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Abstract 
 

Owing to the lack of prevention ability of traditional 

anti-virus methods, a behavior-based virus prevention 

model for detecting unknown virus is proposed in this 

study. We first defined the behaviors of an executable 

by observing its usage of dynamically linked libraries 

and Application Programming Interfaces. Then, 

information gain and support vector machines were 

applied to filter out the redundant behavior attributes 

and select informative feature for training a virus 

classifier. The performance of our model was evaluated 

by a dataset contains 1,758 benign executables and 846 

viruses. The experiment results are promising, and the 

overall accuracies are 99% and 96.66% for detecting 

the known viruses and the previously unseen viruses 

respectively. 
* 

 

1. Introduction 
According to Symantec® security reports [9, 10], 

�������������������������������������������������������
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during July 2006 to June 2007, the virus threats have 

been getting serious so far. There were total 8,258 new 

Win32 variants and 136 previously unseen malware 

reported on the second half year of 2006. The number 

of virus without anti-virus signatures increased 22 

percent over the first half of 2006. Furthermore, 

212,101 new malicious code threats appeared in the 

first half year of 2007. It was a 185 percent increase 

over the second half of 2006. The studies in Computer 

virus detection have been worked for many years; 

however, the records above show that they are 

apparently not well enough. 
Traditional signature-based anti-virus software 

catches malware based on “known” signature, but it is 

unrealistic for unknown virus or variants of existed ones. 

Therefore, our aim is to propose a virus prevention 

model (VPM) based on novel data mining methods to 

fix the drawbacks of traditional anti-virus methods. The 

rest of this paper is organized in the following way. 

Section 2 is devoted to some related researches of 

malicious executable detection. Section 3 states the 

main ideas of our VPM with experiment results given in 

Section 4. Finally, a few concluding remarks are 

sketched in Section 5. 
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2. Related work 
 

In general, there are two kinds of approaches for 

virus detection: static analysis and dynamic analysis. 

Static analysis utilizes the information in suspected 

executable programs without running it; and dynamic 

analysis monitors software activities after loading it into 

memory. Dynamic approach pays more attention on 

activities, but it is hard to prevent damage in advance 

since the virus it detects is “running”. Our work only 

focuses on static analysis because we try to catch 

viruses before they cause the damage. 

Here we just briefly state some of researches in 

recent years. J. Bergeron et al. proposed a slicing 

algorithm [1, 2] and transformed binary codes into 

different graphs such as control-flow graph, data-flow 

graph, call graph, and critical-API graph for further 

analysis. Also, J. Z. Kolter et al.[5] used a hex-dump 

utility to convert each executable to hexadecimal code 

in an ASCII format and produced n-gram features by 

combining each four-byte sequence into a single term. 

They used information gain to select valued features 

and tested the performance of various kinds of learning 

classifiers. M. G. Schultz et al.[8] applied three feature 

extracting methods including binary profiling, string 

sequences, and Naïve Bayes to generate classifiers to 

detect malware. [6] aimed at the detection of obfuscated 

viruses by examining their control flow graphs.  

By observing the usage of dynamically linked 

libraries (DLLs) and Application Programming 

Interfaces (APIs) of executable files, we combined 

statically behavior-based analysis with data mining 

methods such as information gain, linear and nonlinear 

support vector machines to construct a virus prevention 

model provided against both the known viruses and the 

unknown ones.  

 

3. Virus prevention model 
 

Because viruses and benign programs are built for 

opposite intent, they differ on behaviors in nature. The 

distinctive behaviors between them could be used as 

indicators to recognize virus. On the other hand, merely 

looking code-block (signature) is easily evaded by 

obfuscated viruses; however, their intent is hard to 

manipulate. This is another good reason to detect 

viruses by their program behaviors rather than their 

code signatures. We have illustrated the process of our 

VPM in Figure 1. The ideas of VPM stepwise describes 

in the following sections.  

�
Figure 1. The process of VPM 

 

3.1. Attribute extraction 
 
For modern operation system, programs run in the 

protection mode. In other words, they need to request 

the operating system to execute critical operations such 

as file management, resource access, and device control 

etc. Microsoft® Windows operation system provided 

many Application Programming Interfaces (APIs) in all 

kinds of Dynamically Linked Libraries (DLLs) for 

applications to interact with it. Utilizations of DLLs and 

APIs could be defined as behaviors of the executable 

and considered as attributes, which provide some clues 

to discriminate viruses from benign programs.  

 The attributes of an executable can be statically 

289



�

extracted from its Portable Executable (PE) file format 

[7] without running the program. PE file format is a 

data structure, which records necessary information for 

the Windows OS loader to manage the wrapped 

executable code. A utility named “Dependency Walker” 

can parse the PE file format and output in tree structure. 

Figure 2 is an example of a tree diagram, which 

illustrates the relationships of the invoking DLLs in an 

executable. In this tree structure, each parent DLL 

invokes some APIs exported from its child DLLs. 

Basing on the tree structure, we defined three types of 

attributes: T1, T2 and T3. T1 indicates the APIs directly 

used by the main program, i.e., the APIs reside in the 

first layer DLLs. T2 is the APIs contained in the first 

layer DLLs indirectly invoked by other DLLs except 

the main executable. T3 consists of the entire 

dependency paths to represent the relationship between 

DLLs. Each of them is a complete downward path, 

starting from a first layer DLL to each of its leaf DLL. 

Moreover, each DLL records a hash value to indicate 

the content of the APIs directly exploited by its parent 

DLL. An example of three different types of attributes 

is given in Figure 2. 

 

3.2. Redundant attribute elimination 
 

When dealing with very high-dimensional data, 

eliminating redundant attributes is necessary to keep the 

informative ones called features. Information 

gain(IG)[12], which computes the discrimination of an 

attribute, is a kind of filter approach of feature 

selection. 

Given a random variable X, if there are k values of 

X, the entropy of X is defined in (1), where pi is the 

proportion of X = vi. 

   ���� � �� 	
�� � �
� ��� 	
�� � �
��

��    (1) 

High entropy implies X to abide by a uniform 

distribution and lack of discrimination. Furthermore, the 

conditional entropy, which is denoted in (2), implies the 

entropy of X conditioned by the values of Y.  

�
Figure 2. An example of dependency tree 

�

Then, information gain (3) is the amount by which the 

entropy of X decreases reflects additional information 

about X provided by Y. 

    ������ � �� 	��� � ��� � ����� � ����
���  (2) 

          ������� � ������ � ����� � � � � � � � � (3) 

In our study, there were only two classes in the dataset 

and H(X) is equal to the equation below: (v=virus, 

b=benign) 

� ���
��� ���

���
��� �

���
��� ���

���
����            (4) 

, where |.| denotes the number of particular kind of 

executable and |S| = |v| + |b|. In addition, Y is an 

attribute with Boolean value such that Y = 1 indicates 

the subset S1 in which each instance has attribute Y and 
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Y = 0 represents the subset S0 = S - S1. ������ is 

denoted in (5) and |Sk| = |vk| + |bk|. 

   �� �� �
��� !�

�� �
�� �

��� �� ��� �
�� �� ��� �

��� �� ��� �
"�

��#     (5) 

According to the definition of IG, the higher the 

IG, the better discrimination the attribute has. It means 

that attributes with equal IG are also the same in 

discrimination power that could be highly related. 

Therefore, it is unnecessary to reserve all of them to 

increase the burden of the data mining process 

especially when dealing with high-dimensional problem. 

Basing on this simple idea, the attribute elimination was 

performed by discarding all but one of attributes with 

the same IG. Finally, according to the attributes that we 

had reserved, every executable was represented by a 

Boolean vector. Each vector element corresponds to an 

attribute and its Boolean value indicates the 

corresponding attribute exists in the executable or not. 

An example is given in Table 1. 

Table 1. Transfer executables to vectors  
 A1 A2 A3 A4 An Vector 

E1 T F T T F 1011…0 

E2 T T F F F 1100…0 

Em F F T F T 0010…1 

(E: executable; A: attribute)

3.3. Feature selection and data classification 
using support vector machines 
 

Support vector machines (SVM)[4] is a kind of 

machine learning algorithm with high generalization 

ability and substantial theory[11]. Giving a training 

dataset (x1, y1), (x2, y2),…, (xm, ym) � Rn � {�1}, the 

main idea of SVM is to find a separating hyperplane 

w$% & ' � (� ,where w is the normal vector of the 

hyperplane and b is the functional distance from the 

hyperplane to the origin, to linearly separate the two 

classes data in the original space. If the data are linearly 

inseparable, the nonnegative slack variable )  and 

positive weight parameter C are introduced to control 

the trade-off between the maximization of 

generalization ability and minimization of the 

classification error at the same time. As was mentioned 

above, SVM with linear kernel (L-SVM) leads to the 

optimization problem: 

 *+,�-./�01234 ����
�
�5

65 & 7���    

89 :9��;
�<6%
 & '� = > � )
, 

 )
 = (�. ? � >.@ .*����������         (6) 

By solving (6), we can obtain w and b to construct a 

decision function D(x) for the classification problem. 

A�%� � 8�,�<6% & '��           (7) 

If L-SVM cannot linearly separate the data in the 

original space, mapping data to a high-dimensional 

feature space by a nonlinear function �B  would be 

helpful. This mapping process can be done with a 

kernel function that reduces the effort of data mapping 

by B and dot product in the high-dimensional feature 

space. After considering the complication of virus 

detection problem, we used the SVM with RBF kernel 

(8) to establish a virus detector where � is the parameter 

of the RBF kernel. 

C�%. ;� � DEF����G% � ;G���        (8) 

For the equation (6) of L-SVM, if the square of any 

element wk of w equals to zero or approximates to zero, 

the deletion of the associated kth attribute does not affect 

the optimal hyperplane. By this observation, the values 

of all wk
2 of L-SVM could be criterions for feature 
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selection. Suppose that A is the set of attributes, which 

has been filtered out the redundant attributes by IG. P is 

the performance of RBF-SVM. The procedure of 

feature selection can be performed as follows: 

1. Train an L-SVM by A and obtain the normal 

vector w. Rank all the attributes in A, according to their 

corresponding wk
2 value. 

2. Delete one or some of the attributes with lower 

rank from A and denote remaining attribute set as A’. 

3. Use A’ to train a RBF-SVM and get P’. If P’ > P, 

then set P=P’ and A=A’ and go to Step 2. Otherwise, 

stop this procedure and define A’ as the feature set. 

       

4. Experiment results 
 

Our dataset consisted of 846 virus and 1,758 

benign executables and all of them were Windows PE 

formatted and unpacked. We obtained some benign 

programs from the folders of pure Windows XP 

operating system. Besides, we downloaded additional 

ones from the web site PChome® Downloads 

(http://toget.pchome.com.tw/). On the other hand, 

viruses were downloaded from the web site VX 

Heavens (http://vx.netlux.org). The SVM classifier was 

obtained by LIBSVM[3]. 

Since both of the detection rate of virus and the 

false alert rate of benign program are important, we 

evaluated them at the same time by the viewpoint of 

Overall Accuracy (OA) indicates the proportion of 

correctly classified executables. The experiment 

contained two parts: the detection of known viruses and 

the prediction of previously unseen viruses. The 

prediction rate was calculated by five-fold 

cross-validation (CV). In other words, the dataset were 

randomly divided into five disjoint portions with an 

equal number of sizes in each portion, one of them was 

chosen as the testing set, and the remaining four 

portions were merged into a training set. This procedure 

was repeated five times by choosing different partition 

as a testing set. We calculated the average OA as the 

generalization ability of our system.  

After parsing the PE file format of each executable in 

the dataset, we got 93,116 attributes in the beginning. 

The experiment results shown� in� Table 2. reveal that 

even some of the attributes with lower IG were 

discarded; the performance of RBF-SVM remained 

steady. Therefore, we successfully reduced the number 

of attributes from 93,116 to 1,398 after the process of 

attribute elimination. Continuously, Figure 3 presents 

the results of the feature selection procedure stated in 

Section 3.3. Evidently, we not only succeeded in feature 

reduction but also made further progress in 

classification performance. Finally, the top 429 features 

was chosen to train the RBF-SVM and achieved a 

proper performance with 96.66% in prevention rate and 

99.00% in detection rate (True Positive=98.35%, False 

Positive=0.68%). 

 

5. Conclusion

In summary, the following are the main concepts of 

VPM. First, executable behaviors are examined by the 

usage of DLLs and APIs and the DLL dependency 

examination is novel. Moreover, both attribute 

elimination and feature selection were performed by 

using IG and L-SVM respectively for collecting 

informative features. Finally, these features are used to 

train a RBF-SVM that is well performed in the 

evaluations of known and unknown virus detection. 
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Future research will extend this model to detect other 

kinds of Win32 malware such as email worm, Trojan 

horse, backdoors. In addition, we are hopeful that there 

might be an opportunity to cooperate with COTS�

anti�virus�software. 

Table 2. Results of attribute elimination by IG 

IG  

Threshold 

Attribute # CV  % 

Before  After  Before After 

0.2 20 20 83.91 83.91

0.1 1,234 293 86.64 87.10

0.05 1,469 510 88.90 88.71

0.025 3,104 693 90.98 91.17

0.01 6,684 903 93.78 93.98

0 93,116 1,398 95.41 95.62

 

 

Figure 3. Results of feature selection by L-SVM 
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