

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/ejc)

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

The flipping puzzle on a graph^{*}

Hau-wen Huang^{[1](#page-0-1)}, Chih-wen Weng¹

Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30050, Taiwan, ROC

a r t i c l e i n f o

Article history: Available online 20 August 2009

a b s t r a c t

Let *S* be a connected graph which contains an induced path of *n*−1 vertices, where *n* is the order of *S*. We consider a puzzle on *S*. A configuration of the puzzle is simply an *n*-dimensional column vector over {0, 1} with coordinates of the vector indexed by the vertex set *S*. For each configuration *u* with a coordinate $u_s = 1$, there exists a move that sends *u* to the new configuration which flips the entries of the coordinates adjacent to *s* in *u*. We completely determine if one configuration can move to another in a sequence of finite steps.

© 2010 Published by Elsevier Ltd

1. Introduction

Let *S* be a simple connected graph with vertex set $S = \{s_1, s_2, \ldots, s_n\}$. By a *flipping puzzle* on *S*, we mean a set of *configurations* of *S* and a set of *moves* on the configurations defined below. The configuration of the flipping puzzle is *S*, together with an assignment of white or black state to each vertex of *S*. A move applied to a configuration *u* in the puzzle is to select a vertex *sⁱ* which has a black state, and then flip the states of all neighbors of s_i in *u*. For convenience we use the set F_2^n of column vectors over $F_2 := \{0, 1\}$, coordinates indexed by *S*, to denote the set of configurations of *S*. Precisely, for a configuration $u \in F_2^n$, $u_{s_i} = 1$ iff *u* has a black state in the vertex s_i . Then for a configuration *u* with $u_{s_i} = 1$ for some $s_i \in S$, we can apply a move to *u* by changing *u* into $u + A\tilde{s}_i$, where $A\tilde{s}_i$ is the column indexed by *s*, in the adiacency matrix *A* of *S* A flinning nuzzle is also called a *lit-only* column indexed by s_i in the adjacency matrix *A* of *S*. A flipping puzzle is also called a *lit-only* σ -game in [\[19\]](#page-11-0). The study of flipping puzzles is related to the representation theory of Coxeter groups [\[8\]](#page-11-1) and Lie algebras [\[1](#page-11-2)[,2,](#page-11-3)[4,](#page-11-4)[5](#page-11-5)[,11\]](#page-11-6).

Two configurations in the flipping puzzle on *S* are said to be *equivalent* if one can be obtained from the other by a sequence of selected moves. Let $\mathcal P$ denote the partition of F_2^n according to the above equivalent relation. A general question in solving the flipping puzzle on *S* is to realize that for a given

[✩] Research partially supported by the NSC grant 96-2628-M-009-015 of Taiwan, ROC.

E-mail addresses: poker80.am94g@nctu.edu.tw (H.-w. Huang), weng@math.nctu.edu.tw (C.-w. Weng). Fax: +886 3 5724679.

^{0195-6698/\$ –} see front matter © 2010 Published by Elsevier Ltd [doi:10.1016/j.ejc.2009.08.001](http://dx.doi.org/10.1016/j.ejc.2009.08.001)

pair of configurations $u, v \in F_2^n$, whether v can be obtained from *u* by a sequence of selected moves or not. This can be done if $\mathcal P$ is completely determined.

In this paper we are mainly concerned about the class of graphs, each of which contains an induced path on {*s*1, *s*2, . . . , *sn*−1}. This class of graphs includes the simply-laced Dynkin diagrams and simply-laced extended Dynkin diagrams with exceptions D_n and E_6 . In each case of such graphs we determine P .

For $u \in F_2^n$ let

 $w(u) := |\{s_i \in S \mid u_{s_i} = 1\}|$

denote the Hamming weight of *u*, and for an orbit $0 \in \mathcal{P}$,

 $w(0) := \min\{w(u) \mid u \in 0\}$

is called the *weight* of the orbit *O*. The number

 $M(S) := \max\{w(0) \mid 0 \in \mathcal{P}\}\$

is called the *maximum-orbit-weight* of the graph *S*. A consequence of our result on P we find $M(S) < 2$ and we give a necessary and sufficient condition for $M(S) = 1$. We also determine the cardinality of $\mathcal P$. A summary of our results is given in a table of Section [7.](#page-9-0) Besides these results, a byproduct is [Theorem 3.9.](#page-4-0)

If *S* is a tree with ℓ leaves, Wang, Wu [\[19\]](#page-11-0) and Wu, Chang [\[20\]](#page-11-7) independently prove $M(S) < \lceil \ell/2 \rceil$. For each case of Dynkin diagrams and extended Dynkin diagrams, P is completely determined by Chuah and Hu [\[4](#page-11-4)[,5\]](#page-11-5). The study of flipping puzzles is related to a rich research subject called ''groups generated by transvections''. We will provide this connection in [Appendix.](#page-10-0)

2. Matrices representing the puzzle

Let *S* be a simple connected graph with *n* vertices. Let F_2 denote the 2-element finite field with addition identity 0 and multiplication identity 1, and let F_2^n denote the set of *n*-dimensional column vectors over *F*₂ indexed by *S*. We shall embed the graph \bar{S} in *F*₁ⁿ canonically. For $s \in S$, let \bar{S} denote the characteristic vector of s in F^n : that is $\bar{S} = (0, 0, 0, 1, 0, 0)$ ^t where 1 is in the the characteristic vector of *s* in F_2^n ; that is $\widetilde{s} = (0, 0, \ldots, 0, 1, \widetilde{0}, \ldots, 0)^t$, where 1 is in the position corresponding to *s*. The set $\widetilde{s} \mid s \in S$ is called the *standard hasis* of F^n . In this setting corresponding to *s*. The set $\{\tilde{s} \mid s \in S\}$ is called the *standard basis* of F_2^n . In this setting, for $T \subseteq S$ the vector vector

$$
\sum_{s\in T}\widetilde{s}
$$

represents the configuration with black states in *T* in the flipping puzzle on *S* as stated in the introduction. We shall assign each move as an $n \times n$ matrix that acts on F_2^n by left multiplication. Let Mat_n(F_2) denote the set of $n \times n$ matrices over F_2 with rows and columns indexed by *S*.

Definition 2.1. For *s* ∈ *S*, we associate a matrix \mathbf{s} ∈ Mat_{*n*}(*F*₂), denoted by the bold type of *s*, as

$$
\mathbf{s}_{ab} = \begin{cases} 1, & \text{if } a = b \text{, or } b = s \text{ and } ab \in R; \\ 0, & \text{else,} \end{cases}
$$

where $a, b \in S$ and R is the edge set of S. The matrix **s** is called the *flipping move* associated with vertex *s*.

It is easy to check that for $s, b \in S$,

$$
\mathbf{s}\widetilde{b} = \begin{cases} \widetilde{b}, \\ \widetilde{b} + \sum_{ab \in R} \widetilde{a} & \text{if } b = s. \end{cases}
$$

Hence if a configuration $u \in F_2^n$ with $u_s = 1$ then **s***u* is the new configuration after the move to select the vertex *s*. Note that if $u_s = 0$, we have $\mathbf{s}u = u$, so we can view the action of **s** on *u* as a *feigning move* on *u* which is not originally defined as a move in the flipping puzzle. Note that **s** is an involution and hence is invertible for $s \in S$.

Fig. 1. The graph *S*.

Definition 2.2. Let **W** denote the subgroup of $GL_n(F_2)$ generated by the set {**s** | *s* ∈ *S*} of flipping moves. **W** is called the *flipping group* of *S*.

The flipping groups of simply-laced Dynkin diagrams are studied in [\[8\]](#page-11-1). The flipping group of the line graph of a tree with *n* vertices is isomorphic to the symmetric group S_n on *n* elements if $n \geq 3$ [\[21\]](#page-11-8). However, we do not need the information of the flipping group **W** of *S* in this paper.

3. The sets Π , Π_0 and Π_1

For the remaining of the paper, the following assumption is assumed.

Assumption 3.1. Let *S* be a simple connected graph with *n* vertices s_1, s_2, \ldots, s_n , and suppose that the sequence $s_1, s_2, \ldots, s_{n-1}$ is an induced path, among them, $s_{j_1}, s_{j_2}, \ldots, s_{j_m}$ the neighbors of s_n , where $1 \le j_1 < j_2 < \cdots < j_m \le n - 1$. See [Fig. 1.](#page-2-0)

In the remaining of this paper, we always assume $n > 2$ and set

$$
\overline{1} = \widetilde{s}_1, \overline{i+1} = \mathbf{s}_i \mathbf{s}_{i-1} \cdots \mathbf{s}_1 \overline{1} \quad \text{for } 1 \le i \le n-1.
$$
\n
$$
(3.1)
$$

Set

$$
\Pi = \{\overline{1}, \overline{2}, \dots, \overline{n}\},\tag{3.2}
$$

$$
\Pi_0 = \{\overline{i} \in \Pi \mid \langle \overline{i}, \overline{s}_n \rangle = 0\},\tag{3.3}
$$

$$
\Pi_1 = \Pi - \Pi_0,\tag{3.4}
$$

where \langle, \rangle is the dot product of vectors. From [\(3.1\)](#page-2-1) and the construction,

$$
\Pi_0 = \{ \overline{i} \mid \overline{i} = \widetilde{s}_{i-1} + \widetilde{s}_i, 1 \le i \le n-1 \text{ or } \overline{i} = \widetilde{s}_{n-1} \},\tag{3.5}
$$

$$
\Pi_1 = \{\overline{i} \mid \overline{i} = \widetilde{s}_{i-1} + \widetilde{s}_i + \widetilde{s}_n, 1 \le i \le n-1 \text{ or } \overline{i} = \widetilde{s}_{n-1} + \widetilde{s}_n\},\tag{3.6}
$$

where $\widetilde{s}_0 = 0$. Note that $1 \leq |T_0|, |T_1| \leq n - 1$ and $|T_0| + |T_1| = n$. Precisely,

$$
\Pi_0 = \{\overline{i} \in \Pi \mid i \in (0, j_1] \cup (j_2, j_3] \cup \cdots \cup (j_{2k}, j_{2k+1}]\}\tag{3.7}
$$

$$
\Pi_1 = \{ \overline{i} \in \Pi \mid i \in (j_1, j_2] \cup (j_3, j_4] \cup \cdots \cup (j_{2k-1}, j_{2k}] \}
$$
\n(3.8)

where $k = \lceil \frac{m}{2} \rceil$, $j_t := n$ if $t > m$ and $(a, b] = \{x \mid x \in \mathbb{Z}, a < x \le b\}$. In particular we have the following proposition.

Proposition 3.2.

$$
| \Pi_1 | = \sum_{k=1}^{\lceil \frac{m}{2} \rceil} j_{2k} - j_{2k-1}. \quad \Box
$$

From [\(3.5\)](#page-2-2) and [\(3.6\),](#page-2-3) we immediately have the following lemma.

Lemma 3.3. *For* $1 \le i \le n - 1$,

$$
\overline{1} + \overline{2} + \cdots + \overline{i} = \begin{cases} \widetilde{s}_i + \widetilde{s}_n, & \text{if } |[\overline{i}] \cap \Pi_1 | \text{ is odd;} \\ \widetilde{s}_i, & \text{if } |[\overline{i}] \cap \Pi_1 | \text{ is even,} \end{cases}
$$

and

$$
\overline{1} + \overline{2} + \cdots + \overline{n} = \begin{cases} \widetilde{s}_n, & \text{if } | \Pi_1 | \text{ is odd;} \\ 0, & \text{if } | \Pi_1 | \text{ is even,} \end{cases}
$$

where $[\overline{i}] := {\overline{1}, \overline{2}, \ldots, \overline{i}}$ *.* \Box

From [Lemma 3.3](#page-3-0) and [\(3.7\)](#page-2-4) we have the following lemma.

Lemma 3.4. $\sum_{\tilde{i} \in \Pi_0} \tilde{i} = \sum_{k=1}^m \widetilde{s}_{j_k}$. \Box

From [\(3.1\)](#page-2-1) we have the following lemma.

Lemma 3.5. $s_i\overline{i}=\overline{i+1}$, $s_i\overline{i+1}=\overline{i}$ and s_i fixes other vectors in $\Pi-\{\overline{i},\overline{i+1}\}$ for $1\leq i\leq n-1$.

From [Lemma 3.5,](#page-3-1) s_i acts on Π as the transposition $(\overline{i}, \overline{i+1})$ in the symmetric group S_n of Π for $1 \leq i \leq n-1$. Let **W** denote the flipping group of *S*. By a **W**-submodule of F_2^n we mean a subspace *U* of F_2^n such that **W***U* $\subseteq U$.

Corollary 3.6. The subspace U spanned by the vectors in Π is a **W**-submodule of F_2^n .

Proof. From [Lemma 3.5,](#page-3-1) *U* is closed under the action of $s_1, s_2, \ldots, s_{n-1}$. Note that for $\overline{i} \in \Pi$ we have

$$
\mathbf{s}_{\mathbf{n}}\overline{i} = \begin{cases} \overline{i}, & \text{if } \overline{i} \in \Pi_0; \\ \overline{i} + \sum_{\overline{j} \in \Pi_0} \overline{j}, & \text{if } \overline{i} \in \Pi_1 \\ \in U \end{cases}
$$

by [Lemma 3.4.](#page-3-2) \square

Proposition 3.7. *The subspace U in [Corollary](#page-3-3)* 3.6 *has the basis*

 $\int \Pi$, *if* $|\Pi_1|$ *is odd;* $\Pi - \{\bar{j}\}, \quad \text{if } |\Pi_1| \text{ is even}$

for any $\overline{j} \in \Pi$. *Moreover* $\widetilde{s}_n \notin U$ *if* $|\Pi_1|$ *is even.*

Proof. By [Lemma 3.3,](#page-3-0) $\overline{1}$, $\overline{2}$, . . . , $\overline{n-1}$ are linearly independent and hence *U* has dimension at least *n*− 1. Since \widetilde{s}_n ∉ Span $\{\overline{1}, \overline{2}, \ldots, \overline{n-1}\}$, the proposition follows from the second case of [Lemma 3.3.](#page-3-0) □

Let **W***^P* denote the subgroup of **W** generated by **s1**, **s2**, . . ., **s***n*−**1**. From [Lemma 3.5,](#page-3-1) [Proposition 3.7](#page-3-4) and the fact $\widetilde{G}_n = \widetilde{S}_n$ for $G \in \mathbf{W}_p$, we have the following corollary.

Corollary 3.8. *The subgroup* W_P *of* W *is isomorphic to the symmetric group* S_n *on* Π .

Let S' be another graph satisfying [Assumption 3.1,](#page-2-5) s'_n be the corresponding matrix in [Definition 2.1](#page-1-0)
and Π' , Π'_0 , Π'_1 be the corresponding sets of vectors in [\(3.2\)–\(3.4\).](#page-2-6) For this moment we suppose $|T_1| = |T_1|$. Let $f : \Pi \cup \{ \tilde{s}_n \} \to \Pi' \cup \{ \tilde{s}'_n \}$ be a bijection such that $f(\tilde{s}_n) = \tilde{s}'_n$ and $f(T_1) = \Pi'_1$. Then

$$
\mathbf{s}'_{\mathbf{n}}f(\vec{s}_n) = f(\vec{s}_n) + \sum_{\bar{j} \in \Pi_0} f(\bar{j})
$$

and

$$
\mathbf{s}'_{\mathbf{n}}f(\bar{i}) = \begin{cases} f(\bar{i}), & \text{if } \bar{i} \in \Pi_0; \\ f(\bar{i}) + \sum_{\bar{j} \in \Pi_0} f(\bar{j}), & \text{if } \bar{i} \notin \Pi_0 \end{cases}
$$

are corresponding to the way that s_n acts on $\Pi \cup {\{s_n\}}$. From [Corollary 3.8](#page-3-5) and the above arguments we have the following theorem.

Theorem 3.9. W *is unique up to isomorphism among all the graphs satisfying [Assumption](#page-2-5)* 3.1 *with a given cardinality* $|\Pi_1|$ *computed from* [\(3.2\)](#page-2-6). \Box

The flipping group **W** of a simply-laced Dynkin diagram *S* is isomorphic to the quotient group *W*/*Z*(*W*) of the Coxeter group *W* of *S* by its center *Z*(*W*) [\[8\]](#page-11-1), and the study of Coxeter groups *W* is notoriously interesting. With this in mind, one might expect the flipping groups are very different on different graphs. [Theorem 3.9](#page-4-0) is surprising since up to isomorphism the number of flipping groups is at most *n* − 1, which is much less than the number of graphs satisfying [Assumption 3.1.](#page-2-5)

4. Simple basis \triangle of F_2^n

To better describe the orbits in $\mathcal P$ later, we need to choose a new basis of $F_2^n.$ Set

$$
\Delta := \begin{cases} \Pi, & \text{if } |\Pi_1| \text{ is odd;} \\ \Pi \cup \{\overline{n+1}\} - \{\overline{n}\}, & \text{if } |\Pi_1| \text{ is even,} \end{cases}
$$

where $\overline{n+1} := \widetilde{s}_n$. With referring to [Proposition 3.7,](#page-3-4) Δ is a basis of F_2^n . To distinguish from the *standard* has \overline{s} . \widetilde{s}_n and F_n^n we refer Δ to the *simple hasis* of F_n^n . For each vector $u \$ *basis* ${\{\tilde{s}_1, \tilde{s}_2, \ldots, \tilde{s}_n\}}$ of F_2^n , we refer Δ to the *simple basis* of F_2^n . For each vector $u \in F_2^n$, *u* can be written as a linear combination of elements in Δ , so let $\Delta(u)$ be the subset of Δ as a linear combination of elements in ∆, so let ∆(*u*) be the subset of ∆ such that

$$
u=\sum_{\overline{i}\in\varDelta(u)}\overline{i},
$$

set $sw(u) := |\Delta(u)|$, and we refer $sw(u)$ to be the *simple weight* of *u*. Note that for $1 \le i \le n - 1$, the vector $\overline{1} + \overline{2} + \cdots + \overline{i}$ has simple weight *i*, but has weight

$$
w(\overline{1} + \overline{2} + \dots + \overline{i}) = \begin{cases} 1, & \text{if } |[\overline{i}] \cap \Pi_1| \text{ is even;} \\ 2, & \text{if } |[\overline{i}] \cap \Pi_1| \text{ is odd} \end{cases}
$$
(4.1)

by [Lemma 3.3.](#page-3-0)

The following notation will be used in the sequel. For $V \subseteq F_2^n$ and $T \subseteq \{0, 1, \ldots, n\}$,

$$
V_T := \{u \in V \mid sw(u) \in T\},\
$$

and for shortness $V_{t_1,t_2,...,t_i} := V_{\{t_1,t_2,...,t_i\}}$. Let *odd* be the subset of $\{1, 2, ..., n\}$ consisting of odd integers.

5. The case $|I_1|$ is odd

In this section we assume $|T_1|$ to be odd and the counter part is treated in the next section. Note that $\Delta = {\overline{1}, \overline{2}, \ldots, \overline{n}}$ is a basis of $U = F_2^n$ in this case. From [Lemma 3.3,](#page-3-0) for $1 \le i \le n - 1$,

$$
\widetilde{s}_i = \begin{cases} \overline{1+2} + \cdots + \overline{i}, & \text{if } |[\overline{i}] \cap \Pi_1| \text{ is even;} \\ \overline{i+1} + \overline{i+2} + \cdots + \overline{n}, & \text{if } |[\overline{i}] \cap \Pi_1| \text{ is odd,} \end{cases}
$$

and

 $\widetilde{s}_n = \overline{1} + \overline{2} + \cdots + \overline{n}.$

Hence, for $1 \leq i \leq n-1$,

$$
sw(\widetilde{s}_i) = \begin{cases} i, & \text{if } |[\overline{i}] \cap \Pi_1| \text{ is even;} \\ n - i, & \text{if } |[\overline{i}] \cap \Pi_1| \text{ is odd,} \end{cases}
$$

and $sw(\bar{s}_n) = n$. In other words, there exists a vector with simple weight *i* and weight 1 if and only if $|[\overline{i}] \cap \Pi_1|$ is even, $i = n$ or $|[\overline{n-i}] \cap \Pi_1|$ is odd. Set

$$
I := \{i \in [n] \mid |[\tilde{i}] \cap \Pi_1| \text{ is even, } i = n \text{ or } |[\overline{n} - \tilde{i}] \cap \Pi_1| \text{ is odd}\},\
$$

where $[\overline{n}] := \{1, 2, ..., n\}$. Note that $w(U_i) \le 2$ by Lemma 3.3, and
 $w(U_i) = 1$ if and only if $i \in I$ (5.1)

for $1 \leq i \leq n$.

Lemma 5.1. *For* $u \in F_2^n$, *we have*

$$
\mathbf{s_n}u = \begin{cases} u, & \text{if } |\Delta(u) \cap \Pi_1| \text{ is even;} \\ u + \sum_{\bar{i} \in \Pi_0} \bar{i}, & \text{else.} \end{cases}
$$

In particular,

$$
sw(\mathbf{s_n}u) = \begin{cases} sw(u), & \text{if } |\Delta(u) \cap \Pi_1| \text{ is even;} \\ n - |\Pi_1| + 2k - sw(u), & \text{else,} \end{cases}
$$

where k = $| \Pi_1 \cap \Delta(u) |$.

Proof. If $|\Delta(u) \cap \Pi_1|$ is even then $\langle u, \widetilde{s}_n \rangle = 0$ and $\mathbf{s}_n u = u$ by construction. If $|\Delta(u) \cap \Pi_1|$ is odd, then

$$
\mathbf{s_n}u = u + \sum_{k=1}^{m} \widetilde{\mathbf{s}}_{j_k}
$$

$$
= u + \sum_{\overline{i} \in \Pi_0} \overline{i}
$$

 Δ **by [Lemma 3.4,](#page-3-2) and** $sw(\mathbf{s_n}u) = |\Delta(u) \cap \Pi_1| + (|\Pi_0| - |\Delta(u) \cap \Pi_0|) = n - |\Pi_1| + 2k - sw(u)$ **.**

The following lemma follows from [Corollary 3.8](#page-3-5) and $\Delta = \Pi$.

Lemma 5.2. The nontrivial orbits of F_2^n under W_P are U_i for $1 \leq i \leq n$. \Box

The following theorem solves the flipping puzzle when $3 \leq |T_1| \leq n - 3$.

Theorem 5.3. Suppose 3 $\leq |H_1| \leq n-3$. Then the nontrivial orbits of F_2^n under **W** are U_{A_1} , U_{A_2} , U_{A_3} , U_{A_4} , *where*

$$
A_i := \{j \in [n] \mid j \equiv i, n + |T_1| - i \pmod{4}\}.
$$

In particular the number of orbits (including the trivial one) of F_2^n under $\mathbf W$ is

$$
|\mathcal{P}| = \begin{cases} 3, & \text{if } n \text{ is even;} \\ 4, & \text{else,} \end{cases}
$$

and the maximum-orbit-weight M(*S*) *of S is*

$$
M(S) = \begin{cases} 1, & \text{if } A_i \cap I \neq \emptyset \text{ for all } i; \\ 2, & \text{else.} \end{cases}
$$

Proof. Fix an integer $1 \leq i \leq n$. By [Lemma 5.2,](#page-5-0) U_i is contained in an orbit of F_2^n under **W**. To put two **Example 1** is the action of **s**_n. Hence U_i and $U_{n-|T_1|+2k-1}$ are in the orbits under **W**_{*P*} to an orbit under **W** is only by the action of **s**_n. Hence U_i and $U_{n-|T_1|+2k-1}$ are in the same orbit by [Lemma 5.1,](#page-5-1) where k runs through possible odd integers $|\Pi_1\cap\varDelta(u)|$ for $u\in U_i.$ In fact *k* is any odd number that satisfies $k \leq |H_1|$ and $0 \leq i - k \leq |H_0|$; equivalently

$$
\max\{1, i + |T_1| - n\} \le k \le \min\{|T_1|, i\}.\tag{5.2}
$$

Such an odd integer *k* exists for any $1 \le i \le n$, and note that

$$
n - |T_1| + 2k - i \equiv n + |T_1| - i \pmod{4}
$$

since *k* and $|H_1|$ are odd integers. To see the orbits as stated in the theorem, it remains to show that *U*^{*i*} and *U*_{*i*+4} are in the same orbit under **W** for $1 \le i \le n - 4$. Set *k* to be the least odd integer greater than or equal to max $\{1, i + |T_1| - n + 2\}$. For this *k*, [\(5.2\)](#page-5-2) holds and then *U_i* and *U_{n−|Π1|+2k*−*i* are in} the same orbit. Here we use the assumption $|T_1| \leq n-3$ to guarantee the existence of such *k*. Note that if we use $(n - |T_1| + 2k - i, k + 2)$ to replace (i, k) in [\(5.2\),](#page-5-2) we have

$$
\max\{1, 2k - i\} \le k + 2 \le \min\{|I_1|, n - |I_1| + 2k - i\}.\tag{5.3}
$$

The above *k* and the assumption 3 $\leq |H_1|$ guarantee the Eq. [\(5.3\).](#page-6-0) Since $n - |H_1| + 2(k + 2) - (n - 1)$ $|H_1| + 2k - i$ = $i + 4$, we have $U_{n-|H_1|+2k-i}$ and U_{i+4} in the same orbit. Putting these together, U_i and U_{i+4} are in the same orbit. The remaining statements of the theorem are obtained from the orbits description immediately and by using (5.1) . \square

The following theorem does the remaining cases.

Theorem 5.4. *Suppose* $|I_1| = 1$, $n - 2$ *or* $n - 1$ *. Then the nontrivial orbits of* F_2^n *under* **W** are

 $\int U_{i,n+1-i}$, *if* $| \Pi_1 | = 1$; U_{odd} , U_{2j} , *if* $|\Pi_1| = n - 2$; $U_{2i-1,2i}$, *if* $| \Pi_1 | = n-1$

for $1 \le i \le \lceil n/2 \rceil$ and $1 \le j \le (n-1)/2$. In particular the number of orbits (including the trivial one) *of* F_2^n *under* **W** *is*

$$
|\mathcal{P}| = \begin{cases} \lceil (n+2)/2 \rceil, & \text{if } |I_1| = 1; \\ (n+3)/2, & \text{if } |I_1| = n-2; \\ (n+2)/2, & \text{if } |I_1| = n-1, \end{cases}
$$

and the maximum-orbit-weight M(*S*) *of S is at most* 2*. Moreover M*(*S*) = 1 *if and only if*

 $\int {\{i, n + 1 - i\}} \cap I \neq \emptyset$ *for all* $1 \le i \le \lceil n/2 \rceil$, *if* $| \Pi_1 | = 1$; α *odd* \cap *I* \neq \emptyset *and* U_{2j} \cap *I* \neq \emptyset *for all* 1 \leq *j* \leq $\lfloor n/2 \rfloor$, *if* $| \Pi_1 | = n - 2$; ${2i - 1, 2i} \cap I \neq \emptyset$ for all $1 \leq i \leq \lceil n/2 \rceil$, *if* $| \Pi_1 | = n - 1$.

Proof. As the proof in [Theorem 5.3,](#page-5-4) U_i and $U_{n-|T_1|+2k-1}$ are in the same orbit under **W**, where *k* needs to satisfy [\(5.2\).](#page-5-2) In the case $|T_1| = 1$, $k = 1$ is the only possible choice and hence U_{n+1-i} is the only orbit under W_P been put together with U_i to become an orbit under **W**. In the case $|H_1| = n - 2$, we have $k = i - 2$ or *i* if *i* is odd; $k = i - 1$ if *i* is even. In the case $|{\Pi_1}| = n - 1$, we have $k = i$ if *i* is odd; $k = i - 1$ if *i* is even. In each of the remaining the proof follows similarly. \square

Example 5.5. Let *S* be an odd cycle of length *n*, i.e. *n* is odd, $m = 2$, $j_1 = 1$ and $j_2 = n - 1$. Then $\Pi_0 = \{1, \overline{n}\}$ and $\Pi_1 = \{2, \overline{3}, \ldots, \overline{n-1}\}$. Note that $|\Pi_1| = \overline{n-2}$ is odd, and $I = \{1, 3, \ldots, \overline{n}\}$. Hence [Theorem 5.4](#page-6-1) applies. We have

 $\mathcal{P} = \{U_{odd}, U_0, U_2, U_4, \ldots, U_{n-1}\}.$

In particular, $|\mathcal{P}| = (n+3)/2$, and $M(S) = 2$.

6. The case $|I_1|$ is even

In this section we assume $|_{\Pi_1}$ to be even. Recall that in this case $\Delta = \Pi \cup \{\overline{n+1}\} - \{\overline{n}\}$ and $\Delta - \{\overline{n+1}\}$ are bases of F_2^n and U respectively. Recall that

$$
\overline{1} + \overline{2} + \dots + \overline{n} = 0. \tag{6.1}
$$

Let $\overline{U} := F_2^n - U$, and note that $\overline{U} = \overline{n+1} + U$, $\overline{U}_1 = \{\overline{n+1}\}\$ and $U_n = \emptyset$. From [Lemma 3.3,](#page-3-0) for $1 \leq i \leq n-1$,

$$
\widetilde{s}_i = \begin{cases} \overline{1} + \overline{2} + \cdots + \overline{i} \in U, & \text{if } |[\overline{i}] \cap \Pi_1| \text{ is even;}\\ \overline{1} + \overline{2} + \cdots + \overline{i} + \overline{n+1} \in \overline{U}, & \text{if } |[\overline{i}] \cap \Pi_1| \text{ is odd,} \end{cases}
$$

and

$$
\widetilde{\mathsf{s}}_n = \overline{n+1} \in \overline{\mathsf{U}}.
$$

Moreover, for $1 \le i \le n-1$,

$$
sw(\widetilde{s}_i) = \begin{cases} i, & \text{if } |[\overline{i}] \cap \Pi_1| \text{ is even;} \\ i+1, & \text{if } |[\overline{i}] \cap \Pi_1| \text{ is odd,} \end{cases}
$$

and $sw(\widetilde{s}_n) = 1$. In other words, there exists a vector in U with simple weight *i* and weight 1 if and only if $|[\vec{i}] \cap \Pi_1|$ is even; there exists a vector in \overline{U} with simple weight *i* and weight 1 if and only i $|[i-1] ∩ Π₁|$ is odd or $i = 1$. Set

$$
I = \{i \in [n-1] \mid |[\bar{i}] \cap \Pi_1| \text{ is even}\}
$$

and

$$
J = \{i \in [n] \mid |[\overline{i-1}] \cap \Pi_1| \text{ is odd or } i = 1\}.
$$

Note that $w(U_i)$, $w(\overline{U}_i) \leq 2$, and

$$
w(U_i) = 1 \quad \text{if and only if} \quad i \in I;
$$

\n
$$
w(\overline{U}_j) = 1 \quad \text{if and only if} \quad j \in J
$$

\n
$$
1 \le i \le n - 1, 1 \le i \le n
$$
 (6.2)

for $1 \le i \le n - 1, 1 \le j \le n$.

Lemma 6.1. *For* $u \in F_2^n$, let $k = |T_1 \cap \Delta(u)|$. Then the following (i), (ii) hold

(i) *For* $u \in U$ *, we have*

$$
\mathbf{s_n}u = \begin{cases} u, & \text{if } |\Delta(u) \cap \Pi_1| \text{ is even;} \\ u + \sum_{\overline{i} \in \Pi_0} \overline{i}, & \text{else.} \end{cases}
$$

In particular, the simple weight $sw(s_nu)$ *of* s_nu *is*

$$
\begin{cases} sw(u), & \text{if } |\Delta(u) \cap \Pi_1| \text{ is even;} \\ n - |\Pi_1| + 2k - sw(u), & \text{if } |\Delta(u) \cap \Pi_1| \text{ is odd and } \overline{n} \in \Pi_1; \\ sw(u) + |\Pi_1| - 2k, & \text{else.} \end{cases}
$$

(ii) *For* $u \in \overline{U}$ *, we have*

$$
\mathbf{s_n}u = \begin{cases} u, & \text{if } |\Delta(u) \cap \Pi_1| \text{ is odd;} \\ u + \sum_{\tilde{i} \in \Pi_0} \tilde{i}, & \text{else.} \end{cases}
$$

In particular, the simple weight $sw(s_nu)$ *of* s_nu *is*

 $\int \sup_{u \in \mathcal{U}} f(u) \cap \prod_{u \in \mathcal{U}} f(u) \cap \prod_{u \in \mathcal{U}} f(u)$ *is odd; n* − $| \Pi_1 | + 2k + 2 - sw(u)$, *if* $| \Delta(u) \cap \Pi_1 |$ *is even and* $\overline{n} \in \Pi_1$; $sw(u) + |T_1| - 2k,$ *else.*

Proof. The proof is similar to the proof of [Lemma 5.1,](#page-5-1) except that at this time since the choice of simple basis ∆ is different, the action of **sⁿ** on a vector is a little different, and we need to use [\(6.1\)](#page-6-2) to adjust the simple weight of a vector. \square

By [Corollary 3.6](#page-3-3) the orbits of F_2^n under **W** (resp. under **W**_P) are divided into two parts, one in U and the other in \overline{U} .

Lemma 6.2. The nontrivial orbits of F_2^n under W_P are \overline{U}_1 , $\overline{U}_{i+1,n+1-i}$ and $U_{i,n-i}$ for $1 \le i \le \lfloor n/2 \rfloor$.

Proof. By construction, $\overline{U}_1 = {\overline{S_n}}$ is an orbit under W_P . By [Corollaries 3.6](#page-3-3) and [3.8,](#page-3-5) U_i is contained in an orbit under W_P and \overline{U}_i is contained in another one for $1 \le i \le n-1$. The Eq. (6.1) and our cho orbit of F_2^n under W_P and \overline{U}_i is contained in another one for $1 \leq i \leq n-1$. The Eq. [\(6.1\)](#page-6-2) and our choice of ∆ imply that U_i and U_{n-i} are in the same orbit of F_2^n under W_P ; \overline{U}_{i+1} and \overline{U}_{n+1-i} are in another one for $1 \le i \le n - 1$. Since no other ways to put these sets together, we have the lemma.

Theorem 6.3. Suppose $4 \leq |I_1| \leq n-3$. Then the nontrivial orbits of F_2^n under **W** are $U_{B_1}, U_{B_2}, U_{B_3}, U_{B_4}, U_{C_1}, U_{C_2}, U_{C_3}, U_{C_4}$, where

$$
B_i = \{j \in [n-1] \mid j \equiv i, i + |T_1| - 2, n - i, n - i + |T_1| - 2 \pmod{4}\}
$$

and

$$
C_i = \{j \in [n] \mid j \equiv i, i + |T_1|, n + 2 - i, n + 2 - i + |T_1| \pmod{4}\}.
$$

In particular the number of orbits (including the trivial one) of F_2^n under $\mathbf W$ is

$$
|\mathcal{P}| = \begin{cases} 6, & \text{if } n \text{ is even;} \\ 4, & \text{else,} \end{cases}
$$

and the maximum-orbit-weight M(*S*) *of S is*

$$
M(S) = \begin{cases} 1, & \text{if } B_i \cap I \neq \emptyset \text{ and } C_i \cap J \neq \emptyset \text{ for all } i; \\ 2, & \text{else.} \end{cases}
$$

Proof. Firstly we determine the orbits of *U* under **W**. By [Lemma 6.2,](#page-8-0) *Ui*,*n*−*ⁱ* is contained in an orbit under **W** for $1 \le i \le n-1$. We suppose $\overline{n} \in \Pi_0$ and the case $\overline{n} \in \Pi_1$ is left to the reader. In this case U_i and $U_{i+|T_1|-2k}$ are in the same orbit of F_2^n under **W** by [Lemma 6.1\(](#page-7-0)i), where $1 \le i + |T_1| - 2k \le n - 1$ and *k* runs through possible odd integers $|_{\Pi_1} \cap \Delta(u)|$ for $u \in U_i$. In fact *k* is any odd number that satisfies $k \leq |T_1| - 1$ and $0 \leq i - k \leq |T_0| - 1$; equivalently

$$
\max\{1, i + |T_1| - n + 1\} \le k \le \min\{|T_1| - 1, i\}.\tag{6.3}
$$

Such an odd *k* exists for any $1 \le i \le n-3$, and note that

$$
i + |T_1| - 2k \equiv i + |T_1| - 2 \pmod{4}.
$$

To determine the orbits of *U* under **W** in this case, it remains to show that U_i and U_{i+4} are in the same orbit under **W** for $1 \le i \le \lfloor n/2 \rfloor$. Suppose $4 \le |T_1| \le 6$. Set $k = 1$ to conclude U_i and U_{i+2} in an orbit if $|H_1| = 4$; U_i and U_{i+4} in an orbit if $|H_1| = 6$. Suppose $|H_1| \ge 8$. Then $n \ge 11$ and $\lfloor n/2 \rfloor \le n-6$. Set *k* to be the least odd integer greater than or equal to max $\{1, i + |T_1| - n + 3\}$. For this *k*, [\(6.3\)](#page-8-1) holds and then U_i and $U_{i+|T_1|-2k}$ are in the same orbit. Here we use the assumption $|T_1| \leq n-3$. Note that if we use $(i + |T_1| - 2k, |T_1| - k - 2)$ to replace (i, k) in [\(6.3\),](#page-8-1) we have

$$
\max\{1, i+2|T_1| - 2k - n + 1\} \le |T_1| - k - 2 \le \min\{|T_1| - 1, i + |T_1| - 2k\}.
$$
 (6.4)

The above *k*, the assumption $4 \leq |T_1|$ and $i \leq n - 6$ guarantee the Eq. [\(6.4\).](#page-8-2) Since $(i + |T_1| - 2k)$ + $|T_1| - 2(|T_1| - k - 2) = i + 4$, we have $U_{i+|T_1| - 2k}$ and U_{i+4} in the same orbit. Putting these together, U_i and U_{i+4} are in the same orbit. Then the orbits of U under ${\bf W}$ are $U_{B_1},U_{B_2},U_{B_3},U_{B_4}$ as in the statement.

Secondly, we determine the orbits of \overline{U} under **W**. Since the proof is similar to the above case, we only give a sketch. By [Lemma 6.2,](#page-8-0) $\overline{U}_{i,n+2-i}$ is contained in an orbit for 2 \leq i \leq *n*. We suppose $\overline{n}\in \Pi_1$ and leave the case $\overline{n} \in \Pi_0$ to the reader. By [Lemma 6.1\(](#page-7-0)ii), we have U_i and $U_{n-|T_1|+2k+2-i}$ in an orbit, where $k = |\Delta(u) \cap \Pi_1|$ is an even number for some $u \in U_i$ and $1 \le i \le n-4$. From the same argument with *k* been replaced by $k + 2$, we find $U_{n-|T_1|+2k+2-i}$ and U_{i+4} in an orbit to finish the proof.

The remaining statements of the theorem are obtained from the orbits description. \Box

The following theorem determine the nontrivial orbits of F_2^n under $\bf W$ in the remaining cases.

[Theorem](#page-8-3) 6.4. *Suppose* $|I_1| = 2$, $n - 2$ *or* $n - 1$ *. Then with referring to the notation in Theorem 6.3, the nontrivial orbits of* F_2^n *under* $\mathbf W$ *are*

$$
\begin{cases}\nU_{i,n-i}, \overline{U}_{C_1}, \overline{U}_{C_2}, & if |T_1| = 2; \\
U_{odd}, U_{2j,n-2j}, \overline{U}_{odd}, \overline{U}_{2t,n+2-2t}, & if |T_1| = n-2; \\
U_{2j-1,2j,n-2j,n+1-2j}, \overline{U}_{2t-1,2t,n+2-2t,n+3-2t}, & if |T_1| = n-1,\n\end{cases}
$$

for $1 \le i \le \lfloor n/2 \rfloor$, $1 \le j \le \lceil (n-2)/4 \rceil$ and $1 \le t \le \lceil n/4 \rceil$. In particular the number of orbits (including *the trivial one) of* F_2^n *under W is*

$$
|\mathcal{P}| = \begin{cases} (n+6)/2, & \text{if } | \Pi_1 | = 2 \text{ and } n \text{ is even, or } |\Pi_1| = n-2; \\ (n+3)/2, & \text{if } |\Pi_1| = 2 \text{ and } n \text{ is odd, or } |\Pi_1| = n-1, \end{cases}
$$

and the maximum-orbit-weight M(*S*) *of S is at most* 2*. Moreover M*(*S*) = 1 *if and only if*

$$
\{i, n-i\} \cap I \neq \emptyset \text{ and } \overline{U}_{C_i} \cap J \neq \emptyset \text{ for } 1 \leq j \leq 2, \text{ if } |I_{1}| = 2; \\
 \begin{cases} odd \cap I \neq \emptyset, \{2j, n-2j\} \cap I \neq \emptyset \\ \text{for all } 1 \leq j \leq \lceil (n-2)/4 \rceil, \\ odd \cap J \neq \emptyset, \{2t, n+2-2t\} \cap J \neq \emptyset \end{cases} \text{ if } |I_{1}| = n-2; \\
 \begin{cases} \{2j-1, 2j, n-2j, n+1-2j\} \cap I \neq \emptyset \\ \text{for all } 1 \leq j \leq \lceil (n-2)/4 \rceil, \\ \{2t-1, 2t, n+2-2t, n+3-2t\} \cap J \neq \emptyset \end{cases} \text{ if } |I_{1}| = n-1.
$$
\n
$$
\begin{cases} \{2j-1, 2t, n+2-2t, n+3-2t\} \cap J \neq \emptyset \\ \text{for all } 1 \leq t \leq \lceil n/4 \rceil, \end{cases}
$$

Proof. The proof is similar to the proof of [Theorem 5.4](#page-6-1) that follows from the proof of [Theorem 5.3.](#page-5-4) At this time, to determine the orbits of *U* we check what values of odd *k* occur in [\(6.3\)](#page-8-1) in each case of $|T_1| \in \{2, n-2, n-1\}$. To determine the orbits of \overline{U} under **W**, we do similarly as in the second part of the proof of [Theorem 6.3.](#page-8-3) \Box

Example 6.5. Let *S* be an even cycle of length *n*, i.e. *n* is even, $m = 2$, $j_1 = 1$ and $j_2 = n - 1$. Then $\Pi_0 = \{\overline{1}, \overline{n}\}$ and $\Pi_1 = \{\overline{2}, \overline{3}, \ldots, \overline{n-1}\}$. Note that $|\Pi_1| = n-2$ is even and $I = J = \{1, 3, \ldots, n-1\}$. Hence [Theorem 6.4](#page-9-1) applies. We have

 $\mathcal{P} = \{U_{odd}, U_0, U_{2,n-2}, U_{4,n-4}, \ldots, U_{2i,n-2i}, \overline{U}_{odd}, \overline{U}_{2,n}, \overline{U}_{4,n-2}, \ldots, \overline{U}_{2r,n-2r+2}\},\$

where $j = \lceil (n-2)/4 \rceil$ and $t = \lceil n/4 \rceil$. In particular

$$
|\mathcal{P}| = \lceil (n-2)/4 \rceil + \lceil n/4 \rceil + 3 = (n+6)/2,
$$

and $M(S) = 2$.

7. Summary

We list the main results as follows. Let *S* be a connected graph with *n* vertices s_1, s_2, \ldots, s_n that contains an induced path $s_1, s_2, \ldots, s_{n-1}$ of $n-1$ vertices, and s_n has neighbors $s_{j_1}, s_{j_2}, \ldots, s_{j_m}$ with $1 \leq j_1 < j_2 \cdots < j_m \leq n-1$. Let $\widetilde{s}_1, \widetilde{s}_2, \ldots, \widetilde{s}_n$ denote the characteristic vectors of F_2^n and let $\mathbf{s}_1, \mathbf{s}_2, \ldots, \mathbf{s}_n$ denote the flipping moves associated with s_1, s_2, \ldots, s_n respectively. Set

$$
\overline{1} = \widetilde{s}_1, \overline{i+1} = \mathbf{s}_i \mathbf{s}_{i-1} \cdots \mathbf{s}_1 \overline{1} \quad (1 \le i \le n-1), \quad \overline{n+1} := \widetilde{s}_n
$$

and consider the following three sets

$$
\Pi = {\overline{1, 2, ..., n}},
$$

\n
$$
\Pi_0 = {\overline{i \in \Pi \mid \langle \overline{i}, \overline{s}_n \rangle = 0}},
$$

\n
$$
\Pi_1 = \Pi - \Pi_0.
$$

Table 1 The summary.

$ \Pi_1 $	\boldsymbol{n}	Nontrivial $0 \in \mathcal{P}$ (might be repeated)	$ \mathcal{P} $
$3 < T_1 < n-3$, $ \Pi_1 $ is odd	Even	U_{A_i}	3
$3 < T_1 < n - 3$, $ \Pi_1 $ is odd	Odd	U_{A_i}	$\overline{4}$
$4 < \Pi_1 < n - 3$, $ \Pi_1 $ is even	Even	U_{B_i} , U_{C_i}	6
$4 < \Pi_1 < n - 3$, $ \Pi_1 $ is even	Odd	U_{B_i} , \overline{U}_{C_i}	$\overline{4}$
$ \Pi_1 = 1$		$U_{t,n+1-t}$	$\lceil (n+2)/2 \rceil$
$ \Pi_1 = 2$	Even	$U_{i,n-i}$, U_{C_1} , U_{C_2}	$(n+6)/2$
$ \Pi_1 = 2$	Odd	$U_{i,n-i}$, U_{C_1} , U_{C_2}	$(n+3)/2$
$ \Pi_1 = n - 2$, $ \Pi_1 $ is odd	Odd	U_{odd} , U_{2i}	$(n+3)/2$
$ \Pi_1 = n - 2$, $ \Pi_1 $ is even	Even	U_{odd} , $U_{2h,n-2h}$, U_{odd} , $U_{2g,n+2-2g}$	$(n+6)/2$
$ \Pi_1 = n - 1$, $ \Pi_1 $ is odd	Even	$U_{2t-1,2t}$	$(n+2)/2$
$ \Pi_1 = n - 1$, $ \Pi_1 $ is even	Odd	$U_{2h-1,2h,n-2h,n+1-2h}$ $U_{2g-1,2gn+2-2g,n+3-2g}$	$(n+3)/2$

where $1 \le j \le 4$, $1 \le t \le \lceil n/2 \rceil$, $1 \le i \le \lfloor n/2 \rfloor$, $1 \le h \le \lfloor (n-2)/4 \rfloor$, $1 \le g \le \lceil n/4 \rceil$.

By using the graph structure we can compute the following value

$$
| \Pi_1 | = \sum_{k=1}^{\lceil \frac{m}{2} \rceil} j_{2k} - j_{2k-1}
$$

as shown in [Proposition 3.2.](#page-2-7) Let

$$
\Delta := \begin{cases} \Pi, & \text{if } | \Pi_1 | \text{ is odd;} \\ \Pi \cup \{ \overline{n+1} \} - \{ \overline{n} \}, & \text{if } | \Pi_1 | \text{ is even} \end{cases}
$$

be the simple basis of F_2^n as shown in the beginning of Section [4.](#page-4-1) For a vector $u \in F_2^n$ let $sw(u)$ denote the simple weight of *u*, i.e. the number nonzero terms in writing *u* as a linear combination of elements in Δ . Let *U* be the subspace spanned by the vectors in Π . For $V \subseteq F_2^n$ and $T \subseteq \{0, 1, \ldots, n\}$,

$$
V_T := \{u \in V \mid sw(u) \in T\},\
$$

and for shortness $V_{t_1,t_2,...,t_i} := V_{\{t_1,t_2,...,t_i\}}$. Let *odd* be the subset of $\{1, 2, ..., n\}$ consisting of odd integers. Set

$$
A_i = \{j \in [n] \mid j \equiv i, n + |T_1| - i \pmod{4}\},
$$

\n
$$
B_i = \{j \in [n - 1] \mid j \equiv i, i + |T_1| - 2, n - i, n - i + |T_1| - 2 \pmod{4}\},
$$

\n
$$
C_i = \{j \in [n] \mid j \equiv i, i + |T_1|, n + 2 - i, n + 2 - i + |T_1| \pmod{4}\}.
$$

Let P denote the set of orbits of the flipping puzzle on S. Then the set P and its cardinality |P| are given in [Table 1](#page-10-1) according to the different cases of the pair $(|\Pi_1|, n)$ in the first two columns.

Appendix

We are indebted to a referee for the information in this section. Let *S* be a simple connected graph with *n* vertices and adjacency matrix *A*. The adjacency matrix defines an alternating form \langle, \rangle_A on F_2^n by

$$
\langle u, v \rangle_A = u^{\dagger}Av
$$

and a quadratic form *q* on F_2^n that satisfies $q(\widetilde{s}) = 1$ and

 $q(u + v) = q(u) + q(v) + \langle u, v \rangle_A$

for all vertices $s \in S$ and $u, v \in F_2^n$. For a vertex $s \in S$, the associating matrix **s** in [Definition 2.1](#page-1-0) satisfies

$$
\mathbf{s}A\mathbf{s}^t = A. \tag{A.1}
$$

Hence **s** t is an element of the symplectic group *S*(*n*, *F*2) [\[18,](#page-11-9) p. 69], and therefore the transpose group **W**^t of the flipping group **W** of *S* is a subgroup of *S*(*n*, *F*2). Moreover **W**^t preserves *q* in the sense that *q*(**w**^t*u*) = *q*(*u*) for any **w**^t ∈ **W**^t and any *u* ∈ *F*₂ⁿ. Note that from [Definition 2.1,](#page-1-0)

$$
\mathbf{s}^{\mathsf{t}}u = u + \langle \tilde{\mathbf{s}}, u \rangle_{A} \tilde{\mathbf{s}} \tag{A.2}
$$

for $s \in S$ and $u \in F_2^n$. Such an s^t is called a *transvection* in the literature. The study of arbitrary groups generated by transvections was largely instituted by McLaughlin [\[12](#page-11-10)[,13\]](#page-11-11). Hamelink's work on Lie algebras led to a question about groups generated by symplectic transvections over *F*² [\[7\]](#page-11-12). Hamelink's question was answered by Seidel, as reported and generalized by Shult in his Breukelen lectures [\[15](#page-11-13)[,17\]](#page-11-14). Graphical notation is implicit in this earlier work and explicit in that of Brown and Humphries [\[3](#page-11-15)[,10\]](#page-11-16). A survey of related work, a brief discussion of Humphries results, and a discussion of the isomorphism types of groups occurring are given by Hall [\[6\]](#page-11-17). More recent results are in [\[14,](#page-11-18)[16\]](#page-11-19).

Let \mathcal{P}' denote the set of orbits under the action of W^{t} on F_2^n . Several of the papers discussed above $2e^{i\theta}$ denote the set of orbits direct the denotion of \mathbf{v} on n_2 , several of the papers discussed above
(or referenced therein) also focus on and discuss orbit lengths for \mathcal{P}' . As before let \mathcal{P} be th orbits under the action of **W** on F_2^n (the set of orbits of the flipping puzzle on *S*). By [\(A.1\)](#page-11-20) and using ${\bf s}^2 = I$, the map

$$
0\to A0\,
$$

is a map from \mathcal{P}' into \mathcal{P} , where $AO = \{Au \mid u \in O\}$. In particular if *A* is nonsingular over F_2 , this map is a bijection. But when *A* is singular, the orbit structures can presumably differ. See [\[9\]](#page-11-21) for more connections between \mathcal{P}' and \mathcal{P} .

References

- [1] P. Batra, Invariants of real forms of affine Kac–Moody Lie algebras, J. Algebra 223 (2000) 208–236.
- [2] P. Batra, Vogan diagrams of real forms of affine Kac–Moody Lie algebras, J. Algebra 251 (2002) 80–97.
- [3] R. Brown, S.O. Humphries, Orbits under symplectic transvections II: The case $K = F_2$, Proc. Lond. Math. Soc. 3 (52) (1986) 532–556.
- [4] Meng-Kiat Chuah, Chu-Chin Hu, Equivalence classes of Vogan diagrams, J. Algebra 279 (2004) 22–37.
- [5] Meng-Kiat Chuah, Chu-Chin Hu, Extended Vogan diagrams, J. Algebra 301 (2006) 112–147.
- [6] J.I. Hall, Symplectic geometry and mapping class groups, in: Geometrical combinatorics (Milton Keynes, 1984), in: Res. Notes in Math., 114, Pitman, Boston, MA, 1984, pp. 21–33.
- [7] R.C. Hamelink, Lie algebras of characteristics 2, Trans. Amer. Math. Soc. 144 (1969) 217–233.
- [8] Hau-wen Huang, Chih-wen Weng, Combinatorial representations of Coxeter groups over a field of two elements (preprint) [arXiv:0804.2150v1.](http://arxiv.org/0804.2150v1)
- [9] Hau-wen Huang, Lit-only sigma-games on nondegenerate graphs (preprint).
- [10] S.P. Humphries, Graphs and Nielsen transformations of symmetric, orthogonal, and symplectic groups, Quart. J. Math. Oxford Ser. (2) 143 (36) (1985) 297–313.
- [11] A.W. Knapp, Lie Groups Beyond an Introduction, in: Progr. Math., vol. 140, Birkhäuser, 1996.
- [12] J. McLaughlin, Some groups generated by transvections, Arch. Math. X VIII (1967) 364–368. [13] J. McLaughlin, Some subgroups of *SLn*(*F*2), Illinois J. Math. 13 (1969) 108–115.
-
- [14] M. Reeder, Level-two structure of simply-laced Coxeter groups, J. Algebra 285 (2005) 29–57.
- [15] J.J. Seidel, On two-graphs and Shult's characterization of symplectic and orthogonal geometries over GF(2), T.H.-Report, No. 73-WSK-02, Department of Mathematics, Technological University Eindhoven, Eindhoven, 1973. pp. i+25.
- [16] A.I. Seven, Orbits of groups generated by transvections over *F*2, J. Algebraic Combin. 21 (2005) 449–474.
- [17] E.E. Shult, Groups, polar spaces and related structures, Combinatorics, Part 3: Combinatorial group theory (Proc. Advanced Study Inst., Breukelen, 1974), Math. Centre Tracts, No. 57, Math. Centrum, Amsterdam, 1974, pp. 130–161.
- [18] D.E. Taylor, The geometry of the classical groups, in: Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992.
- [19] Xinmao Wang, Yaokun Wu, Minimum light number of lit-only σ-game on a tree, Theoret. Comput. Sci. 381 (2007) 292–300.
- [20] Hsin-Jung Wu, Gerard J. Chang, A study on equivalence classes of painted graphs, Master Thesis, NTU, Taiwan, 2006.
- [21] Yaokun Wu, Lit-only sigma game on a line graph, European J. Combin. 30 (2009) 84–95.