
A Virus Prevention Model Based on Static Analysis and Data Mining Methods

Tzu-Yen Wang
Dept. of Computer Sci.,

 National Chiao Tung Univ.,
Hsinchu, Taiwan

tzu-yen.wang@hotmail.com

Chin-Hsiung Wu*
Dept. of Info. Tech. & Comm.,
Shih Chien Univ. Kaohsiung

Campus, Taiwan
chwu@mail.kh.usc.edu.tw

Chu-Cheng Hsieh
Dept. of Computer Sci.,

Univ. of California,
Los Angeles

chucheng@ucla.edu

Abstract

Owing to the lack of prevention ability of traditional

anti-virus methods, a behavior-based virus prevention

model for detecting unknown virus is proposed in this

study. We first defined the behaviors of an executable

by observing its usage of dynamically linked libraries

and Application Programming Interfaces. Then,

information gain and support vector machines were

applied to filter out the redundant behavior attributes

and select informative feature for training a virus

classifier. The performance of our model was evaluated

by a dataset contains 1,758 benign executables and 846

viruses. The experiment results are promising, and the

overall accuracies are 99% and 96.66% for detecting

the known viruses and the previously unseen viruses

respectively.
*

1. Introduction
According to Symantec® security reports [9, 10],

���
*Corresponding author.

This work was partially supported by the National Science Council
under the contract no. NSC-96-2221-E-158-001.

during July 2006 to June 2007, the virus threats have

been getting serious so far. There were total 8,258 new

Win32 variants and 136 previously unseen malware

reported on the second half year of 2006. The number

of virus without anti-virus signatures increased 22

percent over the first half of 2006. Furthermore,

212,101 new malicious code threats appeared in the

first half year of 2007. It was a 185 percent increase

over the second half of 2006. The studies in Computer

virus detection have been worked for many years;

however, the records above show that they are

apparently not well enough.
Traditional signature-based anti-virus software

catches malware based on “known” signature, but it is

unrealistic for unknown virus or variants of existed ones.

Therefore, our aim is to propose a virus prevention

model (VPM) based on novel data mining methods to

fix the drawbacks of traditional anti-virus methods. The

rest of this paper is organized in the following way.

Section 2 is devoted to some related researches of

malicious executable detection. Section 3 states the

main ideas of our VPM with experiment results given in

Section 4. Finally, a few concluding remarks are

sketched in Section 5.

IEEE 8th International Conference on Computer and Information Technology Workshops

978-0-7695-3242-4/08 $25.00 © 2008 IEEE
DOI 10.1109/CIT.2008.Workshops.102

288

�

2. Related work

In general, there are two kinds of approaches for

virus detection: static analysis and dynamic analysis.

Static analysis utilizes the information in suspected

executable programs without running it; and dynamic

analysis monitors software activities after loading it into

memory. Dynamic approach pays more attention on

activities, but it is hard to prevent damage in advance

since the virus it detects is “running”. Our work only

focuses on static analysis because we try to catch

viruses before they cause the damage.

Here we just briefly state some of researches in

recent years. J. Bergeron et al. proposed a slicing

algorithm [1, 2] and transformed binary codes into

different graphs such as control-flow graph, data-flow

graph, call graph, and critical-API graph for further

analysis. Also, J. Z. Kolter et al.[5] used a hex-dump

utility to convert each executable to hexadecimal code

in an ASCII format and produced n-gram features by

combining each four-byte sequence into a single term.

They used information gain to select valued features

and tested the performance of various kinds of learning

classifiers. M. G. Schultz et al.[8] applied three feature

extracting methods including binary profiling, string

sequences, and Naïve Bayes to generate classifiers to

detect malware. [6] aimed at the detection of obfuscated

viruses by examining their control flow graphs.

By observing the usage of dynamically linked

libraries (DLLs) and Application Programming

Interfaces (APIs) of executable files, we combined

statically behavior-based analysis with data mining

methods such as information gain, linear and nonlinear

support vector machines to construct a virus prevention

model provided against both the known viruses and the

unknown ones.

3. Virus prevention model

Because viruses and benign programs are built for

opposite intent, they differ on behaviors in nature. The

distinctive behaviors between them could be used as

indicators to recognize virus. On the other hand, merely

looking code-block (signature) is easily evaded by

obfuscated viruses; however, their intent is hard to

manipulate. This is another good reason to detect

viruses by their program behaviors rather than their

code signatures. We have illustrated the process of our

VPM in Figure 1. The ideas of VPM stepwise describes

in the following sections.

�
Figure 1. The process of VPM

3.1. Attribute extraction

For modern operation system, programs run in the

protection mode. In other words, they need to request

the operating system to execute critical operations such

as file management, resource access, and device control

etc. Microsoft® Windows operation system provided

many Application Programming Interfaces (APIs) in all

kinds of Dynamically Linked Libraries (DLLs) for

applications to interact with it. Utilizations of DLLs and

APIs could be defined as behaviors of the executable

and considered as attributes, which provide some clues

to discriminate viruses from benign programs.

 The attributes of an executable can be statically

289

�

extracted from its Portable Executable (PE) file format

[7] without running the program. PE file format is a

data structure, which records necessary information for

the Windows OS loader to manage the wrapped

executable code. A utility named “Dependency Walker”

can parse the PE file format and output in tree structure.

Figure 2 is an example of a tree diagram, which

illustrates the relationships of the invoking DLLs in an

executable. In this tree structure, each parent DLL

invokes some APIs exported from its child DLLs.

Basing on the tree structure, we defined three types of

attributes: T1, T2 and T3. T1 indicates the APIs directly

used by the main program, i.e., the APIs reside in the

first layer DLLs. T2 is the APIs contained in the first

layer DLLs indirectly invoked by other DLLs except

the main executable. T3 consists of the entire

dependency paths to represent the relationship between

DLLs. Each of them is a complete downward path,

starting from a first layer DLL to each of its leaf DLL.

Moreover, each DLL records a hash value to indicate

the content of the APIs directly exploited by its parent

DLL. An example of three different types of attributes

is given in Figure 2.

3.2. Redundant attribute elimination

When dealing with very high-dimensional data,

eliminating redundant attributes is necessary to keep the

informative ones called features. Information

gain(IG)[12], which computes the discrimination of an

attribute, is a kind of filter approach of feature

selection.

Given a random variable X, if there are k values of

X, the entropy of X is defined in (1), where pi is the

proportion of X = vi.

 ���� � �� 	
�� � �
� ��� 	
�� � �
��

�� (1)

High entropy implies X to abide by a uniform

distribution and lack of discrimination. Furthermore, the

conditional entropy, which is denoted in (2), implies the

entropy of X conditioned by the values of Y.

�
Figure 2. An example of dependency tree

�

Then, information gain (3) is the amount by which the

entropy of X decreases reflects additional information

about X provided by Y.

 ������ � �� 	��� � ��� � ����� � ����
��� (2)

 ������� � ������ � ����� � � � � � � � � (3)

In our study, there were only two classes in the dataset

and H(X) is equal to the equation below: (v=virus,

b=benign)

� ���
��� ���

���
��� �

���
��� ���

���
���� (4)

, where |.| denotes the number of particular kind of

executable and |S| = |v| + |b|. In addition, Y is an

attribute with Boolean value such that Y = 1 indicates

the subset S1 in which each instance has attribute Y and

290

�

Y = 0 represents the subset S0 = S - S1. ������ is

denoted in (5) and |Sk| = |vk| + |bk|.

 �� �� �
��� !�

�� �
�� �

��� �� ��� �
�� �� ��� �

��� �� ��� �
"�

��# (5)

According to the definition of IG, the higher the

IG, the better discrimination the attribute has. It means

that attributes with equal IG are also the same in

discrimination power that could be highly related.

Therefore, it is unnecessary to reserve all of them to

increase the burden of the data mining process

especially when dealing with high-dimensional problem.

Basing on this simple idea, the attribute elimination was

performed by discarding all but one of attributes with

the same IG. Finally, according to the attributes that we

had reserved, every executable was represented by a

Boolean vector. Each vector element corresponds to an

attribute and its Boolean value indicates the

corresponding attribute exists in the executable or not.

An example is given in Table 1.

Table 1. Transfer executables to vectors
 A1 A2 A3 A4 An Vector

E1 T F T T F 1011…0

E2 T T F F F 1100…0

Em F F T F T 0010…1

(E: executable; A: attribute)

3.3. Feature selection and data classification
using support vector machines

Support vector machines (SVM)[4] is a kind of

machine learning algorithm with high generalization

ability and substantial theory[11]. Giving a training

dataset (x1, y1), (x2, y2),…, (xm, ym) � Rn � {�1}, the

main idea of SVM is to find a separating hyperplane

w$% & ' � (� ,where w is the normal vector of the

hyperplane and b is the functional distance from the

hyperplane to the origin, to linearly separate the two

classes data in the original space. If the data are linearly

inseparable, the nonnegative slack variable) and

positive weight parameter C are introduced to control

the trade-off between the maximization of

generalization ability and minimization of the

classification error at the same time. As was mentioned

above, SVM with linear kernel (L-SVM) leads to the

optimization problem:

 *+,�-./�01234 ����
�
�5

65 & 7���

89 :9��;
�<6%
 & '� = > �)
,

)
 = (�. ? � >.@ .*���������� (6)

By solving (6), we can obtain w and b to construct a

decision function D(x) for the classification problem.

A�%� � 8�,�<6% & '�� (7)

If L-SVM cannot linearly separate the data in the

original space, mapping data to a high-dimensional

feature space by a nonlinear function �B would be

helpful. This mapping process can be done with a

kernel function that reduces the effort of data mapping

by B and dot product in the high-dimensional feature

space. After considering the complication of virus

detection problem, we used the SVM with RBF kernel

(8) to establish a virus detector where � is the parameter

of the RBF kernel.

C�%. ;� � DEF����G% � ;G��� (8)

For the equation (6) of L-SVM, if the square of any

element wk of w equals to zero or approximates to zero,

the deletion of the associated kth attribute does not affect

the optimal hyperplane. By this observation, the values

of all wk
2 of L-SVM could be criterions for feature

291

�

selection. Suppose that A is the set of attributes, which

has been filtered out the redundant attributes by IG. P is

the performance of RBF-SVM. The procedure of

feature selection can be performed as follows:

1. Train an L-SVM by A and obtain the normal

vector w. Rank all the attributes in A, according to their

corresponding wk
2 value.

2. Delete one or some of the attributes with lower

rank from A and denote remaining attribute set as A’.

3. Use A’ to train a RBF-SVM and get P’. If P’ > P,

then set P=P’ and A=A’ and go to Step 2. Otherwise,

stop this procedure and define A’ as the feature set.

4. Experiment results

Our dataset consisted of 846 virus and 1,758

benign executables and all of them were Windows PE

formatted and unpacked. We obtained some benign

programs from the folders of pure Windows XP

operating system. Besides, we downloaded additional

ones from the web site PChome® Downloads

(http://toget.pchome.com.tw/). On the other hand,

viruses were downloaded from the web site VX

Heavens (http://vx.netlux.org). The SVM classifier was

obtained by LIBSVM[3].

Since both of the detection rate of virus and the

false alert rate of benign program are important, we

evaluated them at the same time by the viewpoint of

Overall Accuracy (OA) indicates the proportion of

correctly classified executables. The experiment

contained two parts: the detection of known viruses and

the prediction of previously unseen viruses. The

prediction rate was calculated by five-fold

cross-validation (CV). In other words, the dataset were

randomly divided into five disjoint portions with an

equal number of sizes in each portion, one of them was

chosen as the testing set, and the remaining four

portions were merged into a training set. This procedure

was repeated five times by choosing different partition

as a testing set. We calculated the average OA as the

generalization ability of our system.

After parsing the PE file format of each executable in

the dataset, we got 93,116 attributes in the beginning.

The experiment results shown� in� Table 2. reveal that

even some of the attributes with lower IG were

discarded; the performance of RBF-SVM remained

steady. Therefore, we successfully reduced the number

of attributes from 93,116 to 1,398 after the process of

attribute elimination. Continuously, Figure 3 presents

the results of the feature selection procedure stated in

Section 3.3. Evidently, we not only succeeded in feature

reduction but also made further progress in

classification performance. Finally, the top 429 features

was chosen to train the RBF-SVM and achieved a

proper performance with 96.66% in prevention rate and

99.00% in detection rate (True Positive=98.35%, False

Positive=0.68%).

5. Conclusion

In summary, the following are the main concepts of

VPM. First, executable behaviors are examined by the

usage of DLLs and APIs and the DLL dependency

examination is novel. Moreover, both attribute

elimination and feature selection were performed by

using IG and L-SVM respectively for collecting

informative features. Finally, these features are used to

train a RBF-SVM that is well performed in the

evaluations of known and unknown virus detection.

292

�

Future research will extend this model to detect other

kinds of Win32 malware such as email worm, Trojan

horse, backdoors. In addition, we are hopeful that there

might be an opportunity to cooperate with COTS�

anti�virus�software.

Table 2. Results of attribute elimination by IG

IG

Threshold

Attribute # CV %

Before After Before After

0.2 20 20 83.91 83.91

0.1 1,234 293 86.64 87.10

0.05 1,469 510 88.90 88.71

0.025 3,104 693 90.98 91.17

0.01 6,684 903 93.78 93.98

0 93,116 1,398 95.41 95.62

Figure 3. Results of feature selection by L-SVM

6. References

[1]� J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y.

Lavoie, and N. Tawbi, "Static Detection of Malicious Code in

Executable Programs," in Symposium on Requirements

Engineering for Information Security (SREIS' 01), 2001.

[2] J. Bergeron, M. Debbabi, M. M. Erhioui, and B. Ktari,

"Static analysis of binary code to isolate malicious behaviors,"

in Proceedings of the IEEE 8th International Workshops on

Enabling Technologies: Infrastructure for Collaborative

Enterprises, 1999, pp. 184-189.

[3] C.-C. Chang and C.-J. Lin, "LIBSVM: a library for

support vector machines," 2001.

[4] N. Cristianini and J. Shawe-Taylor, An Introduction to

Support Vector Machines: Cambridge University Press, 2000.

[5] J. Z. Kolter and M. A. Maloof, "Learning to detect

malicious executables in the wild," in Proceedings of the tenth

ACM SIGKDD international conference on Knowledge

discovery and data mining Seattle, WA, USA: ACM, 2004.

[6] C. Mihai and J. Somesh, "Static analysis of executables to

detect malicious patterns," in Proceedings of the 12th

conference on USENIX Security Symposium - Volume 12

Washington, DC: USENIX Association, 2003.

[7] M. Pietrek, "Peering Inside the PE: A Tour of the Win32

Portable Executable File Format," Microsoft Systems Journal,

vol. 9, pp. 15-34, 1994.

[8] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, "Data

mining methods for detection of new malicious executables,"

in Proceedings of the 2001 IEEE Symposium on Security and

Privacy, 2001, pp. 38-49.

[9] Symantec, "Symantec Internet Security Threat Report,"

vol. 11, March 2007.

[10] Symantec, "Symantec Internet Security Threat Report,"

vol. 12, September 2007.

[11] V. N. Vapnik, Statistical Learning Theory: John Wiley &

Sons, 1998.

[12] I. H. Witten and E. Frank, Data Mining- Practical

Machine Learning Tools and Techniques with JAVA

Implementations, 2 ed.: Morgan Kaufmann, 2005.

293

