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has the potential for parallel computation in VLSI arrays. There- 
fore, VLSI implementations with a reasonable level of precision 

Performance. 
With the advent of parallel processing systems, great interest has 

been focused on obtaining high processing speeds through paral- 

Among different structures of parallel systems, VLSI arrays [6] can 
meet the high processing speed demands and make VLSI imple- 
mentation feasible. The multiple and pipeline processing in VLSI 
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lelism in algorithms hitherto considered sequential in nature. 

arrays are means to attain high processing speeds while structural 
A Adaptive for Moving Target regularity and local interconnections contribute to the suitability of 

VLSI imulementation. Despite all the benefits of VLSI arrays, one Detection and Its VLSI Array Realization 

Chi-Min Liu and Chein-Wei Jen 

Abstract-The application of an innovations-based detection algo- 
rithm (IBDA) in moving target detector (MTD) radars has been shown 
to be efficient. In this correspondence, an adaptive algorithm for the 
IBDA is derived. This algorithm behaves well in numerical properties 
and computational complexity. Also, it possesses high computing par- 
allelism and data locality which lead to the feasibility of VLSI array 
realization. A systolic array is designed with the iteration time being 
(2n + 1) and the number of processing elements being [(n2 + 3 n ) / 2 ] ,  
where n is the length of the adaptive filter. 

I. INTRODUCTION 

The use of an innovations-based detection algorithm (IBDA) in 
a moving target detector (MTD) has been shown to be more effi- 
cient than traditional methods [ 11. However, the highly nonsta- 
tionary environment in an MTD necessitates choosing adaptive al- 
gorithms which possess both fast adaptation and good steady-state 
behavior. The performance in the simulation of [ 13 showed that the 
Kalman filter [2] was the preferred algorithm in the IBDA. Al- 
though the Kalman filter is a theoretically optimum estimator, its 
computational complexity and numerical properties should be se- 
riously considered. It is known that the computational complexity 
of the Kalman filter is 0 ( n 3 )  [2], [3], where n is the filter length. 
If such large computations are executed serially (as in the case of 
traditional computers), the limited sampling rate will severely limit 
its real-time applications. Additionally, the numerical instability of 
the filter is one factor that should be considered in nonstationary 
environments. The numerical error arises from the accumulation of 
quantization errors in finite precision arithmetic. It affects the im- 
plementation cost by increasing the required precision and may 
cause the phenomenon of “divergence” [4]. Several square-root 
algorithms [3] were developed to address this concern. Recently, 
a square-root algorithm was applied to IBDA and shown to provide 
better performance than the conventional Kalman filter [ 5 ] .  Despite 
superior numerical properties, both square-root algorithms and the 
conventional Kalman filter are numerically unstable. In addition, 
the computational complexity of square-root algorithms is higher 
than that of the conventional Kalman filter. In this correspondence, 
we derive an adaptive algorithm for IBDA. The algorithm has a 
lower computational complexity than the Kalman filter and square- 
root algorithms. The new algorithm is also numerically stable and 

important point is that not every existing algorithm is suitable for 
VLSI array realization. In the literature, some VLSI arrays [7]- 
[ 1 I] were designed based on the square-root algorithm proposed by 
Paige and Saunders [ 121. The Paige and Saunders’ algorithm adopts 
the weighted least squares approach in its derivative process and 
leads to the feasibility of a VLSI array realization [7]-[ll]. In this 
correspondence, we derive an adaptive algorithm for the IBDA 
based on such an approach. The specific application of the IBDA 
is taken into account in the derivation process to simplify the com- 
plexity and minimize numerical instability. A systolic array is de- 
signed with the iteration time being (2n + l)  and the number of 
processing elements (PE’s) being [(n2 + 3n/2], where n is the 
filter length. The new array presented in this correspondence out- 
performs those arrays derived from other design approaches 
[71-[111. 

11. THE ADAPTIVE ALGORITHM FOR THE IBDA 

A. The IBDA in MTD 

The detection of a target echo s ( j )  in the combined presence of 
clutter and receiver noises is formulated in terms of hypothesis test- 
ing, i.e., 

Hypothesis HI: y ( j )  = s ( j )  + c ( j )  + w ( j ) ,  

j = l - N +  l ; . .  , I  (2 .  la) 

j = 1 - N + 1, * . . , 1 

(2. lb) 

where { y ( j ) }  is the complex baseband signal from the lth range- 
azimuth cell of a surveillance radar, { s ( j ) }  is a target process, 
{ c( j ) }  is usually a non-Gaussian clutter process, and { w ( j ) }  is a 
white-Gaussian noise process. The data record { y ( j ) ,  j = 1 - N 
+ 1, . . . , Z} is obtained by sampling the N consecutive radar 
returns from a specific range ring as the radar scans across the Zth 
azimuth cell. N is the number of pulses illuminating the range- 
azimuth cell of interest. 

By using the chain rule, the likelihood ratio of the hypotheses 
testing becomes 

Hypothesis Ho: y ( j )  = c ( j )  + w ( j ) ,  
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where { Y ( k  1 H f )  = y ( k )  - 9 ( k  1 Hi)’ - 1 is the 
set of prediction errors or innovation process on the hypothesis that 

= o, ’ ’ ‘ ’ 

IEEE Log Number 9202789. H, is correct [ l ] .  a2(kl H , )  is its variance, for i = 0, 1. Fig 1 [ l ]  
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Whitening Filter 0 

shift register (N) 
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Fig. 1. Block diagram of IBDA. 

illustrates an IBDA operation by calculating the "one pulse infor- 
mation" and using shift registers to sum up N terms. 

The kernel of the IBDA shown in Fig. 1 is the whitening filters 
that support the hypothesis H I  and Ho. If the whitening filters are 
stable and converge fast enough to adapt to the changes of a non- 
stationary environment, the MTD will behave well. In the real- 
ization of the IBDA, the two whitening filters designed for hypoth- 
esis H I  and Ho should be modeled correctly for the corresponding 
assumption. Experiments showed that the use of Kalman filtering 
(assuming the random-walk state model) for these two filters will 
track the localized nonstationarity caused by the presence of a tar- 
get echo when the additive clutter is stationary (as in the case of 
ground clutter) as well as nonstationary (as in the case of weather 
clutter) [ l ] .  It provides at least 3 dB average improvement for 
weather clutter- and ground clutter-dominated radar data as com- 
pared to the conventional MTD algorithms. 

B. The Adaptive Algorithm 

Since hypotheses Ho and H I  can be modeled approximately by 
autoregressive (AR) processes, the adaptive transversal filter with 
random-walk state model can be used [ 11. The system is expressed 
as 

(2.3) xk + 1 = xk + U; 

y; = c;xk + wk. (2.4) 

The dimension of state vector xk is n X 1 .  The observation y; is 
the current received data and is a scalar. The dimension of coeffi- 
cient vector ck is 1 X n and is constituted by the radar signals come 
from the most recent steps [l]. The Gaussian processes { U ; }  and 
{ w ; )  are assumed zero mean and uncorrelated, i.e., 

E(&';) = 0; E(&'; ' ULH) = vk; E(W;) = 0; 
E(wi + wi") = wk, and E(wju;) = o 

where the superscript H denotes the Hermitian transpose of a ma- 
trix or a vector. Let 

L~L:  = v;' and ck . 2: = w;' (2.5) 

be the Cholesky decompositions of the inverse of the covariance 
matrices, where the superscript * denotes the complex conjugation 
of a scalar. Premultiplying the L: and 2: in (2.3) and (2.4) sepa- 
rately, they become 

(2.6) 0 = LFxk+I - Lpxk + uk 

and 

yk = 2; y; = 2: . c; . xk + 2: . w; = ckxk + wk (2.7) 

where 

t t k  -L: * U;,  and J??(uk) = 0, E(ttkvp) = LfvkLk = 

(2.8) 

wk 2: * W;, and E(Wk) = 0, J??(wkd) = 1 (2.9) 

and 

ck 2: CA. (2.10) 

So (2 .6)  and (2.7) with the iterations from 1 to k are combined to 
give the following formulation: 

~ 

1_ .Lp L 

ck 
(2.11) 

The least squares solution of (2.1 1) can be computed from the or- 
thogonal transform composed of a sequence of Givens rotations 
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(2.12) 
==> 

where submatrices R I ,  i = 1, 2,  - . . , k, are all upper triangular 
matrices. The optimum estimated vector .?k at time k ,  i.e., -tk.k, can 
be obtained from the last line in (2.12), or Rk * i k , k  = 6k. At the 
next iteration k + 1, the updating process depends on only the 
matrice in the last line of (2.12). Based on (2.1 l ) ,  we can construct 
the equation for the iteration k + 1 : 

0 6 k  Rk Rk.k+ I 

Q f +  I [ -Lf+ Rk I Lf+ I 1 0 1 = [ Rk+l l:+l]. (2.13) 

c k +  I Y k +  I 0 0 Y k + l  

The innovation process 9 required in (2.2) is derived as 

$k+l=(d : ;c*+I ) - l (Yk+l  - 9 k + l ) = ( d : k * + I ) ~ ' ( y k + I  -ck+l ' - t k + l ) .  
Fig. 2 .  The nullification progression of the - L  matrix, where the blank 
spaces are zero elements. The F ' s  indicated the filled-in elements during 
the process and the 0's indicate where nullification is taking place. 

Since 

2k+ I = Ril I * d k +  I (2.14) 

it then follows that 
resented as 

c y =  [ . . .  
. . .  

S I ]  Ci ,.] = [;I . . .  

. . .  

(2.19) 
The matrix inverse operation should be removed to improve its nu- 
merical properties. The rows of matrix Qk + l can be separated into 
two groups labeled by Sk + and z k  + i.e., 

- S; 

wherec, = c o s 4  = I h l / J l h l '  + I k I 2 a n d s ,  = s i n 4  = ( k * / h * )  
cos 4, it can be proved that qr is the multiplication of all the se- 
quent c , ' ~  of the elementary Givens rotations which are used to 
eliminate the elements in matrix ck+ I in (2.13) [18], i.e., 

n 

? k + l  = CI ' c2 ' '  ' c, = rI c,. (2.20) 
I =  I 

(2.16) 

where Qk + I is a (2n + l)-by-(2n + 1) matrix, sk + I is a 2n-by-(2n 
+ 1) matrix, and zk + I is a l-by-(2n + 1) matrix. z k  + can be 
expressed as 

Combining (2.20) and (2.18), we get 
n 

$k+I = ( d : k * + I ) - l  . rk+,  ' ,VI c;. (2.21) 

To summarize, this algorithm consists of three parts: i) the pre- 
processing which includes the Cholesky decompositions of the ma- 
trix V i '  and scalar w,' in (2.5); ii) the orthogonal transformation 
in (2.13) for each iteration; and iii) the postprocessing in (2.21). 

z k + l  = [* * *  . ' '  *qk+II (2.17) 

where the symbol "t" stands for values which will not affect the 
proceeding derivation. Since Q;,! I = Qf+ I ,  we may use (2.17) 
and (2.13) to deduce (2.15) to 

C.  The Computational Complexity and the Numerical Analysis 

Observing (2.13), the matrices Lf+ I and Rk are upper triangular 
forms. To effectively take advantage of the sparseness in LF+ I and 
&, a series of Givens rotations to eliminate elements in matrix If the elementary Givens rotation for two elements h and k is rep- 
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I 

Fig. 3. The DG for the orthogonal transform in (2.13) with n = 2 

-LF+ I is as follows. For i = n, n - 1, * * . , 1, an element in the 
ith row of -Lk+ I can be set to be zero by using the s th  row of 
altered R k  to eliminate the s th  element of the ith row of altered 
-LF+ I; this must be done in the sequence s = 1 ,  2 ,  . * * , n. The 
progress can be demonstrated schematically in the case of n = 3 
as shown in Fig. 2 .  It is interesting that if the reduction for the 
rows of matrix - L f +  proceeds in such a reverse order, matrix 
LF+ will reserve its triangular form in the elimination process and 
finally become Rk + I. 

For the preprocessing, it is sometimes assumed that the statistics 
of state noise { v i )  and measurement noise { w ; )  in the IBDA are 
obtained beforehand. As a result, we can determine the required 
values for matrix Lk and 2;. Hence the desired computations in 
the preprocessing will be just the multiplication of Ci by a scalar 
2: in (2.10),  i.e., n multiplications. Examining next the orthog- 
onal transformation in (2.13) with the progress in Fig. 2, the num- 
ber of rotations taken is [n3/3 + 3n2 + 2 n / 3  + I ] .  One standard 
rotation requires 4 multiplications each, while it is possible to com- 
pute stable two- or three-multiplication rotations 1131 with some 
added overhead. Assuming X multiplications for one rotation in 
general cases, the complete rotations can be camed out in [X(n3/3 
+ 3n2 + 2n/3  + l)] multiplications. The postprocessing is com- 
posed of (n  + 1) multiplications. The total multiplications for the 
algorithm are {n + [X(n3/3 + 3n2 + 2 n / 3  + I)]  + (n + I ) } .  
Compared with the computational complexity 0 ( p n 3 )  (where p is 

much greater than one) in the conventional Kalman filter [2] and 
the square-root algorithms [3], the proposed algorithm has greatly 
simplified computational complexity. 

Three considerations in the derivation process have manifested 
the superiority of the algorithm in numerical properties. First, the 
derivation process using (2 .11)  was shown to be a kind of square- 
root information Kalman filter [12], which does not have the dif- 
ficulty of assuring the positive semidefinite of the covariance ma- 
trix in the computing process [3]. Second, the algorithm avoids the 
need of matrix inverse, which is a numerically unstable operation 
but necessary in the conventional Kalman filter and other square- 
root algorithms. Third, the limited dynamic range in Givens rota- 
tions [ 151 assures low quantization errors in the computing process. 

111. VLSI ARRAY REALIZATION 

A .  The VLSI Array for the IBDA 

Adopting Givens rotations for (2 .13) ,  the geometrical represen- 
tation of the computing algorithm (called a dependence graph or 
DG [IO], [14]) can be constructed as in Fig. 3 with n = 2 .  The 
functions of the nodes in Fig. 3 are illustrated in Fig. 4(b). In Fig. 
3, the nodes mean the operations to be executed. The data 2 in ma- 
trices -Lk + I ,  Lk + I, ck + I ,  and yk + flow into the DG in k direc- 
tion, and the resultant data in matrices R k  + I and 6, go out from 
the upper part of the DG and reenter the DG along i direction for 
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d‘<--Cd + S k  

d‘ <-- Cd + S k  
k‘ <-- - s’d + c k 
c‘ <-- c 
s‘ <-- s 

d‘<--Cd + s k  

r‘ <-- r c 

k‘ <-- k r 

Fig. 4. (a) The DG for the presented algorithm with n = 2 .  (b) The functions of nodes for Figs. 3 and 4(a), where “*” means 
complex conjugation. 

the next iteration. We label the nodes of different patterns for dif- 
ferent kinds of operations. A directed arc denotes the data depen- 
dence between two nodes; that is, the computed result from one 
node should be sent along the arc for operating in another node. 
The relative positions of the nodes in the DG can be captured from 
the associated indexes in a Cartesian coordinate labeled in Fig. 3. 
From the geometrical representation of an algorithm, the compu- 
tational complexity of (2.13) can be figured out immediately. In 
the graph, the number of nodes is [n3/3 + 3n2 + 2 n / 3  + 11 which 
is consistent with the number of rotations given in Section 11. 

To embed the postprocessing of (2.21) into the DG in Fig. 3 ,  we 
modify (2.13) as 

R k  6, 

QF+ I [ -C+ Rk I 6: L;+l]=[O 6,+, (3.1) 

c k + l  Y k + l  r k i l  

Such a representation changes the computational sequence and the 
topology of the final array but will not change the correctness of 
the final data because the coefficients c, and s, in (2.19) are just 
obtained from the first n columns of (2.13). The final DG repre- 
senting the computations of (3.1) and (2.21) is shown in Fig. 4. 
Fig. 4 shows that the data Ilk + I and rk + I are sent in the locally 

connected links for the multiplications in the white nodes. If (2.13) 
instead of (3.1) is used, nonlocally connected links should result 
and some delay elements in the final array will be needed addition- 
ally. Fig. 5 illustrates a 3-dimensional DG using four 2-dimen- 
sional layers with the filter length being three. Given a DG, the 
design issues are how to schedule the execution time for the nodes 
in the graph and how to design a suitable array to realize maximum 
parallelism. 1: Fig. 5, we assign all the nodes along the same line 
in direction j , i.e., vector [0 1 O]‘, executed by a processing 
element (PE). Such assignment is a linear transformation from 
3-dimensional space to 2-dimensional space and was shown to be 
efficient in the systematic design methods for VLSI_arrays [14]. 
The designed array is illustrated in Fig. 6. Direction j is adopted 
because it induces the minimal number of PE’s among all direc- 
tions. In the graph, Rk + I and 6, + I are generated in the upward 
links and reenter the array from the left input links for the next 
iteration. In Fig. 6(a), the “data reordering” is used to exchange 
the output sequence of the data in matrix R and vector B so that 
the required sequence in the next iteration is satisfied. In Fig. 6 ,  
tag control [16] is a one-bit data flow signal which is used to in- 
dicate PE’s executing either the functions of the shaded nodes or 
those of the gray nodes. The execution time to annihilate the ele- 
ments in -Lf+ I and Ck + I and generate R, + I and 6, + I is shown in 

T- I -- 



I 

2846 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 1 1 ,  NOVEMBER 1992 

'A 
Y '  c, c2 c, (1')' 

(d) +J#T 
1 

Fig. 5 .  The four layers of DG with n = 3 ,  (a) the layer with i = 3 ,  k = 0 ,  I ,  2,  3 ,  (b) the layer with i = 2, k = 0 ,  1, 2, (C) 
the layer with i = 1 ,  k = 1, 2,  and (d) the layer with i = 0 ,  k = 2. 

Fig. 7 ,  where all the elements in matrices -LF+ I ,  Ck + I ,  bk+ 1, 

L f + ,  are manipulated at the times labeled in the table entries. At- 
tentive readers may find that the computational progression in Fig. 
2 is not coincident with the execution time in Fig. 7 .  The concept 
is, however, that a DG can be constructed from a computational 
progression, but the designed arrays will not necessarily follow the 
sequence of the progression. The array in Fig. 6 is designed from 
the DG constructed from the progression in Fig. 2. Since the DG 
captures the data dependence of the progression instead of its se- 
quence, the computing sequence of the designed array retains the 
data dependence instead of its sequence. The designed systolic ar- 
ray shows the iteration time as (2n + 1) and the number of PE's 
as [1/2(n2 + 3n)], where n is the number of the filter state. The 
iteration time is the minimum time interval between the initiation 
of the kth iteration and the (k + 1)th iteration. The clock period in 

the systolic array is the required time to compute the PE functions 
in Fig. 5(b). The CORDIC processor was suggested to implement 
these functions [ 171. 

B. The Related VLSI Arrays in the Literatures 

In the literature, various VLSI arrays [7]-[l l]  have been de- 
signed for the algorithm proposed by Paige and Saunders [12]. the 
computations of the Paige and Saunders' algorithm mainly consist 
of three steps: i) the whitening process composed of Cholesky de- 
composition of noise covariance and matrix multiplication; ii) the 
orthogonal transformation similar to (2.13); and iii) the backward 
substitution similar to (2.14).  If the algorithm in this correspon- 
dence is compared with the Paige and Saunders' algorithm, the 
algorithm captures the applications of the IBDA to simplify the 
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IF TC = 1, then 

d'<-- Cd + Sk 
k' <-- -S'd + c k 
c' <-- c 
s' <-- s 

n . .' IF TC = 1, then 

d' <-- Cd + s k  
k' <-- -s'd + c k 
c' <-- c 

$r k' <-- k r 

I I  k r  

k' s' <-- s 

(a) (b) 

Fig. 6 .  (a) A systolic array with the number of processor elements being [ l  /2(nZ + 3n)l and the average computation time 
being (2n + 1). (b) Functions of PE's, where TC stands for tag-control signal. 

21 2,3 3.4.5 5.6,7 6,7,8 7.8,9 4,5.6 &I 2,3 3.4.5 5.6,7 6,7,8 7.8,9 4,5.6 

Fig. 7.  Time sequence to manipulate the elements in matrices -Lf+ I ,  
S,,,, ~ . f + ~ ,  c k + , ,  andyk+, of(3.1) inoneiteration. 

computational complexity in step 1 and replace (2.15) by (2.21) to 
avoid unstable computation. Concerning the orthogonal transfor- 
mation in step 2 ,  we adopt the computational process in Section I1 
to capture the sparseness of the matrice in (2.13) and reduce the 
computational complexity. Also, some structural difference be- 
tween (2.13) and that of the orthogonal transformation in [I21 can 
be found. The differences are deliberately constituted from the de- 
rivation process to induce the high computing spe_eds of the pre- 
sented array. In addition, the projection direction j , which is dif- 
ferent from those in [7]-[ 1 1 1 ,  is adopted to reduce the number of 
PE's. To give a clear insight into the effect, various arrays based 
on the design approaches [7]-[ 111 are deduced by applying the ran- 
dom-walk model in (2.3) and (2.4) to their system model. Their 

TABLE I 
THE COMPARISONS OF VARIOUS DESIGN APPROACHES BASED ON RANDOM- 

WALK MODEL 
\ 

Perfor- 

Design 

Chen-Yao [7] 
Gaston-Irwin [8] 
Kung-Hwang [9] 
Lincoin-Yao 1101 
McWhirter- 

Shepherd [ 1 11 
Liu-Jen 

Iteration 
Steps 

Average PE 
Utilization 
(n >> 1) 

3n + 1 
3n + 1 
4n + 1 
3n + 1 
3n 

2n + 1 

7.4% 
1 1 . 1 %  
16.7% 
17.78% 
7.41% 

33.3% 

performance is summarized in Table I. Obviously, the array in Fig. 
6 outperforms others in the iteration time, the number of PE's, and 
the average PE utilization. The average PE utilization is computed 
from 

. 100% 
no. of rotations 

(no. of PE's) (iteration time) 

(3.2) 
- - [n3/3  + 3n2 + 2n/3 + I] . 

(no. of PE's)(iteration time) 
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IV. CONCLUSIONS 

In this correspondence, we derive an adaptive algorithm for MTD 
based on the following considerations: IBDA applications, com- 
putational complexity, numerical properties, and the feasible com- 
puting parallelism in VLSI arrays. A DG is presented for this al- 
gorithm. Based on the DG, a systolic array is designed with the 

ments being [l / 2 ( n 2  + 3n)l. 

Simple Computational Methods of the AP Algorithm 
for Maximum Likelihood Localization of Multiple 

Radiating Sources 

Seong Keun Oh and Chong Kwan Un 

iteration time being (2n + l )  and the number Of processing Abstraet-In this correspondence, we present two simple computa- 
tional algorithms of the alternating projection (AP) algorithm, which 
is an iterative algorithm for computing efficiently the deterministic 
maximum likelihood (ML) estimator of the locations of multiple sources 
in passive sensor arrays. One is a recursive projection (RP) algorithm 
that utilizes the projection matrix updating formula, and the other is 
a maximum eigenvector approximation (MEA) algorithm that approx- 
imates the Hermitian maximization problem in every iteration to a 
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problem for maximizing the modulus of the projection onto the maxi- 
mum eigenvector subspace. By transforming the computation of Her- 
mitian forms into that of only inner products of vectors, these algo- 
rithms reduce significantly the computational complexity per iteration 
without any recognizable loss in the estimation performance and con- 
vergence behaviors. Computer simulation results that validate this ap- 
proximation are also included. 

I. INTRODUCTION 

The localization of radiating sources in passive sensor arrays is 
a problem of considerable importance in radar, sonar, seismology, 
and radio astronomy. Among various techniques [ 11-[ 131, the 
maximum likelihood (ML) techniques provide optimum estimates 
to the source locations [6]-[ 131. More recent works in dealing with 
the ML techniques have been devoted to decomposing the multi- 
dimensional search problem into a sequence of much smaller di- 
mensional search problems, thus drastically reducing their com- 
putational complexity [7]-[ 101. These algorithms have received 
considerable attention since they can handle the array of arbitrary 
geometry despite the reduced computational complexity. 

Among these, the alternating projection (AP) algorithm requires 
the smallest number of iterations to convergence by making use of 
all the available information in every iteration [lo]. Although the 
algorithm computes efficiently the deterministic ML estimator [7]- 
[13] of source locations, it still requires the computation of two 
Hermitian forms per search point in every iteration. Since, in gen- 
eral, the number of search points per iteration is far larger as com- 
pared to the number of sensors, the complexity per iteration in the 
AP algorithm is still excessive. 

In this correspondence, we present two simple computational al- 
gorithms of the AP algorithm. We first develop an RP algorithm 
that transforms the computation of two Hermitian forms into that 
of only four inner products of vectors by utilizing the projection 
matrix updating formula [14]. Then, we develop an MEA algo- 
rithm that approximates the Hermitian maximization problem to 
the problem for maximizing the modulus of the projection onto the 
maximum eigenvector subspace. ’ Using this approximation, we re- 
duce the computation of two Hermitian forms to that of only three 
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‘The subspace spanned by the eigenvector corresponding to the maxi- 

mum eigenvalue (hereafter, this eigenvector is referred to as the maximum 
eigenvector). 
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