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On Stationarizability for Nonstationary 2-D least on the basis for squares of the Euclidean distance of translations,
Random Fields Using Discrete Wavelet Transforms where H denotes the parameter of the fBm ahAds the vanishing
moment of the wavelet function. Therefore, these three detail images
Bing-Fei Wu and Yu-Lin Su behave much more like white as the parameter of flBimgoes down.
In Section I, we summarize the definitions of WSSI, WSSJ and
wide-sense cyclostationary (WSCS) of a 2-D random field. The
Abstract—The emphasis in this correspondence is on the study of nain results are developed in Section IIl. Section IV contains two

nonstationary two-dimensional (2-D) random fields with wide-sense sta- . o .
tionary increments, wide-sense stationary jumps, and 2-D fractional examples to demonstrate the stationarization of the fields of WSSI

Brownian motion (fBm) fields. The effort made in this work is to develop and WSSJ. The conclusion is given in Section VI.
a realizable method of stationarization provided for nonstationary 2-D
random fields. We also present the correlation functions of the discrete

wavelet transform relating to 2-D fBm fields that will decay hyperbolically Il. PRELIMINARY

fast. A mathematical tool proposed by Mallat [12] using wavelet basis
Index Terms—Discrete wavelet transform, nonstationarity, random 10 image analysis is extracted herein. Some properties of 2-D random

fields. fields [17, pp. 38-39] are reviewed here.

Definition 1: A 2-D random field f[n.,n,] has WSSI's if
the second moment of the incrememRs[ n:1,ny1, Tw1, Ty1;
N2y Ny2, Tu2, Ty2l = E{(E a1 + Tur, nyt + 71] —E[nar, nyi])

The concept of stationarization established herein is based on W5 + 7.9, 7,2 + 72] — f[n22, ny2])}, depends om,.1, 1,1, N2
motivations. First, lacking of stationarity for a two-dimensional (2andn,» only throughn,, — n.» andn,; — ny2; i.e., Rf[ nei, ngi,
D) random field will cause lacking of time-invariance that is usually,,, 7,;; nyz, ny2, 7o, 7y2] = By[nen — s g1 — ny2, Te1, Ty1;
found in estimators and detectors. Second, the stationarity is Us@fW, 7., 7,2], Y1, Ny, N2, Ny2, Tot, Tyis To2, Ty2 € %, Where
in improving the computation efficiency of filters. f denotes the complex conjugate fif

Multiresolution signal processing has been used to implementDefinition 2: A 2-D random field f[n,,n,] iS a process with
the discrete wavelet transform (DWT) efficiently with almost naVSSJ's if (£[n.. + 7. n, + 7] + f[n.. ny]) is wide-sense stationary
redundancy. Through the multiresolution analysis [2, pp. 119-121] [A4VSS), Vn,, n,, 7= andt, € Z.
pp. 129-166], the DWT performs well in the structure of the subband Definition 3: A 2-D random fieldf[n.,, n,] is called WSCS with
filter system, calledperfect reconstruction-quadrature mirror filter period if £{f[n, +rT,n,+rT|} = E{f[n.,n,]} and Ry[(n.i+
(PR-QMF) [12], which is recognized as a realizable finite impulsger, ny1 +7T), (neo +7T, nyz +7T)] = Re[(ne1, ny1)s (a2, ny2)],
response (FIR) filters system. Recently, the wavelet transform (Wfbr every integerr.
has been considered as a powerful tool for nonstationary signalThe above definitions are directly extended from the 1-D case in
analysis [1], [3], [7], [12], [16]. In [6] and [18], the fractional Papoulis [13, p. 373].
Brownian motion (fBm) process could be stationarized. Tewfik [18]
and Kaplan [8] further proposed that the correlation function of a
one-dimensional (1-D) fBm process decays hyperbolically at a rate ) ) L .
determined by the number of vanishing moments of the waveletSince image flles_are finite fields as usual, the length of an original
function. However, all of these approaches mentioned above #®& random fieldf is set to beV x N such that the approximate
suitable only for 1-D stochastic processes. The stationarization iB12g€ A= f and three detail image®); f, Dy, f, and D7 f from
multidimensional signals is seldom discussed. Because an imagél@ can be reduced to be
considered as a 2-D signal generally, the generally used 1-D WT is (N/2m=1)—1 (N/27=1)—1
necessarily extended to 2-D. Mallat [12] proposed a mathematical A Flks, ky] = Z Z h [(n_r - Qk.r)i]
tool, called separable multiresolution subband filter, to adopt wavelet CamT
basis applied in image analysis.

This work will present theoretically that a nonstationary 2-D ran-

|I. INTRODUCTION

. MAIN RESULTS

14 =0 ny=0

X h [(7Ly - 2ky) ]‘4mflf[nz, ny]

_N
Zm—1

dom field with wide-sense stationary increments/jumps (WSSI/WSSJ) (N/2™ =1y —1 (N/2™m =1y —1

can be stationarized by using a separable PR-QMF structure of 2-DD,I§f[k1,, ky = Z Z h [(nl, —2ks)_~ ]
DWT. The results apply to a sampled 2-D fBm field and a random n,=0 n,=0 zmt
field with WSSJ as the testbed. Furthermore, we will explore the X g[(ny = 2ky) _x [ Awmei flna,my)]
decorrelation characteristic within the correlation functions of three 2m =t

detail images occurred in a 2-D fBm process. The decorrelatigfy <o forth. for DYf and DPf, where (n)y denotes

defined in [18] means that the correlation functions of the 2-D DWZI’n modulo N). Let F, A, ananw denote the following

images decay at a rate much faster than that of the fBm itself. Theg&rices of random fields respectively:
correlation functions are shown to decay at the ordeffof % at
F =|[f[ne, nyllnxw, A = [An flkae, ky]] 2 ;
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TABLE |
AUTOCORRELATION DATA OF THE APPROXIMATE IMAGE, A, f, AND THREE DETAIL IMAGES,
D% f.d=H,V oRD, WiTH m = 1 FOR THE2-D RanDOM FIELD WiTH WSSI IN EXAaMPLE 1

m

H =103 H =105 H =08

m | Autocorrelation | [(ky1, ky1). (K2, by2)] E{zy™} E{zy~} E{zy*}
1 | Rpwu [(0,0),(0,0)] 4.5045¢ — 09 || 1.3132¢ — 09 || 2.7292¢ — 10
[(1,1),(1, 1)) 4.0157 — 09 || 1.1341¢ — 09 || 2.3067¢ — 10
[(1,2),(1,2)] 4.3042e — 09 || 1.2236e — 09 || 2.4744¢ — 10
1 | Rpv [(0,0},(0,0)] 3.9924¢ — 09 || 1.1474e — 09 || 2.4182e — 10
[(1,1),(1, 1)) 4.3307¢ — 09 || 1.2547¢ — 09 || 2.6422¢ — 10
[(1,2),(1.2)] 4.4229¢ — 09 || 1.2758¢ — 09 || 2.6420¢ — 10
1| Rpo [(0,0),(0,0)] 1.5632¢ — 09 || 3.2238¢ — 10 || 3.1743¢ — 11
[(1,1).(1,1)] 1.5850e — 09 || 3.2985¢ — 10 || 3.3107¢ — 11
[(1,2),(1,2)] 1.5424e — 09 || 3.1958¢ — 10 || 3.1652¢ — 11

1. E{xy"} denotes E{W,, flkun, k1 |Wo, f*[kun, kyo], W = A, DH, DVor DL,

2. {B[n,,n,]} is a 128 X 128 sampled 2D {Bm random field.

are twoz‘lm 2,; r matrices,m > 1, whose entries are defined as  The right Kronecker (or direct) produét B of two 57 W
matrices,[a;,;] and[b; ;], is defined as [11, p. 407]

Hi—1le,s = h[i —2k] and [Gu—i]k,: = gli —2k],  (2)
G')AB,mfl =A®B

and satisfy a0,0B w B e ey B
(L]_]oB a1‘1B al, Nl_lB
B T
[H7n—1]k,i = [H7n—1]k+l,i+2 -
and ax B azflm—L.,LB azlim_l"zmv—l_lB
lem—1]k,i = [Gm—1]k+1,it2 (3) 9)
wherei = 0,1,---, ;255 -1,k =0,1,---, 7=~ —1 and the additions From (3), it yields that the elements 6f1 5 ,.—1 have the following

k+1 andi+2 are, respectively, modulem and,m . According to relationship: 1

the finite length of the 2-D random field, those wavelet imagestht

resolution as defined |n [12] can be formed infs x -~ Matrices ©aBm—lipy 2y o~ = [@AB,mfl],.Jr, N Ly pk N o
12tk i

for ke, ky =0,1,-- — 1 and all positive integers: < log, N, e

o
which are expressed as =[0amm-1];
- (10)
A—7n = H?n—1A—rn—1 Hrn,fl
=Hp—iHpmez---HoFHE ---H: _oHE 4 @ form >1,i1=01,-, 5 —1andj, k=01, 52 — 1,
DY —H,, 1A,._.GL_, where A and B denoteH,, 1 or G,,_;. For the convenience of
ipulation as the following, we assume thats .- is in period
= m— m—2r F T--. 7’7‘ T7 5 manlpu 1 o .
v Hin—1Hrm— THU Ho - Hi G ®) " in both the row and column blocks (or elements in each block) with
Dp = Gm—tAm—1Hpy s=-r, respectively.
=Gm 1Hm 2---HoFHZ -- - HL, _oHL _, (6) Now, Iet a column vector be generated by column-scanning the
and random matrixF, called thevec-functionof F, which is denoted as

vecF or F'. It is concatenated with one column followed by another

D T
D = GumiAuim1Gmy as shown below:

= Gmfl Hm72 e HOFHé e H7177—QG7177—1 (7)
where the superscrifft indicates the notation of transposition. In this ~ Ve¢F = [£[0.0]  f[1.0] -~ [N —1.0] f[0.1]
framework, the reconstruction formula in [12] can be written as fIN-1,1] -+ fIN-LN-1]" (11)
. - ‘ ,
Ayt =Hn 1 AmHy o1 + Ho 1Dy G which is anN2-dimensional vector. LeR = £{(vecF)(vecF)"}

+ G}, 1 DYHu—1 +G),_1DDG,i. (8) be the autocorrelation matrix ofecF where the superscripk
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Decorrelated property w.r.t. H
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Fig. 1. Profiles of Ryi of the 2-D fBm field w.rt. H = 0.3, H = 0.5 and H = 0.8 for m = 1 in Example 1, where “0".H = 0.3, "4
H = 05, X H = 0.8.

indicates the notation of complex conjugate and transposition. De- (J): if f[n.,n,] is a process with WSSJ, then three detail

fine Rgm as the autocorrelation matrix afecA,., and so forth, images,D,ij, DY f,andDP f, are WSS, respectively, and
for R, Where c denotesH, V or D. The cross-correlation jointly for all n,,n, € Z.
matrix of vecA,, and vecD; is also defined aRz 5. = Proof: See Appendix A. O

&{(vecA,,)(vecD;;)"} and so forth forR 5., 55 , Wherez and
3 =H,V orD. -
The main result is concluded in the following stationarizatiot& 2-D fBm Eield
theorem, calle®-D stationarization theoren®®-D ST). And the 2-D "~
DWT images related to a 2-D fBm process is shown to have theThe fBm process, as a well-known nonstationary stochastic process
decorrelation characteristics. with WSSI having statistical properties and the modelings of image
Theorem 1 (2-D Stationarization Theorem)et f[n,.n,], n, texture, has been discussed in many literatures. Tewfik [18] and
andn, =0,1,---,N — 1, be a 2-D real random field with constantkaplan [8] proposed that the correlation functions of the 1-D DWT
mean and autocorrelation functioR;[(n.1,m1), (n.o,n,2)] = decay at a rate much faster than the correlation functions of the
E{f[nr1.ny1] £[nw2. nya]}. Let £ln,.n,] be decomposed into one 1-D fBm itself. In this correspondence, we will show that the 2-
approximate imaged,., f, and three detail image®® f, DY f, and D DWT based on PR-QMF structure is also capable of preserving

DPf, as described in [12]. If[n., n,] satisfies the condition, the property for a 2-D fBm field.
©): Bllnarny) (el ¢ g% for some N > O, Consider a zero-mean sampled 2-D fBm random fié&lfh.., n,|

(1402 402 02 4n2 ) 7 = Bu(n.Az, nyAy), Vn,.n, € Z, where Az and Ay are the
Nr € Z and Vn,1,ny1,n.2,ny2 € Z, then, for any sampling periods of, y directions, respectively, and the autocorre-

positive integenn < log, N, we obtain that lation function of the 2-D fBm field is qualified to condition (C) in
(PL): if f[ny, ny] is WSS, thend,, f, DEf, DY f, andDD f are  2-D ST derived from [5, p. 250].
WSS, respectively, and jointly each other forall andn,, Theorem 2: Suppose that a wavelet function has the vanishing

55 are Hermitan momentL. Then the autocorrelation functions of the horizontal and
block Toeplitz matrix with Toeplitz blocks, wherer and  vertical detail images related to a 2-D fBm random fiélfh.., n,],
4 = H, V or D, respectively; denoted aD!! B andDY, B, respectively, decay &8((7; +7, )" ")
(P2): if f[n,.n,] has WSSI, thenDE ¢, DY f and DR f are Wwithv > £, wherer, =n,1 —n,» andr, = ny1 —nyo, foralln,i.
WSS, respectively, and jointly each other for all and 7.2, ny,1 andn,» € Z. Furthermore, for the diagonal detail image,
ny, i.e, Rz andRy5., 55 are Hermitian block Toeplitz dfenoted aDP B, the autocorrelation function decays with the order
of H—-—v,v > L.

i.e., Rgm, Rf)w, Rgmﬁm, andR =

matrix with ull'oeplitz blocks wheres and g = H, Vor
D, respectively; Proof: See Appendix B. O

moreover, Remark 1: Three detail images of a 2-D fBm random fielk]r..,
(P3): ifAnf, DEf DY f andDP f are WSS, respectively, andny] are WSS with the corresponding autocorrelation functions are
jointly each other for alk, andn, € Z, thenf[n,.n,] is Symmetric with respect to (w.r.t.) the axes: and r,. Therefore,
WSCS with period?, i.e., DEB, DY B andD2 B are approximated to be white for any positive
integerm as the vanishing momerit > 1 for DY and L > 2 for
Rili; = [Rilite. 42 (12) DX andDY. The decay is too slow wheH > 0.5.
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(a) E.A. of A of fBm field with H=0.5 (b) E.éd of Dh of fBm field with H=0.5
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Fig. 2. Autocorrelation functions of the 2-D DWT images of the 2-D fBm (WSSI) field with paranfétes 0.5 for the case ofn = 1 in Example 1,
(@) Ra[(10,10), (ke2, ky2)], (b) R [(10,10), (kp2, ky2)], (€) Rpv[(10,10), (ke2, ky2)], (d) Rpp[(10,10), (ke2, ky2)], wherek,, diff = kyo — 10
and k, diff = k,2 — 10.

From Theorem 2 and Remark 1, it yields that the three detavhere{v[n.,ny]}., », ez iS ani.i.d. normal distribution with mean
images of a 2-D fBm random field behave much more like whiteero and variancéd. Obviously, the jump’s field is a white noise
noises as the paramet& becomes smaller. field as designed. The simulation is based on 1000 Monte-Carlo

runs with the Haar basis. The contour maps of the autocorrelation
functions for the approximate image and three detail images atf
IV. EXAMPLES two different time range§(64, 64), (k2. ky2)], kooky2 = 54 ~ 74,

The sampled 2-D fBm field generated by the spectral synthe§@d [(74,74), (ko2 ky2)], koo, kyo = 64 ~ 84, are drawn with?
method [14, pp. 96-105] is used in Example 1 to present the case (P@ytour lines in Figs. 3 and 4, respectively. Comparatively, both the
of 2-D ST and the result derived in Remark 1. The spectral synthe@idocorrelation functions of the approximate and three detail images
method is an approximate method, but it does not affect the valid@je Proven clearly to be stationary conformable to the conclusion of
of our illustration. In the second example, a 2-D autoregressife case (J) in 2-D ST.
integrated moving average (ARIMA) model extended from a 1-D
ARIMA model in [10] is used to generate the 2-D random field with
WSSJ to demonstrate the case (J) of 2-DST.

Example 1 (The WSSI Field)Take a sampled 2-D fBm random It has been shown that a 2-D DWT _perfo_rme_o! on separable PR-
field denoted byB[n,.n,], n,.n, = 0,1,---,127, for H = 0.3, QMF sFructure could prowdg the _statlonarlzablllty property for a
H = 05 and H = 08 caseé, and choose the Haar basis fdtonstationary 2-D random field with WSSI/WSSJ, and the decay
simplicity, i.e., k[0] = A[1] = g[0] = —g[1] = -, with 1280 rates of the correlation functions of three detail images for a 2-D

Monte-Carlo runs. The stationary property of three detail imag&8m field are dependent upon the parameter of the f&m, Thefe

is shown in Table | which demonstrates the results derived frof@rrelation functions are proven to decay with the ordetiot

Theorem 1. From Fig. 1, we obtain that the ensemble- averag#g{ L for the diagonal detail image) based on the squares of the

correlation functions ofR,,n decay fast when the parametéF distance of translations. From the results of simulation in conformity

decreases. The mo get close zero, the more 2-D DWT of theWith 2-D ST in this work, we observed that the correlation functions

fBm approach white. The phenomenon in Fig. 2(a) shows that tfk three detail images for the 2-D fBm are invariant and symmetric

approximate image decays much slower than three detail |magesa“)lngkf1 — ka2 andky: — ky», but not stationary along the distance,

Fig. 2(b)—(d), the autocorrelation functions of three detail images a ké o1 = Fa2)? 4 (Ryr = ky2)?.

symmetric w.r.t. the axes df.» andky. around the centefl0, 10),

but not isotropic. It is corresponding to the result derived in Remark 1.
Example 2 (The WSSJ FieldConsider a nonstationary 2-D ran-

dom field { f[n., ny]}n, n,=0.1..- 255 given by

V. CONCLUSION

APPENDIX A
PROOF OF THEOREM 1: 2-D STATIONARIZATION THEOREM
The proof of (P1) (i.e., for the case of WSS) could be obtained
easily by similar but simpler procedures as the following proof of
flne, nyl + flne + Lony + 1] = v[n., ny) (13) (P2).
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Contour map of Ra[(64,64)(kx2,ky2)] Contour map of Rdh[(64,64),(kx2,ky2)]
(S
7
701 @@
2,
7
o 65 L,
2 >
7%
607 s
),
% g0
554,
55 60 65 70 55 60 65 70
kx2

Contour map of Rdd[(64,64),(kx2,ky2)]

55 60 65 70 55 60 65 70
kx2 kx2

Fig. 3. Contour maps of the autocorrelation functions for the approximate image and three detail images of the WSSJ field af (@6, Ga)gék .2, ky2 )],
where k.2 : 54 ~ 74 and ky2 : 54 ~ 74, in Example 2.

Proof of (P2): If f[n.,n,] has WSSI, the properties of constanis stationary, and the correlation function dpil(f) for all
means for three detail imageB;! f, DY f and DX f, are qualified kz1, ky1, kzoy ky2 € Z is given by
straight for any positive integem. The procedures to prove the
stationarity of the second order statistics for the three detail image§m(f)[( o1y ky1), (Raz, ky2 )]
are similar, therefore, we only takB!H f to be shown thoroughly = Sf{Dmf[ku ky |DE flk.o, qu]}

in the following: =N N1 No1 Tl o
i) For any positive integen, the autocorrelation function dd;. f ’ Z ’ Z Z ’ Z ’ Z Z

is shown easily to be bounded.

i) Since the real proces§ is of WSSI, defineyz[7i] = f[#] —
flii — 7], @ = [n.,n,], for every integer vector = [r,,r,], X [(nem = kal)%]g[(”ym - Zkyl)%]
Nay Ny, Tz, 1y = 0,1,..., N — 1. Followingly, choose any integer 1 ok AT
vector? = [r,,7,]. Let7 = —7 = [s,, 5,] such that = @, -1}, § = 9 [T »yz)%] (i = 2ly2)a]

Nam=0 nym=0 ny1=0 lgm=0 lym=0

I, — it1, and the correlation function betwesn[it\] = y+[ne1, ny1] % Bf[(nxl "yl) (bl
andys[l1] = ys|lz1,1,1] is stationary and satisfies T T N T
Ry, [, 1) = E{yeAimly«[L]} = Rylin. 1] e Mt B
— Ryl i) = Ry, 1] + Ryl i), XD [(rem = 2her) _x Jgl(nym - Qkyl)il]
- T Gl —
=e{li — Py = di(ji ~ 1)) (AL)

y[(lym = 2ky2) _~ 1] o h[(lyr = 20y2)N]
2m—

whered, (+) is function of ¥ due to the stationarity of» andys. In 1

the literature, the function; (-) is known as the structure function < 2{ vrys[(ats 1), (e, by )]+ Byl(ner, nyn)s (nas, )]

[19, pp. 391-394]. Based on one vanishing moment ¢10) and the + R¢[(ls1.1y1), (lzl L,1)l}
result of (P1), we therefore obtain that the horizontal detail image of NN PR
27 — 2‘m om—

y# defined as Z Z Z Z Z Z

Dn) )[krl Ayl] Mgm=0 11y =0 1y1=0 lpp=0 lym =0 l,1=0
2m Zm—T 1 sz T 1 N—1 xh [(nmn Zha ) moT ] !}[(77!,771 a 21’“’;}1)2771;\]771] o
Z Z Z h n“" = 2kwm— l) ] R[(Ty1 = 2ly2) ] §R7/7‘.'/s (R my1), (To1,1y1)]

Nam=0 nym=0

1
X g[(ym = 2kyru—1) 1] whl(nyr = 2ny2) N]ye[nrer, ngi] = 5 Bpu(y g [(ka1 ky1), (Raz, y2)] (A2)

2m—
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Contour map of Ra[(74,74),(kx2,ky2}] Contour map of Rdh[(74,74),(kx2,ky2)]
80}
75
z
70
65131
65 70 75 80 65 70 75 80
kx2 kx2
Contour map of Rdv[(74,74),(kx2,ky2)] Contour map of Rdd[(74,74),(kx2,ky2)]

65 70 75 80 65 70 75 80
kx2 kx2

Fig. 4. Contour maps of the autocorrelation functions for the approximate image and three detail images of the WSSJ field af(thé, fahgék .2, ky2 )],
where k.2 : 64 ~ 84 and k,2 : 64 ~ 84, in Example 2.

where . denotes the complex conjugate bf Hence, (A2) can be X [(-)GH””_l]lllJrkl i kg

. . . . . 2m = m—
described by the following matrix equation, such that the correlation 2

. =i : : : : [Onn,0ls, & 4 hy o [Aio Ntk o N k2
matrix of D,,(f) is equivalent to one half of the correlation matrix 13 ko to+ks
Rﬁg(yrys) (11, p. 410]. x [(-)HH70]jol\7+k2711 Stks "7
1 [OcHm-1l;,. ST k2 Iz Rtk
Rﬁg(f) = §Rﬁg(YIYS) = 5(_)GH’7”_1®HH‘W'_2 e (2.,2]71)2—1 (N)271(N)271 (2-,7;,\],1)2—1

£ ok ok 1
@HH,OA()HH,O"'()HH,m—Q()GHmz—h (A3) = 5 . Z Z Z Z
i 1=0 i0=0  jo=0 Jem—1=0
where the elements of matriA are composed of the structure

. . . X [@GH"”_l](llJrl)z’lm+lc1,(im,71+2) N othy T
function evaluated at various lags, i.e.,

Zm—1

[(‘)HH-O]u1+zm—1)%+k2,(i0+2m)N+k2
A= X [Altio12m) Nt ks, (Go+27) N +ko
(1 (7 =1 D], 7 20,0),(1,0) 0 (N —1,0),(0,1) o (N 1,10, (N1, N 1) X [OrH.0](jg42m) Npbo G b2m 1) Mk

[OHm 1],y 42) v
CHm—=U(jm _142) 5577 ko, (12 +1) Sk +ho

Zm—1 27

A is also a Hermitian Toeplitz matrix with Toeplitz blocks. Here,

we assume thaA is period in both the row and column blocks with = [Rﬁﬁll(f)](ll+1) otk (I241) D ko (A4)
eriod NV and every block is also period in both the row and column .

Elements with per)i/odV. Note thaFt)A is not positive definite, but and (b) for inside block and any, I :

Ry ) is positive definite. [R
The property of the Hermitian block Toeplitz matrix with Toeplitz N s N

blocks foer,g(f) will be manipulated in the following processes for 1 (Gr=)™ 1 ?rw?—1 GGt

Dg(f)] Iy 2% +k1,l2 5%-“‘2

any positive integem, k. = k141 5, ky = ko + 1o 5, wherethe =5 > Z PO _ >
indices inside each block are denotedkasks = 0,1,---, 2% — 1 tm—1=0 =0 Jo=0 Im—1=0
and the indices of blocks aige, /> = 0.1,---, Zlm — 1, (a) for block X [(‘)GH.m—l]z1 etk le s i 1
matrix and anyks, kz: [Orr,0li, 5 iy 15 Nio [AltzNtio 12N+
[Rﬁg(f)] 14 Zflm-',-kq 1o nyn +ho x [C_):‘HvollzNJrjon %+J’1 e [@éva*l]lz 2,,1:],1 +im—1,l2 ;im+k2’
(Gmor)®=1 (2o (2o (GREr)?-t Gmer)®=1 2oz (G-t

1

DD D YRS :%Z'“Z D

Ty —1=0 19=0 J0=0 Jm—1=0 Ty —1=0 19=0 70=0 Jm—1=0



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 9, SEPTEMBER 1998 1365

rZ P(x,8)
7] = ] andlim(a,g)—(0,0) TaTar

X [@GH*7"71]I1 e (ki+1).02 27,?], F(imo1+2) " Telft+]3]2° —
we have

1

= 0 [15, pp. 5-8]. Then
[@HH,O];Z L (ig42m 1), N+(ig+2™)
X [Aliy Nop(ig+2m) . 1s N4 (o +27)

o [(Qr +277.)" +(Qy + 277"
x [ HH, 0112N+(J0+2m) Iy Z4+(p+2m—1) "

=1"P(a, p)
[OGH,m—l]I T N
=r# —~D"P(0,0 I +RY sT 1) b (A8
= [Rﬁg(f)]llzm (A5) {; (0,0)(&)" (0,0) P(0 (A8)
Hence,Rﬁg(f) is a Hermitian block Toeplitz matrix with Toeplitz Since ¢ has the vanishing momert, i.e., f o () = 0, for

blocks, i.e.,DE f is WSS.

o ! =0,1,2,---,L — 1; or equivalently,", g[k]k’ =0, forl =
The proofs of (P3) and (J) are similar to the proof of (P2). O

0,1,2,---,L —11[9, p. 142], therefore, we obtain

APPENDIX B Rpuplre, 7
PROOF OF THEOREM 2 I
v D : : =(r+r )” g 2?m(H=L)
The proof of DEB, DY B and D2 B are resembling. Herein we - )
only take one of them shown below in detail. let= k., —k.» and —_—
Ty = ky1 — ky2, for all ku1., ko, ky1, ky2 € Z. The autocorrelation % Z Zh i hlimlglh] -« hlln]hLja] - Bljm]

of DE(B) is written as

1 1 T 1 1 T \Ta—2m(r—1
X glta] - BltalS Y —DTP(0.0)(7)"2 2m(r=1)

RDH(B) [72s 7] reamST

= &{DBlk.1. ky1 | DEBlk,o, k yq]}

—Z DI Z x (r2+72)"" " 4 RT (P07 b (A9)

i 1 L,
hli 1 [im [l
;Z Z [l Joh] At} Because the th order partials forP(a, 3) depend onr”, %, and
17,2, wheren, + ne = L andni,n2 > 0, the Lth order term
of {-} in (A6) is bounded below by‘*é. Hence,R gy [Te, 7]

X h[J1]~“h[Jm]y[f1] : m

K H
X < 5 )[(Qz +277) + (Qy + 277y’ decays asO((r2+ r2)7~2)) at least.
Particularly, for the diagonal detail image case, the terms of
i 172, n1 + ne = L, in the autocorrelation function
SR IIDH VD) o
i 11 L J1

IS WBEIRTORIE Ropm | 7]
B - " =T [i1] -~ hlim]g[la] - -
< TG AT+ T (= ) P /3)} (A { (2)x- %

x h[lm]J[Jl] “h[im]glta] - - - R[tm] P(a, /3)}

Whel’eQI = i7n+2i77171+' . _+2771717'1_[n1_2]m 1—- __277171]1
ande Ejnz'i'zjrn—l'i" * _+2m—l J1— tm 2trn 1— —2m= Lt 2 oNH—L K 2m(H—1.) ,
LetT = (2"7)2 + (2"r,)% a = %=, g= L 5= [Q o, =(m+7) <—3)2 DDl
andP(a,3) =[1+Ta? +T5% + 2'"+1r a4 2mTy e]H Define . e
U = |2, rifa <1}, Q@) = {r | 5, rifai < 1} hlimlglh] - RlLnlglin] - Rljm]
and the differentiable closure 61,(7) by Qo(7) = {r +t|re€
Q0(7) and |t| < 1}, whered = [¢1 ¢2]”, ¢1,42 € RT. Clearly it X glti]--hltm]q > —D "P(0,0)(7) 27 2m (= 0)
is found P € C>>*) on R?. The Taylors formula for real-valued reQasrL ‘
P(a, 3) at (o, 3) = (0,0) is the following:
x (w4 7)Y R PE)T (A10)
P(a. Z SD"P(0,0)(7)' T "+ RE, , P(FT 1)
reQ '
=1+2H(2"7, Q +2"7,Q,)I” will be vanished by after the filter operation along the indicas {1,
+ Z —D "P(0,0)(7) T + R(o O)P(Ul"l) j1 andty. Tt]grefore, thel th order te[m of{-} in (A10) is bounZded
EQ r mg 0.1 ! below by I'"". Hence,Rpp g [7.,7,] decays faster a®((r; +
(A7) W) O
—1 — Ar ST —1\r
where R(o o PTT) = X cone D" P, 7T H@rhH, ACKNOWLEDGMENT
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