-score using BLAST with other related spe-
cies; but this candidate has promoter and terminator in its up-
stream and downstream regions, respectively, this candidate is
very likely to be a novel sRNA because of the presence of these bio-
logical signals. This is because promoters, Rho-independent termi-
nators and attenuators play important roles in mechanism of
regulation. The criteria we used to select sRNA candidates are
listed in Table 3.

3.6. Pairwise overlap between sRNAs prediction methods

Some of the main difficulties in computational prediction of
sRNA genes are the lack of benchmark data to validate the method
and the difficulties associated with experimental verification on a
large scale, which is expensive and time-consuming (Kulkarni &
Kulkarni, 2007; Wang et al., 2006). There we apply the smart val-
idation method suggested in PsoL. This proposes that if our results
show significant agreement with other studies, this would be a val-
idation of our method (Kulkarni & Kulkarni, 2007; Wang et al.,
2006). The methods used for our comparison are listed in Table 4.

In this study, we compared our predictions to results available
from previous studies. In this context, Affy is the only experimen-
tally based method where the results are more reliable (Kulkarni &
Kulkarni, 2007; Wang et al., 2006). Our method gave the largest
overlap ratio with the Affy method (20%, 33/165), which suggests
that our method is possibly more reliable than the other prediction
methods (Tables 5 and 6). Furthermore, from the result of the pair-
wise comparison (shown in Table 7), it is clear that our method has
the largest overlap ratio (76%) with all other sRNA prediction
methods. These observations provide the strong evidence for vali-
dation of the performance of our system.



Table 3
Criteria for selecting the putative sRNAs.

Bit-
score

Number of biological signalsa

found
Number of candidate in our
study

P200 At least one 44
80–200 All 22
80–200 Two 81
50–80 All 11
40–50 All 7
Sum – 165

a Biological signals: promoters, Rho-independent terminators and attenuators.

Table 4
The methods used for the pairwise comparison.

Tool Methods Features References

Affy Microarray Microarray experiments (Tjaden, 2008)
QRNA HMM Coding sequence

Secondary structure conservation
(Rivas et al., 2001)

PSoL SVM Sequence composition
Highest bits score with WU-
BLAST
Minimum Free Energy

(Wang et al.,
2006)

Table 5
Pairwise overlap between the prediction methods and Affy.

Method (# of candidates) QRNA (275) PSoL (420) Ours (165)

Affy (305) 44 (16.0%) 79 (18.8%) 33 (20.0%)

Table 6
Pairwise overlap between the various computational sRNA prediction methods.

Method (# of candidates) QRNA (275) PSoL (420) Ours (165)

QRNA – 61 47
PSoL 61 – 46
Ours 47 46 –
Sum of overlapped 108 107 93
Percentage 39 25 56
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3.7. Case study I: small RNA IstR

We use our approach for the S. enterica subsp. enterica serovar
Typhi Ty2 species to predict novel sRNA not found yet in other
studies. We were able to pinpoint a putative sRNA by our ap-
proach. The candidate sequence is highly conserved with a docu-
mented sRNA, IstR, found in previous studies. Two sRNAs, IstR-1
and IstR-2, are encoded in the ilvB–tisAB intergenic region
(Fig. S1). In some cases, IstR sRNAs can inhibits expression of
downstream genes, tisA and tisB, under specific conditions (Vogel,
Argaman, Wagner, & Altuvia, 2004). The candidate we found is also
located in a region that has been reported as psr19 in previous
study. The region psr19, a sRNA-encoding gene, was predicted to
be in the intergenic region between ilvB and tisAB (Argaman
et al., 2001). Furthermore, the flanking gene pairs of the IstR sRNAs
Table 7
Pairwise overlap between the sRNA prediction methods.

Method (# of candidates) Affy (305) QRNA (275)

Affy – 44
QRNA 44 –
PSoL 79 61
Ours 33 47
Sum of overlapped 156 152
Percentage 51 55
gene are also conserved between E. coli K12 and S. enterica subsp.
enterica serovar Typhi Ty2 (Fig. S2).

In addition, we wished to observe the similarity between these
known and predicted IstR secondary structures only at the se-
quence level because similar structures often have correspondingly
similar functions .We use RNALogo server (Chang, Horng, & Huang,
2008) to fold our predicted IstR sRNAs candidate and all known
IstR sRNAs and RNALogo was able to report a consensus structure
for all known IstR sRNAs and our predicted IstR sRNA candidate.
Fig. 3 shows that the consensus structures of the predicted IstR
candidate and the known IstR sRNAs, which are highly conserved.

3.8. sRNA candidates predicted by our approach

The sRNA candidates predicted by our approach are listed in Ta-
ble 8. The abbreviations of the biological signals mean: KP, known
promoter; PP, predicted promoter; KT, known Rho-independent
terminator; PT, predicted Rho-independent terminator; PA, pre-
dicted attenuator.
4. Discussion

We have used features in addition to those used for prediction
in our approach, which are mentioned above. Furthermore, in this
process, we have attempted to use features that correspond to
practical functions. These additional features are ones associated
with the characteristics of sRNAs and include the existence of tran-
scription factor binding sites, affinity with the Hfq protein and
existence of a Rho-independent terminator sequences. However,
these additional features failed to raise performance to any great
extent because these additional features did not supply informa-
tion that helped to predict novel sRNAs effectively. Nevertheless,
we shall discuss the statistics and possible meanings of each fea-
ture and known sRNAs in the following section. During this pro-
cess, the intergenic regions were scanned for promoters, for
characteristic DNA sequences and for the presence a rho-indepen-
dent terminator sequence (Argaman et al., 2001; Chen et al., 2002;
Gottesman, 2005).

4.1. Transcription factor binding sites

We have used the existence of various distinct transcription fac-
tor binding sites and the distance between genes (sRNAs genes and
protein-coding genes) as features in our SVM model for prediction.
Unfortunately, it was found that no significant benefit to the suc-
cess of the approach when discovering known sRNA ensued. We
suggest that one reason for this might be that currently known
transcription factor binding sites are too few and therefore the
information cannot be used effectively to predict sRNAs.

4.2. Rho-independent terminator prediction

Rho-independent (also known as intrinsic) terminators are se-
quence motifs found in many prokaryotes that cause RNA tran-
scription from DNA to stop. These termination signals typically
PSoL (420) Ours (165) Column sum

79 33 156
61 47 152
– 46 186
46 – 126
186 126 –
44 76



Fig. 3. The consensus structure of the known IstR and our predicted IstR.

Table 8
sRNA candidates predicted by our approach.

Start position End position Length Bit-score Existence of biological signals*

17027 17061 35 46.1 PP PT PA
17027 17061 35 46.1 PP PT PA
21079 21178 100 198 KT PT PA
29603 29651 49 89.7 KP PP KT
160605 160755 151 236 PP PT
167428 167484 57 81.8 PP PT
190600 190857 258 341 PP PT
236830 237006 177 200 PP PT
255879 255974 96 143 KT PT PA
262017 262170 154 204 PT
279347 279602 256 204 PP
430189 430219 31 54 PP KT PT PA
460961 461084 124 121 KP PP PT PA
475627 475794 168 317 PP PA
496294 496395 102 52 PP KT PT PA
563945 564021 77 129 KP PP PT
638732 638856 125 168 PT PA
692642 692720 79 109 PP PT PA
696367 696505 139 172 PP PT
705247 705313 67 109 KP KT PA
727956 728060 105 113 KP PA

* KP, known promoter; PP, predicted promoter; KT, known Rho-independent terminator; PT, predicted Rho-independent terminator; PA, predicted attenuator.
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consist of a short, often GC-rich hairpin followed by a sequence en-
riched in thymine residues (Kingsford et al., 2007). Several previ-
ous studies have predicted novel sRNAs using terminator signal.
In these circumstances, the intergenic regions were scanned for
promoters and the characteristic DNA sequence and structure of
a Rho-independent terminator (Argaman et al., 2001; Chen et al.,
2002; Livny, Fogel, Davis, & Waldor, 2005; Rivas & Eddy, 2004;
Wassarman et al., 2001; Yachie, Numata, Saito, Kanai, & Tomita,
2006).

Since candidates for novel sRNAs cannot be identified by the
conventional searches used for open reading frames, we focused
on transcription signals and searching for promoter sequences
within a short distance upstream of a terminator (Argaman et al.,
2001). Based on this terminator signals were added to our ap-
proach in the hope that performance or prediction might improve.
We predict novel sRNAs in sequences where the distance between
the predicted promoter and terminator were 50–400 base pairs
according to a previous survey (Argaman et al., 2001). The pre-
dicted Rho-independent terminators are available from the Trans-
TermHP database (Kingsford et al., 2007). We set confidence
parameter for the putative Rho-independent terminator prediction
as the default 75%. The statistics reveals there are about 50% of
sRNAs in the upstream and downstream regions within 1000 nt
of where we can find a putative Rho-independent terminator as
predicted by TransTerm; however, when we searched all the inter-
genic regions, only 27.4% had sRNAs.

4.3. Attenuators

Attenuation, which involves the activation or inhibition of tran-
scription termination at a site located between the promoter and
structural genes of an operon, is a common regulatory strategy em-
ployed to sense a specific metabolic signal and enables a response
that directs the RNA polymerase to either terminate transcription
or transcribe the downstream genes of the operon; this system
operates in many prokaryotes (Henkin & Yanofsky, 2002; Merino



Table 9
Known sRNAs with an attenuator within 500 bp of the sRNA.

sRNA
name

Left
position

Right
position

Left position of
attenuator

Right position of
attenuator

Strand Distance Attenuator
type

Attenuator regulates
sRNA?

Ffs 475672 475785 475852 475895 Plus 67 Terminator
OxyS 4156308 4156417 4156456 4156519 Plus 39 Terminator
DsrA 2023251 2023337 2023478 2023542 Plus 141 Terminator

2022900 2022940 Minus 311 Terminator
SokB 1490143 1490198 1490086 1490140 Minus 3 Terminator Yes
SokC 16952 17006 16895 16950 Minus 2 Terminator Yes
RttR 1286289 1286459 1285758 1285805 Minus 484 Terminator
Tff 189712 189847 189648 189703 Minus 9 Anti- Yes
RdlA 1268546 1268612 1269024 1269081 Plus 412 Terminator Yes

1268489 1268546 Minus 0 Terminator Yes
RdlB 1269081 1269146 1269559 1269616 Plus 412 Terminator Yes

1269024 1269081 Minus 0 Terminator Yes
RdlC 1269616 1269683 1269559 1269616 Minus 0 Terminator Yes
RdlD 3698159 3698222 3698101 3698159 Minus 0 Terminator Yes
RyeA 1921090 1921338 1921385 1921441 Plus 47 Anti–anti-
RyeB 1921188 1921308 1921327 1921422 Plus 19 Anti- Yes

1921139 1921175 Minus 13 Anti- Yes
IsrB 1985863 1986022 1986039 1986099 Plus 17 Terminator Yes
RyeE 2165136 2165221 2165539 2165588 Plus 318 Terminator
MicA 2812824 2812901 2812638 2812699 Minus 125 Terminator Yes
OmrA 2974124 2974211 2974315 2974363 Plus 104 Terminator Yes
OmrB 2974332 2974407 2974531 2974580 Plus 124 Terminator Yes
RygD 3192745 3192887 3192932 3192976 Plus 45 Terminator Yes
PsrO 3309247 3309420 3309429 3309492 Plus 9 Anti–anti-
RyjA 4275950 4276089 4276266 4276329 Plus 177 Terminator Yes

4275535 4275591 Minus 359 Anti–anti- Yes
IstR 3851141 3851280 3851714 3851794 Plus 434 Anti- Yes

3850898 3850965 Minus 176 Anti–anti- Yes
RygE 3193121 3193262 3192932 3192976 Minus 145 Terminator
RseX 2031673 2031763 2031501 2031546 Minus 127 Terminator
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& Yanofsky, 2005). The regulatory elements involved in attenua-
tion are called attenuators and are cis-regulatory elements that
can modulate transcription elongation or translation initiation
(Gama-Castro et al., 2008).

However, exactly how attenuation and repression work to-
gether to regulate the expression of an operon is not known, but
it is thought that repression provides the basic on–off switch and
attenuation modulates the precise level of gene expression that oc-
curs (Brown, 2002). The latest version of the RegulonDB database
was able to provide information on predicted attenuators (Gama-
Castro et al., 2008; Merino & Yanofsky, 2005). We have observed
a phenomenon whereby many known sRNAs (24/60, 40%) were lo-
cated beside a putative attenuator and within a very short distance
of it (<500 nt); in some of these cases, the sRNA was exactly beside
an attenuator (the data is shown in Table 9. Three cases are shown
as Figs. S3–S5 with the hairpins depicted by the dotted line repre-
senting the putative attenuators and the arrows depicted in bold
solid representing the sRNAs (Gama-Castro et al., 2008)).

We observe that sRNAs and attenuator are often located in the
upstream regulatory region of operons and this phenomenon
might imply that the sRNAs and attenuator both play important
roles in the mechanism of genes regulation in prokaryotes.
Table 10
All known small RNA targets that bind to Hfq.

Known small RNA targets

RydC Qrr RyhB DicF
OxyS Spot 42 GcvB MicF
RyeB RyeE MicC RprA
DsrA MicA/SraD RybB RybB
SraE/OmrB/RygB SraJ RyeF MicA
SraH SgrS SroC OmrA/RygA
GadY
4.4. Hfq protein

The conserved RNA-binding protein Hfq modulates the stability
or the translation of mRNAs and has been shown to interact with
some small regulatory RNAs (i.e. DsrA, RyhB, Spot42 RNA, OxyS)
in E. coli that act by base-pairing (Geissmann & Touati, 2004; Mol-
ler et al., 2002; Zhang et al., 2003). Several previous studies indi-
cate that Hfq stabilizes the small RNAs and mediates their
interaction with the target mRNA by altering the target RNA struc-
ture or by interfering with ribosome binding (Aiba, 2007; Valentin-
Hansen, Eriksen, & Udesen, 2004). However the precise mechanism
by which Hfq regulation occurs remains unclear (Geissmann &
Touati, 2004; Moller et al., 2002; Zhang et al., 2003). Hfq protein
does not have a precise target sequence but appears to bind pref-
erentially to small, single-stranded AU rich RNA segments (Moller
et al., 2002; Zhang et al., 2003). Up to now, more than 30% of the
known sRNAs in E. coli K-12 have been found to undergo Hfq-bind-
ing (Zhang et al., 2003, 2006). All the known sRNAs targets that
binding Hfq are listed in Table 10.

In E. coli, a search for sRNAs that bind to Hfq, an RNA chaperone
implicated in non-coding NA function, has yielded several novel
non-coding RNAs not found by the other methods (Chen et al.,
2002; Gottesman, 2005; Zhang et al., 2003). Therefore, we have
developed a method to predict possible Hfq-binding sites in inter-
genic regions in the hope that this might help the discovery of un-
known sRNAs that can bind Hfq protein and have never been found
by other prediction methods. We use the RNAFold program to fold
the secondary structures of known sRNAs and then search for AU
rich region between two stem-loops in single strand structure,
which are the criteria previous studies have suggested (Geissmann
& Touati, 2004; Moller et al., 2002; Zhang et al., 2003, 2006) (three
cases are shown in Fig. 4) (Gottesman, 2004). If an AU rich region
between two stem-loops in single strand structure can be found,
this region is considered to be a putative Hfq-binding site.



Fig. 4. The four Hfq-binding sites of sRNAs, which is taken from a figure in Gottesman (2004).
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In total, 15 such sRNAs have been identified in E. coli and we can
find 10 (66.7%) of these sRNAs targets using our designed Hfq-
binding sites searching method. However, we are not satisfied with
the prediction performance for Hfq-binding sites. Predicting cor-
rectly Hfq-binding sites is a difficult challenge at present and we
believe that a greater number of novel sRNAs will be detected
using methods other than predicting Hfq-binding sites in bacterial
genomes.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.eswa.2010.02.058.
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