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In this work, a stochastic methodology is applied to analyze the variability of the poroelastic response of the
heterogeneous medium at the field scale. To solve the problem analytically, we restrict our attention to the one-
dimensional models, where fluid flow as well as deformation occurs in one direction only under a constant
applied stress. Assuming statistic homogeneity, the closed-form solutions that describe the variability of fluid
pressure head, and a solid's strain and displacement are developed using a spectral approach based on Fourier–
Stieltjes representations for the perturbed quantities. The influence of the correlation length of the log hydraulic
conductivity on these results is investigated. It is found that the variances of the solid's strain and displacement
increase with the correlation length of the log hydraulic conductivity, while the correlation length of the log
hydraulic conductivity plays the role in reducing the variability of the specific discharge.
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1. Introduction

The poroelasticity theory provides a means for analyzing the
interaction between the fluid flow and skeletal-matrix deformation
[4,11,13]. It has been developed invoking the assumption offluidflow in
an isotropic homogeneous medium. As such, it does not reflect the
influence of the formation heterogeneity. However, many practical
problems of subsurface flow require predictions over relative large
space scale, where a wide range of formation heterogeneities are
included in the flow domain. Therefore, there arises a need to
incorporate the influence of natural heterogeneity into the poroelasti-
city theory.

Natural porous earth materials are observed to display spatial
variability of their properties. Heterogeneity has been shown to play an
important role in the analysis of the behavior of groundwater flow and
transport of solutes at field scale [3,7,12,16]. Motivated by that, this
paper attempts to assess the influence of heterogeneity, related to the
random spatial variability of hydraulic conductivity, on the field-scale
poroelastic response of the heterogeneous medium. Limited studies
have devoted to the investigation of poroelasticity at field scale in the
stochastic framework [5,6,14]. The application of spectral techniques to
the analysis of the variability of the poroelastic response of the
heterogeneous medium at the field scale has so far not been attempted,
to our best knowledge, and this is the task undertaken here.

To solve the problem analytically, focus is placed on one-
dimensional models where the flow is in the horizontal direction
under a constant applied stress. These cases may not be very practical,
while they do provide some basic understanding of the influence of
heterogeneity on the poroelastic response of the heterogeneous
medium at the field scale.

Fluctuations in pore groundwater pressure in response to the
changes in imposed stresses are often encountered in many practical
problems of subsurface flow. In general, the porous medium is
deformable. Such interaction will cause the deformation of the solid
matrix, which in turn affects the storage of groundwater in the void
space. Thus, the assessment of the variability of the poroelastic response
of the medium is essential for the planning and management of
groundwater resources in aquifers. The results of thisworkmay serve as
rough estimates of the uncertainty of prediction of field-scale
poroelastic response of the aquifer.

2. Mathematical formulation of the problem

For an isotropic, linearly elastic porous medium with incompress-
ible grains, the equation of stress equilibrium takes the form [2,13]

1
α
∇2εb−∇2P = 0 ð1Þ

where∇2( )=∂2( )/∂X1
2+∂2( )/∂X2

2+∂2( ) /∂X3
2, α=(λ+2 μ)−1, and

λ and μ are macroscopic constant coefficients called Lame's coeffi-
cients for a porousmedium, εb is the solid's volume strain=∇⋅W,W is
the displacement vector, and P is the pressure increment. The mass
balance equation for a compressible fluid phase is characterized by
[2,13]

∇⋅ K
γw

∇P
� �

= nβ
∂P
∂t +

∂εb
∂t ð2Þ
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where K is the hydraulic conductivity, γw is the unit weight of water, n
is the porosity, and β is the coefficient of fluid compressibility.

The general solution of Eq. (1) is

1
α
εb = P + Π X;tð Þ ð3Þ

whereΠ satisfies∇2Π=0. By inserting Eq. (3) into Eq. (2), we obtain

∇⋅ K
γw

∇P
� �

= nβ + α½ � ∂P∂t + α
∂Π
∂t ð4Þ

Verruijt [13] concluded that Π vanishes under the conditions that
the fluid flow as well as deformation occur in one direction only, and
the applied stress remains unchanged. Accordingly, from Eq. (3), the
relationship between the solid's strain and the change in pore
pressure can be expressed as

εb = αP ð5Þ

and Eq. (4) reduces considerably to

∂
∂X1

K
γw

∂P
∂X1

� �
= nβ + α½ � ∂P∂t ð6Þ

where the flow is assumed to be one dimensional in the horizontal
direction.

Expanding Eq. (6) leads to

∂2

∂X2
1

P
γw

+
1
K

∂K
∂X1

∂
∂X1

P
γw

=
S0
K

∂
∂t

P
γw

ð7Þ

where S0 (the specific storativity)=γw(nβ+α). Our starting point of
the stochastic analysis lies in the local-scale equation Eq. (7). It is
recognized that Lame's coefficients and porosity do not vary
significantly in space compared to the spatial variation of hydraulic
conductivity [6,15]. Thus, the effects of spatial variations of Lame's
coefficients and porosity are neglected in this analysis.

3. Spectral perturbation approach

Eq. (7) can be solved using the spectral perturbation approach.
Applications of the spectral perturbation approaches to groundwater
systems were presented in the works of Bakr et al. [1], Mizell et al. [9],
Gelhar and Axness [8], and others. The spectral perturbation approach
to groundwater flow and solute transport in saturated and unsatu-
rated media is the focus of the book by Gelhar [7].

We consider that the flow domain is sufficiently large compared to
the correlation scale of log hydraulic conductivity. The spatially
random distribution of lnK is assumed because of the natural
heterogeneity of geological formations. The lnK field is typically
represented by a small perturbation expansion

lnK X1ð Þ = 〈 lnK X1ð Þ〉 + f X1ð Þ = F + f X1ð Þ ð8Þ

where b N stands for the expected value operator, and f(X1) is a
spatially correlated, statistically stationary random field with a zero
mean. The spatially correlated random heterogeneity in lnK param-
eter results in the spatially correlated random perturbations in
pressure head

P
γw

X1;tð Þ = 〈 P
γw

X1;tð Þ〉 + ϕ X1;tð Þ = Γ X1;tð Þ + ϕ X1;tð Þ ð9Þ

where ϕ(X1,t) is the zero-mean perturbations. Substituting Eqs. (8)
and (9) into Eq. (7) and neglecting all products of perturbations, the
first-order approximation of the mean pressure head equation is
found as

∂2Γ
∂X2

1

=
S0
eF

∂Γ
∂t ð10Þ

Subtracting this mean equation from Eq. (7) leads to a first-order
perturbation equation

∂2ϕ
∂X2

1

+
∂f
∂X1

∂Γ
∂X1

=
S0
eF

∂ϕ
∂t −f

∂Γ
∂t

� �
ð11Þ

Note that the perturbation expansion is formally limited to relatively
small variance (σf

2≪1, where σf
2 is the variance of lnK). However,

Zhang and Winter [15] found it to be accurate for the head variance
solutions for σf

2 as high as 4.38. A similar finding was reported in Gehar
[7].

By regarding the ∂Γ/∂t term in Eq. (10) slowly varying in time, the
mean pressure head is thus treated approximately as time-invariant.
This implies from Eq. (10) that the mean pressure head gradient is
constant (i.e., J=−∂Γ /∂X1=constant). Hence, the pressure head
perturbation Eq. (11) reduces to

∂2ϕ
∂X2

1

−J
∂f
∂X1

=
S0
eF

∂ϕ
∂t ð12Þ

Eq. (12) provides the stochastic differential equation required to
develop the second moment of the pressure head in terms of the
statistics of the input hydraulic parameters.

Eq. (12) may be solved using a spectral approach based on
Fourier–Stieltjes representations for the perturbed quantities [1,8,9].
By using this approach, the random fluctuations f andϕ are considered
to be realizations of second-order stationary random fields and
represented by the following integrals:

f X1ð Þ = ∫
∞

−∞
ei RX1dZf Rð Þ ð13Þ

ϕ X1;tð Þ = ∫
∞

−∞
ei RX1dZϕ R;tð Þ ð14Þ

where dZf(R) and dZϕ(R,t) are the complex Fourier amplitudes of lnK
and pressure head processes, respectively, and R is the wave number.

Note that assuming the existence of solutions over infinite
domains and statistically homogeneous random fields, the spectral
representation theorem of random functions in Fourier space reduces
the complexity of the stochastic groundwater flow problem and
provides simple closed-form solutions. In reality, groundwater flow
fields are not over infinite domains. However, an infinite-domain
assumptionmay be reduced to a large finite-domain assumption if the
correlation length of the random fields is much smaller than the
domain size.

Making use of these representations in Eq. (12) and invoking the
uniqueness of the spectral representations results in

d
dt

dZϕ R;tð Þ + eFR2

S0
dZϕ R;tð Þ = −iJ

eFR
S0

dZf Rð Þ ð15Þ

It is assumed that at t=0 the head distribution is smooth, that is,
ϕ(X1, t=0)=0. Thus, dZϕ=0 at t=0.With this initial condition, the
solution for Eq. (15) is then

dZϕ R;υð Þ = −i
J
R

1−e−R2υ½ �dZf Rð Þ ð16Þ



Fig. 1.Dimensionless variance of solid's strain as a function of dimensionless correlation
length of lnK for various values of dimensionless time, where Λ1=(nβ+α)/α.

944 C.-M. Chang, H.-D. Yeh / Advances in Water Resources 33 (2010) 942–946
where υ=eFt /S0. Taking the expected value of the product of the
Fourier amplitude dZϕ(R,υ) and its complex conjugate dZϕ⁎(R,υ) gives
the spectrum of fluctuations in pressure head:

Sϕϕ R;υð ÞdR = 〈dZϕ R;υð ÞdZT
ϕ R;υð Þ〉 = J2 1−e−R2υ½ �2 Sff Rð Þ

R2 dR ð17Þ

where Sff(R) is the spectrum of lnK. The Fourier transform of Sϕϕ yields
the auto-covariance of pressure head fluctuations

Rϕ ξ;υð Þ = ∫
∞

−∞
eiRξSϕϕ R;υð ÞdR = J2 ∫

∞

−∞
cos Rξð Þ 1−e−R2υ½ �

R2

2
Sff Rð ÞdR ð18Þ

where ξ is the spacing separation. From Eq. (5), the auto-covariance of
solid's strain can be related to that of pressure head fluctuation by

Rε ξ;υð Þ = αγwð Þ2Rϕ ξ;υð Þ ð19Þ

It may attack to the deformation of a solid from the description of
the solid's displacement. Using the strain-displacement relationship

∂W1

∂X1
= εb ð20Þ

the variance of solid's displacement can then be formulated as

σ2
W X1;υð Þ = ∫X1

0
∫X1

0 〈ε′ ξ′
� �

ε′ ξ″
� �

〉dξ′dξ″ = ∫X1

0
∫X1

0
Rε ξ′−ξ″
� �

dξ′dξ″

ð21Þ

where ε′=εb−bεbN. Introducing the Cauchy algorithm [3] into
Eq. (21) yields

σ 2
W X1;υð Þ = 2∫X1

0
Rε ξ;υð Þ X1−ξ½ �dξ ð22Þ

4. Closed-form solutions

To proceed with the development of the variance of solid's
displacement (Eqs. (18), (19) and (22)) one must select the form of
the lnK spectrum. The random lnK perturbation field f under
consideration is characterized by the following spectral density
function [1]

Sff Rð Þ = 2σ 2
f η

3R2

π 1 + η2R2� �2 ð23Þ

where σf
2 is the variance of lnK and η is the correlation length of lnK.

The closed-form expression for the auto-covariance of pressure
head fluctuations results from substituting Eq. (23) into Eq. (18) and
integrating over the wave number domain as

Rϕ ζ; τð Þ = J2σ 2
f η

2fe− jζ j 1 + jζ jð Þ−e−ζ24τ½4 ffiffiffiffiffiffiffiffiffiffi
τ= π

p
+ eA

2
1 1−2τ−ζð ÞΨ A1ð Þ

+ eB
2
1 1−2τ + ζð ÞΨðB1Þ� + 1

2
e−ζ2 =8τ½4 ffiffiffiffiffiffiffiffiffiffiffiffiffi

2τ= π
p

+ eA
2
2 1−4τ−ζð ÞΨ A2ð Þ + eB

2
2 1−4τ + ζð ÞΨ B2ð Þ�g ð24Þ

where ζ=ξ /η, τ=υ/η2, A1=τ0.5+0.5ζ /τ0.5, B1=τ0.5−0.5ζ /τ0.5,
A2=(2τ)0.5+0.5ζ / (2τ)0.5, B2=(2τ)0.5−0.5ζ / (2τ)0.5, and Ψ(−)
denotes the complementary error function. The pressure head
variance is found by taking ζ=0:

σ2
ϕ τð Þ = J2σ 2

f η
2 1−4

ffiffiffi
τ
π

r
+ 4τ−2ð ÞeτΨ ffiffiffi

τ
p� �

+ 2

ffiffiffiffiffiffi
2τ
π

r
− 4τ−1ð Þe2τΨ

ffiffiffiffiffiffi
2τ

p� �" #

ð25Þ

With the pressure head auto-covariance determined, the auto-
covariance of solid's strain is simply expressed by Eq. (19)

Rε ζ;τð Þ = J2σ 2
f η

2 γwαð Þ2fe− jζ j 1 + jζ jð Þ−e−ζ2 =4τ½4 ffiffiffiffiffiffiffiffiffiffi
τ= π

p
+ eA

2
1 1−2τ−ζð ÞΨ A1ð Þ + eB

2
1 1−2τ + ζð ÞΨ B1ð Þ�

+
1
2
e−ζ2 =8τ½4 ffiffiffiffiffiffiffiffiffiffiffiffiffi

2τ= π
p

+ eA
2
2 1−4τ−ζð ÞΨ A2ð Þ

+ eB
2
2 1−4τ + ζð ÞΨ B2ð Þ�g

ð26Þ

The resulting variance of solid's strain is given by

σ 2
ε ðτÞ = J2σ 2

f η
2ðγwαÞ2½1−4

ffiffiffi
τ
π

r
+ ð4τ−2ÞeτΨð ffiffiffi

τ
p Þ

+ 2

ffiffiffiffiffiffi
2τ
π

r
−ð4τ−1Þe2τΨð

ffiffiffiffiffiffi
2τ

p
Þ�

ð27Þ

The result of Eq. (27) is presented graphically in Fig. 1. It indicates that
the variance of solid's strain increases monotonically with the correlation
length of lnK. Note that an increase in η produces more persistence of
pressure head fluctuation which leads to larger deviations of pressure
head from themean pressure head. It is clear from Eq. (5) or Eq. (19) that
thefluctuations in the solid's strain arepositively correlated to those in the
pressure head. Therefore, the variance of solid's strain increases with the
correlation length of lnK. Fig. 1 also shows that if the correlation scale of
lnK remains constant, the variance of solid's strainwill increasewith time.

It follows from Eqs. (22) and (30) that the variance of solid's
displacement can be written in the form

σ2
W χ;τð Þ = 2J2σ2

f η
4 γwαð Þ2

(
−3 + 2χ + 3 + χð Þe−χ	 


+ 12
ffiffiffiffiffiffiffiffiffiffi
τ= π

p
1−e−χ2

=4τ
� �

−4χΦ
χ

2
ffiffiffi
τ

p
� �

−2 2τ−3ð ÞeτΨ ffiffiffi
τ

p� �
+ 2τ−3−χð Þeτ−χΨ

2τ−χ
2

ffiffiffi
τ

p
� �

+ 2χΦ
χ

2
ffiffiffiffiffiffi
2τ

p
� �

+ 2τ−3 + χð Þeτ + χΨ
2τ + χ
2

ffiffiffi
τ

p
� �

+ 6

ffiffiffiffiffiffi
2τ
π

r
−1 + e−χ2 =8τ

� �
+ 4τ−3ð Þe2τΨ

ffiffiffiffiffiffi
2τ

p� �

−1
2

4τ−3−χð Þe2τ−χΨ
4τ−χ
2

ffiffiffiffiffiffi
2τ

p
� �

−1
2

4τ−3 + χð Þe2τ + χΨ
4τ + χ
2

ffiffiffiffiffiffi
2τ

p
� �

ð28Þ

where χ=X1/η and Φ denotes the error function.
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The behavior of the variance of solid's displacement in Eq. (28) as a
function of the correlation length of lnK at various values of position is
illustrated in Fig. 2. This feature is a consequence of the increase in
variability of solid's strain with the correlation length of lnK. Larger
values of correlation length of lnK produce larger fluctuations in
solid's strain, which in turn results in an enhanced variability of solid's
displacement.

The theoretical result in this paper may be applied to the situation
of changes in water level in the aquifer induced by seismic waves.
Seismic waves from distant earthquakes interacting with aquifers
produce changes in pore pressure and a pressure gradient in the
aquifer [10]. The changes in water level are attributed to the
horizontal pressure diffusion caused by the pressure gradient. The
redistribution of pore pressure change in the aquifer can generate
solid's deformation. The stochastic result provides a rational basis for
judging reliability (variance or second moment) of the model
prediction at which direct observations of dependent variables (e.g.,
pressure head, solid's strain) are not feasible.

5. A note on the variance of specific discharge

The variations of the specific discharge about the mean can be
developed simply from the Darcy equation. The result, the first-order
equation for the specific discharge perturbation, is of the form [8]

q′1 = eF Jf− ∂ϕ
∂X1

� �
ð29Þ

where q′1=q1–bq1N, q1 is the specific discharge in the horizontal
direction. Substituting Eqs. (13) and (14) and the Fourier–Stieltjes
representations for specific discharge perturbations into Eq. (29) and
invoking the uniqueness of the spectral representation gives the
following relationship for the Fourier amplitude of q1:

dZq1 = e2F JdZf−iRdZϕ
� �

ð30Þ

where dZq1 is the complex Fourier amplitudes of the specific
discharge.

With Eq. (16), a spectral relationship between the input log hydraulic
conductivity variations and the resulting specific discharge variations,

Sq1q1 Rð Þ = e2F J2 + 1−e−R2υ
� �2� �

Sff Rð Þ ð31Þ

is found by taking the expected value of the product of the Fourier
amplitude dZq1 and its complex conjugate. In Eq. (31), Sq1q1 is the
Fig. 2. Dimensionless variance of solid's displacement as a function of dimension-
less correlation length of lnK at various values of dimensionless position, where
Λ2=γw(nβ+α)2/α.
spectrum of specific discharge variations. The variance of specific
discharge can now be computed by integrating Eq. (31) over the wave
number domain, according to

σ2
q1

= ∫
∞

−∞
Sq1q1 Rð ÞdR ð32Þ

Substituting Eqs. (23) and (31) into Eq. (32) and integrating over
the wave number domain yields the closed-form expression for
variations in specific discharge as

σ2
q1

= e2F J2σ2
f ½1 + 4

ffiffiffiffiffiffiffiffiffiffi
τ = π

p
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ = π

p
−2eτð1 + 2τÞΨð ffiffiffi

τ
p Þ + e2τð1 + 4τÞΨð

ffiffiffiffiffiffi
2τ

p
Þ�

ð33Þ

where Ψ(−) denotes the complementary error function.
The result of Eq. (33) is shown in Fig. 3, which indicates that the

variance of the specific discharge diminishes as S0η2 becomes large at
a specified time. In other words, soils with a larger specific storativity
S0 or correlation length of log hydraulic conductivity η exhibit less
variability of the specific discharge.

6. Conclusions

The paper addresses the problem of the poroelastic response of a
one-dimensional heterogeneous medium at the field scale, where
fluid flow as well as deformation occurs in one direction only under a
constant applied stress. On the basis of the assumption of statistic
homogeneity, closed-form expressions for the auto-covariances of
fluid pressure head and solid's strain, and the variance of solid's
displacement are developed through the spectral perturbation
approach to demonstrate the influence of the correlation length of
the log hydraulic conductivity on these results. It was found that the
correlation length of lnK plays an important role in increasing the
fluctuations in solid's strain, which enhance the variability of solid's
displacement. An increase in the specific storativity S0 or correlation
length of log hydraulic conductivity η tends to reduce the variability of
the specific discharge at a specified time. It is hoped that our findings
will be useful in simulating further research in this area.

Notation
A1 = τ0.5+0.5ζ /τ0.5

A2 = (2τ)0.5+0.5ζ /(2τ)0.5
B1 = τ0.5−0.5ζ /τ0.5

B2 = (2τ)0.5−0.5ζ /(2τ)0.5

F Mean value of lnK
J = −∂Γ /∂X1=constant
K Hydraulic conductivity
Fig. 3. The dimensionless variance of specific discharge based in Eq. (33) as a function of
τ.
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P Pressure increment
R Wave number
Rϕ(ξ,υ) Auto-covariance of pressure head fluctuations
Rε(ξ,υ) Auto-covariance of solid's strain fluctuations
S0 = γw(nβ+α); the specific storativity
Sff(R) Spectrum of lnK variations
Sϕϕ(R) Spectrum of pressure head variations
Sq1q1(R) Spectrum of specific discharge variations
W Solid's displacement vector
W1 Solid's horizontal displacement
X1 Horizontal space coordinate
dZf(R) Complex Fourier amplitudes of lnK process
dZϕ(R,t) Complex Fourier amplitudes of pressure head process
dZq1(R,t) Complex Fourier amplitudes of the specific discharge
f Fluctuation in lnK
n Porosity
q1 Horizontal specific discharge
q1′ Fluctuation in horizontal specific discharge
t Time
Λ1 = (nβ+α)/α
Λ2 = γw(nβ+α)2/α
Π A function of space and time
Φ(−) Error function
α = (λ+2 μ)−1

β Coefficient of fluid compressibility
χ = X1/η
Γ(X1) Mean pressure head
Ψ(−) Complementary error function
εb = ∇⋅W; solid's volume strain
ε' Fluctuation in solid's volume strain
ϕ(X1,t) Fluctuation in pressure head
γw Unit weight of water
η Correlation length of lnK
λ, μ Macroscopic constant coefficients called Lame's coefficients

for a porous medium
σf

2 Variance of lnK
σϕ

2 Variance of pressure head
σε

2 Variance of solid's strain
σq1

2 Variance of specific discharge
σW

2 Variance of solid's displacement
τ = υ /η2

υ = eFt /S0
ξ Spacing separation
ζ = ξ /η
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