
ELSEVIER Journal of Systems Architecture 44 (1998) 955 970

JOURNAL OF
SYSTEMS
ARCHITECTURE

Petri net-based analysis on object assignment in distributed
object-oriented systems

Wen-Tsung Chang a,1, Chien-Chao Tseng b,,, Wen-Kuang Chou c,2
a Multimedia Laboratory, Special Systems Division, InstituteJor Information Industry, Taipei, Taiwan, ROC

b Department of Computer Science and Information Engineering, Institute of Computer Science and In]brmation Engineering, National
Chiao-Tung University, 1001 Ta Hsueh Road Hsinchu 30050 Taiwan, ROC

c Department of Computer Science and Information Management, Providence University, Shalu, Taiwan, ROC

Received 19 January 1996; revised 13 December 1996; accepted 19 May 1997

Abstract

Object-oriented programming [9], which treats objects as processes in execution, has shown significant effectiveness
in distributed systems. This effectiveness is greatly influenced by how objects are assigned to nodes. In this paper, we
present a colored generalized stochastic Petri net (CGSPN) model to analyze the behavior of object invocations when
an assignment strategy is applied. The effectiveness of an object assignment is also analyzed by our CGSPN model.
Moreover, this analysis provides guidelines to develop an efficient object assignment strategy. [4-8]

Keywords: Petri net" Distributed Systems; Assignment strategy; Object-oriented programming

1. I n t r o d u c t i o n

Dis t r ibu ted ob jec t -or ien ted systems are c o m p o s e d of number o f he te rogeneous or h o m o g e n e o u s p ro -
cessing nodes tha t are l inked to an in te rconnec t ion ne twork (see Fig. 1). Objects in nodes coopera t e to ac-
compl i sh a given task, and objects in different nodes in teract with each o ther via invoca t ions [1,2]. However ,

* Corresponding author. E-mail: cctseng@csie.nctu.edu.tw
i E-mail: wtchang@iii.org.tw
2 E-mail: wkchou@simon.pu.edu.tw

1383-762110165-6074/9815 see front matter © 1998 Published by Elsevier Science B.V. All rights reserved.
P I I : S 1 3 8 3 - 7 6 2 1 (9 7) 0 0 0 4 9 - 0

956 HI.. Z Chang et al. / Journal o f Systems Architecture 44 (1998) 955 -970

[i i

Fig. 1. Abstract model of distributed systems.

the invocation overhead between nodes is a major bottleneck that affects overall performance. To minimize
such overhead, we should first analyze the behavior of objects handled in a distributed manner.

There are two approaches to modeling the behavior of distributed object-oriented systems: the queueing
networks (QNs) theory and the generalized stochastic Petri net (GSPN) model. The QNs [10-13] approach
is to model objects as servers with queues processing incoming requests, whereas the GSPN [14~20] ap-
proach is to model objects with states, transitions and the notation of stochastic process. The GSPN model
gives a better description of how transitions, concurrency, and synchronization behave in distributed sys-
tems. However, most of them were designed to model the internal behavior of objects in specific languages
[17-20]. In our study, we intend to analyze the communication overhead of a distributed object-oriented
system. Therefore, we focus on the behavior of interaction among objects rather than the internal behavior
of objects. We develop a generalized modeling technique based on the colored GSPN (CGSPN) model since
the CGSPN model can clearly describe the behavior of distributed object-oriented systems [21,22]. More-
over, we further use our model to analyze the factors to the effectiveness of an assignment strategy in a dis-
tributed object-oriented system.

The rest of this paper is organized as follows: Section 2 introduces our CGSPN model. Section 3 further
describes our CGSPN model in a semantic structure. Section 4 verifies our CGSPN model and discusses the
effectiveness evaluation of an assignment strategy based on our CGSPN model, and Section 5 presents our
conclusions.

2. The CGSPN modeling of object invocations

2.1. An abstract object model

Before describing our CGSPN model, we should first define an abstract object model. From the view-
point of programming languages, Snyder defined an abstract model based on the following concepts [23]:
• An object explicitly embodies an abstraction (class) characterized by services or operations (methods).
• Operations can be generic; an operation can be uniformly performed with visibly different behaviors on a

range of objects (polymorphism).
• Objects can be classified by their services, forming a class hierarchy.

V~ 72 Chang et al. I Journal of Systems Architecture 44 (1998) 955-970 957

• Objects can share the same implementation, either in full (class instances) or in part (class inheritance).
To analyze the execution behavior of objects, we further define an object as follows:
• Objects are units of execution, with independent storage containing local variables and associated oper-

ations (methods) that maintain these variables.
• Each object belongs to a class, i.e., an object is an instance of a certain class.
• An object is activated by incoming invocations. If the required method is not found in its local storage,

the object will by-pass this invocation up to its superclass, until the required method is found, or a failure
message is returned.
To simplify the analysis of our abstract object model, we make some assumptions about the behavior of

object invocations:
1. An object can only execute one invocation at a time, that is, an object has a queue collecting all types of

method invocations. Invocations are executed in FCFS (First-Come-First-Served) order, without pre-
emption or priority.

2. To ensure consistency in execution, data access in an object is a critical section managed by an operating
system, and programs in this operating system are assumed to be deadlock-free.

3. The arrivals of invocations are Poisson processes.
Using the above assumptions, we have proposed a five-phase invocation protocol to describe the interac-
tion behavior of objects handled in a distributed manner [3]:

Phase 1: Start invocation (Issue).
Phase 2: Route invocation to target object (Transmit).
Phase 3: Carry out the appropriate computations (Execute).
Phase 4: Branch to nested invocations and continue execution (Branch).
Phase 5: Return (Return).

This five-phase protocol is developed based on the four-phase protocol which indicates the operation of
object invocations by Tomlinson et al. [24]. When a source object activates an invocation to a target object
in phase 1, this invocation travels through nodes in phase 2 if the source and target objects are not located
in the same node. In phase 3, the target object performs the operations specified in the associated method. If
such invocation activates further invocations, the protocol enters phase 4, which recursively repeats phases
1-5, until further invocations have been completed; the target object returns the results in phase 5 after the
execution is finished.

Because of its generality, this five-phase protocol can be applied to both the statically typed program-
ming languages, like Eiffel and C++, and the dynamically typed programming languages, like Smalltalk-
80 and Common Lisp Object System (CLOS). Moreover, this description can also be applied to develop
our analytical model.

2.2. The C G S P N invocation model

As mentioned earlier, CGSPN can be applied effectively to model distributed object-oriented systems
since it clearly describes the dynamic behavior of invocations with different colors of tokens. In this section,
we propose a model based on CGSPN to analyze the dynamic behavior of object invocations.

In a distributed system, objects are assigned to nodes to perform certain tasks in parallel by an assign-
ment strategy. An assignment strategy can be represented with a mapping function. The mapping function

958 W: T. Chang et al. / Journal o[Systems Architecture 44 (1998) 955-970

Map is depicted as Map: Obj ~ Node, mapping function of an assignment strategy, where Obj is the set of
objects, and Node is the set of nodes.

This function maps an object to a certain node. Our CGSPN model is based on the description of nodes
since we want to describe the behavior of objects among nodes. The CGSPN model for a particular node N~
in a distributed system, denoted as ND,, is defined as follows:

Definition 1. CGSPN NDi = (pi, T i, Ai,LiXAi,M~)), where pi = {PI,, P2i,P3~} is the set of places (states
of invocation behavior), T i = {tl,, t2,,~.0 , . . . , tr~., 1, tm~,o,..., tmi,-l} the set of transitions
(n = number of nodes in target system), A i _C {(pi × Ti)}{ U {(T i x pi)} the set of arcs connecting places
and transitions, L~= {2, #7} the set of method m firing rates associated with timed transitions,
X = {c l , . . . , ck} the set of token colors (k = number of methods in the class hierarchy), Ai: pi E X* the
function indicating the numbers and colors of tokens in a given place, and M~ is the initial marking of a
node N,.

Tokens in different places stand for states of invocation behavior according to our protocol. A transition
is enabled when a sufficient number of tokens are accumulated in all its input places. When a transition is
enabled, it may fire immediately, or after a period of time. The duration of time period is determined by the
set of firing rates L i. Firing a transition may change the color of a token by firing rules. We assume that the
firing rules are determined by a source program, and whenever an object method is invoked, its codes can
be found in its local processing node.

The CGSPN model ND~ only represents the description of a node. In general, an distributed object-ori-
ented program consists of several nodes. Moreover, we need constructs to control invocation activation and
variable access. Hence the CGSPN model of an object-oriented program, denoted as DS, can be depicted as
follows:

Definition 2. CGSPN DS = (P, T,A,L,X,A,Mo), where P = {Ui~0 ~ pi} u {P0, ARM, VM}, T = Ui"_o 1
(Tiu{tsi}u { t f }) ,AC{ (Px T) } U { (T x P) } , L=Ui"=-~L i,

A: \~=0 /
ARM --~ {c,}*, M0 = {A(Po),A(ARM),A(VM),M°,...,M~, ~},
VM {Co}*,

where ARM is a place to store activation records of invocations, VM a place to store object variables, ca a
token of an activation record, and co is a token of variables in an object.

The detailed description of the CGSPN model DS is shown in Fig. 2. Function f is a probability func-
tion defined by source program to enable/disable the firing of a transition. This model consists of the de-
scriptions of classes (we use the term "subnet ND{' as the CGSPN model of a node Ni). The DS model also
includes additional places VM and ARM. Tokens in place VM are used as the synchronization mechanisms
for variable accesses. A token with color co in VM represents the variables of an object. Tokens with color
in place ARM represent the activation records of invocations. These records are used to hold the context of
parent invocations. Hence X' includes X, co and ca. Moreover, tokens in VM and ARM are managed by the
operating system. In an object-oriented program, objects are activated by invocations. Every invocation

I4~ T, Chang et al. / Journal o f Systems Architecture 44 (1998) 955-970 959

', NodlIN i
{,ul0rlet ND), ~ Fr°m IT '~i iltlcl Im "Li] P ~

X / r-- J J ,Y \ From 13 , ~ ' ~ ' ~ ' P 1 : 1
F - - ~ - ~ " ~ - - ~ i~ ~ I I t " ,~ I

(~--) .-~ ~ S = . . '~ ~ . ~ i "° l _"° l " ' 1 / 2 ' t ° " 1 - ~ ' 1
t2i ~ 'd7 11i ~ # " i! I / ~ I f ~ " i f

ToW ~ I Toy . ~ I N"---~-ToARIdI" (' - L.~ g'~ L... ('~ L.~
-- -- ~ -(Sl'ore):i k ND ~ ND 1) - - - k ND ~1 ..:

, , !i .
,i ,l, ,i, ,l, ,l, d, i .~ ~ ~ ~ ~ , . ; ; ~ - t .

..-.F- -1 , ,.F. -1- ,1 , ,.1_ ::

. i ! c 7. 2

(a) The n~e model NO i (b] Trle s#'slem mcdel DG

Fig. 2. CGSPN description of the activity of a node N, and the system resources.

represents a token in the DS model, and is initially placed in P0. Thus, the initial marking A(Po) is deter-
mined by the initial object assignment in a distributed system. When the execution starts, these tokens enter
the places Pl i ' s of associated subnets through transitions tsi's according to the codes of the program.

Without loss of generality, assume that a token tko is in the place Pl i of subnet ND~ and it invokes an
invocation of method m to object Oji. This token tko, along with a variable token released from VM, causes
the firing of transition tl~ after a time duration (phase 1: Issue). This duration is assumed to be an expo-
nential distribution with parameter #7' which depends on the type of method m and the target class i. More-
over, a new token tk,, which replaces tko, enters place P2i.

At this moment, token tk, enables all transitions tm~j's, as shown in Fig. 2. However, as tk, is transmitted
to the target place P l j of subnet (phase 2: Transmit), only one transition will fire. The firing of transition is
determined by function f , where f : T ---+ {0, 1 }. The duration time for transmission is also an exponential
distribution with parameter 2.

However, tki has to wait in P l j of subnet NDj if no token of object variables is released from VM (i.e.,
the target object is accessed by other object, which causes mutual exclusion of critical section in object vari-
ables). When a token in VM is released, both transitions tli and t2, can be enabled. At this time, firing func-
tion f determines whether token tk~ completes execution or further activates non-local invocations. For the
former case, that is, tk~ completes execution, f(t2g) will become one and transition t2~ will fire accompanied
with an associated activation record retrieved from ARM. After a duration time of execution (phase 3: Ex-
ecute), tki enters place P3j. At this time, function f causes transition trjj to fire and tki traverses back to its
parent subnet ND~ (phase 5: Return).

960 W.T. Chang et al. l Journal o f Systems Architecture 44 (1998) 955-970

For the latter case, that is, tki activates further non-local invocations, tli will fire (phase 3: Execute) and
tki is stored in ARM as a token of activation record. A new token, namely tkj, indicating further non-local
invocation, replaces tki (phase 4: Branch) and repeats the process described above. After further non-local
invocation completes, token tki, retrieved from ARM, enters place Pl j of subnet N D j to continue the re-
maining process. The process of Branch phase repeats until all the non-local invocations complete. At this
time, Return phase starts and token tki goes back to parent subnet NDi through P3j and transition trjj.

The proposed DS model can be constructed from the codes of an object-oriented program and the as-
sociated class hierarchy. In Section 3 we present the semantic constructs of our GSPN model to assist the
performance analysis.

3. Semantic constructs of CGSPN model DS

As mentioned earlier, we have proposed a CGSPN model to describe the behavior of object invocations.
In our proposed model, every token of invocation has an attribute to show its own behavior. This attribute
can be represented by an attribute function, denoted as Iattr. This function is defined as follows:

l~u~ : Token ~ (Obj × Obj × Method × (Token u {null})) , (1)

where Token is the set of tokens in places Po,Pli's, P2i's and P3i's (i = 0 , . . . ,n - 1), null the empty set in
places Po,Pl~'s,P2i's and P3i's, Obj the set of objects, and Method is the types of method invocations.

The values of these functions are determined by the source program. Moreover, the last term Token in
f u n c t i o n Iattr indicates the token of parent invocation.

If an object Oil is assigned to node Ni, the mapping function can be defined as Map(Oil) = Ni. Moreover,
a token tko in P0 has an attribute which indicates the initial status of program execution, such as
Iattr(tko) = (-Oil, m, null) , where tko is an invocation of method m to object Oil. When the program starts
execution, tko in P0 moves to Pli of subnet NDi through transition tsi. After tko enters place Pli , transitions
tli and t2i are enabled. The firing of tli and t2i is determined by the firing function f . This function decides
whether such invocation returns back to parent subnet or further activates inter-node invocations, that is
f (t l i) + f(t2i) = 1, for all i, i = 0 , . . . , n - 1. I f f (t2 i) is one, that is, the invocation completes execution, t2i
will fire by retrieving an associated token of activation record from ARM and the resulting token will enter
P3i (see Fig. 2). However, i f f (t l i) is one, tli will fire since and tko is stored in ARM as a token of activation
record, which will be discussed later. At the same time, a new token tki is created in P2i to represent further
invocation.

In general, the semantic of transition t l i(i = 0 , . . . , n - 1) is as follows:
For a token tk selected from Pl i of subnet NDi, and Iattr(tk) = (Oil, Ojl, m,ptk), where Map(Oil) = Ni

i f f (t l i) = 1 tk ~ tk', and [,tu(tk') = (Oj l ,Okt ,m' , tk} ,where

tk, tk' E Token, ptk E Token w {null} . (2)

Whenever a token of an invocation moves from Pl i to P2i through tli, its attribute determines the value
of firing function. This firing function can be defined as follows:

Let tk be the token in P2i of subnet NDi, Iattr(tk) ~- (Oil, 0 i l , m ,p t k) ,N i -~- Map(Oi l) and p tk E Token
w {null} ,

VK 7£. Chang et al. I Journal o f Systems Architecture 44 (1998) 955-970 961

f (tm i j) = 1 if Nj = Map(@,),

f(tm~,j) = 0 otherwise,
, 1 (3)

where Z f (t m ~ 4) = l , for al l i , i = O , - - - n - 1 .
i=O

I f f (t2 i) is one, the firing function f also determines the return path via transitions trj.~ by the attribute of
tko, which will be discussed later.

As mentioned in our five-phase protocol, two phases need to access tokens in VM: Issue and Execute.
The access control occurs in the transitions tli 's and t2/s. To fire these transitions, the corresponding vari-
able tokens should be found in VM. Each object is associated with a token in VM. The attribute function
V~t~r for the tokens in VM is

Valtr : Tokenl -+ Obj, (4)

where Tokenl is set of tokens in place VM

Each object Oi thus has a token vi in VM with attribute V~ttr(V~) = O,. The conditions required to enable
transitions t l / s and tZ 's can be described as

Let tk be a token of invocation, and lattr(tk) = {Oil, Oil, m,ptk),
For transitions tl~ and t2i: [tk ¢ A(Pli)] and [Oil ¢ SvM],
where S w = {O~[Vv~ E VM, Vattr(Vi) = Oi} , tk ¢ Token, ptk E Token u {null}, and

vi ¢ Tokenl. (5)

When the condition is satisfied, the associated transition retrieves the variable token from VM and, after
it has fired, the transition releases this token back to VM.

A token in A R M represents the activation record of an invocation. A R M could be a stack or hash table.
Activation records can be retrieved by the function Acc, denoted as

Acc: Token ---+ Token w {null}. (6)

Initially, we assume that Acc(tk) = null for any token tk in P0. Whenever the transition tl, fires, token tk
of method m in PI~ will be stored in A R M and create a token of child method m' invocation tk' in P2i.
Hence the semantic of transition tl~ can be depicted as Acc(tk') = tk, where

Iattr(tk) = (Oil, Ojl ,m,ptk) and Iat,r(tk') = (0il, Ok,, m',tk). (7)

As stated previously, i f f (t2 i) is one, transition t2i will try to retrieve a token from A R M via function
Acc. The resulting token then enters P3i and the function f determines the designated transition which
the resulting token will traverse, either back to P0 or its upper-level subnet. Function f is defined as

Let tk' be a token in P3~ of subnet ND~, /~ttr(tk') = (@1, Qq, m', tk, N~) = Map(Ok,) and Nj = Map(Oil),

f(tt5.j) = 1

f(tr , . j) = 0

f (t f~) = 1

if Acc(tU) = tk and/~attr(tk) = (Oi,, @1, m,ptk),

otherwise.

if Acc(tk) = n u l l

9 6 2 I4~ 7~ Chang et al. / Journal o/Systems" Architecture 44 (1998) 955-970

f(tJ~) = 0 otherwise,
n 1

whereZf(tr~ , j) +f(t fx) = 1 for all x and j , x , j : 0 , . . . ,n - 1. (8)
i = 0

After the designated transition has been determined, the resulting token tk' is replaced by the token tk in
transition t2i if Acc(tk') = tk. Otherwise, tk' remains unchanged if Acc(tk') is null.

With the above constructs, we can formally describe the behavior of an object invocation. In Section 4,
we will prove that our semantic constructs are correct in the DS model and analyze the effectiveness of an
assignment strategy by our DS model.

4. Discussions about the CGSPN model DS

4.1. Correctness of the semantic constructs'

In Section 2 we have shown the five-phase protocol of an invocation. This five-phase protocol can also
be viewed as a syntax term Invoc(i,j,m), defined as follows:

Invoc (i , j , m) : := Issue (i , j , m) Transmit (i , j , m) Execute (i , j , m)

Branch(i, j,m) Return(i, j,m) ,

Execute(i,3,m) : := Lookup(i,j,m) M-Execute(i,j,m)

Branch(i,j,m) : :=0 I Invoc(j,k,m') R(i,j,m),

R(i, j,m) : := O lM-Execute(i,j,m) I Branch(i, j,m) [M-Execute(i, j,m)

Branch (i, j,m) ,

where i j, k are source and target object indices, m, m' types of methods, Issue() an atomic operation for
phase Issue, Transmit() an atomic operation for phase Transmit, Execute() a composite operation for
phase Execute, Lookup() an atomic operation for method lookup in phase Execute, M-Execute() an
atomic operation for code execution in phase Execute, Branch() a composite operation for phase Branch,
R() a composite operation for phase Branch, and Return() an atomic operation for phase Return.

Using this syntax, we deduce three lemmas to prove the correctness of our constructs.

Lemma 1. Semantics of variable accesses is correct for all types of invocations.

The accesses of tokens in VM occur at Execution phase since the variables of target object could be col-
lected and updated. The accesses are caused by the firing of transitions tli 's or t2i's. Suppose an invocation
of method m to object Oil of node Nj activates, a token tko enters place P 1 j of subnet NDj. According to our
semantic constructs, condition (5) states that if tko is in place P l j and variable token of @1 is contained in
VM, both tlj and t2j are enabled and one of them is fired by function f . Thus, we can see that the semantic
constructs of VM are correct.

In Lemma 2 we prove that the semantic constructs of accessing A R M are also correct. Since the accesses
of tokens in place A R M occur only at transitions t l , ' s and t2 / s , it is thus sufficient to show that the seman-
tics is correct in transitions t l , ' s and t2/s.

W.T. Chang et al. I Journal of Systems Architecture 44 (1998) 955-970 963

Lemma 2. Semantics o f accessing A R M is correct for all types o f invocations.

Invocations can be classified into two types: one is initial invocations contained in the main program,
and the other is activated by other invocations. For the first type of invocations, the initial values of Acc()
are null, while the values for the second type are not. Suppose that an invocation of method rn to object Oil
of node Nj, denoted as Invoc(il, j l , m), is activated and a token tk~ enters place PIj of subnet NDj. At this
time, both tlj and t2j are enabled if condition (5) is satisfied. The behavior of tki depends on the following
values o f f ():

Case 1 (f(t2j) = 1): t2j fires by retrieving a token from ARM. If tki is an initial invocation, Acc(tki) is null
and function f causes the firing of transition tJ~ by statement (8), that is

f(tf~) = 1 ".'Acc(tki) = null, Nj = Map(@,).

Token tki will go back to P0 through transition t~ and terminates its execution.
If tki is the second type of invocations, Acc(tki) is not null and suppose that it is tko. Function f causes

the firing of transition trjj by statement (8), that is

f(trj,i) = 1 ".'Acc(tki) = tko, lattr(tro)

= (0~1, Oil, m,ptk), Map(Oil) = Ni.

Token tko will replace tk~ and go back to Pli of subnet NDi through transition trj,i to continue the remaining
process of tko.

Case 2 (f (t l j) = 1): tlj fires to further activate a non-local invocations. Suppose in node Nj, tki further
invokes method m' to object Okl of node Nz, denoted as Invoc (j l , kl, m'), where Nj ~ Nx. At this time,
tki is stored in ARM and a token tkj of Invoc(jl, kl , m') is created, and Acc(tki) is set as tkg. After the firing
of transition tlj, token tkj enters Plx of subnet NDx through tmj.x.

When Invoc(jl, kl , m') completes, tkj enters P3x of subnet NDx through transition t2x (since f(t2x) is
one). By statement (8) function f causes the firing of transition tr~j since Acc(tkj) is tki, not null. Therefore,
tki replaces tkj, and correctly goes back to P l j of subnet NDj.

After Invoc(il, j l , m) completes Branch phase, f (t2 j) becomes one and repeats the process of case 1. Thus
these semantic constructs are correct for all types of invocations.

Since the Branch phase includes a composite operation R() in syntax, we need to prove that R() works
correctly for all types of invocations.

Lemma 3. The proposed semantics is correct in R () .

By the definition of invocations, R() represents the remaining process of an arbitrary invocation. There
are four cases for the derivation of R(): Q3, M-Execut ion() , Branch() and M-Execution() Branch() .
Since the time duration of Execution() can be zero, O is thus a special case of M-Execut ion() , and
Branch() is also a special case of M-Execution() Branch() . For a subnet NDi, the first two cases happen
when f(t2i) is one and a token of an invocation will directly enter P3i by firing transition t2i. At this time,
R() completes its process and our semantic constructs are thus correct.

964 w.T. Chang et aL / Journal of Systems Architecture 44 (1998) 955-970

The latter two cases happen when f(tl~) is one, tl~ will fire and activate further invocation. Since the
firing of tl~ indicates the process of a further Branch() , which causes another process of R () , our con-
structs are thus also correct.

With the preceding lemmas, we can prove the correctness of our semantics with the following theorem.

T h e o r e m 1. The proposed semantic constructs are correct for all types o f invocations.

Proofi Without loss of generality, let us examine the behavior of an invocation which activates arbitrary
levels of cascading non-local invocations, as shown in Fig. 3. Let us examine an ath level invocation, de-
noted a s InvoC(ia-l,ia, rna), which is represented by a token tka in our DS model. This token indicates a
non-local invocation of method ma from object Oio_~ to object Oio, where Map(Oio) = Nxo, Map(Oio ~) =
Nxo_i, and N~o # Nxo_l.

We prove this theorem by induction on a.
(i) Case (a = 1): We discuss the behavior of Invoc(io, is, m]) with the five-phase protocol.

(a) Issue, Transmit and Execution: By Lemmas 1 and 2, since the access of VM and ARM works correctly,
the process of these phases is correct.

(b) Branch: After the process of Execution phase, token tkl enters Plx, of subnet NDx~. If tkl does not ac-
tivate further invocation, the Branch phase will be skipped and Return phase starts directly. If tkl does,
f (t lx]) becomes one and tlx~ fires. At this time, tks is stored in ARM and token tk2, which represents the
invocation lnvoc(il, i2, m2), enters P2~] of subnet NDx~ (by Lemma 2). Acc(tk~) is then set to be tks. After
Invoc(is,i2, m2) is completed, token tkl replaces tk2 and enters Ply, of subnet NDx~ through transition
trx2,~, by statement (8) ('.'Acc(tk2) = tkl). Thus, the process of Branch phase is correct.

(c) R(): By Lemma 3, since there is no further invocation in Invoc(io, is, ms), we know that our semantics is
correct in the process of R () for all types of invocations.

(d) Return: After the execution of Branch, t2~, fires and tks enters P3x, of subnet ND~. By Lemma 2 and
statement (8), lnvoc(io, is, ms) thus completes correctly and token of invocation moves back to P0 or its
parent subnet.

7st /el,,~.I/,ql..£tc.

ISSUO O.
Transmit O.
ExecutionO

~1 d ~ d l e ~ . ~ . l l m , , ~ c

iiiiii!iiiiiiiiiiiiiiiiiiiiiii',',',',ii',ii',!',',!
i] I s s u e 0 . ::iiiii]i~::i]i::~ii:i =iiiiiiii~i~i~i~!i ~] - - I ii ~i

::!t T r a n s m i t 0 ::::i:::: ::!i::ii ::::::::::::::::::::: if:: i R e t u r n 0] f::

! ~ i?~i!~i~iiiii! iiiiiii!i!i!!!?!iiiii~ii :::: i

::2

Fig. 3. Structure of an object invocation.

W.T. Chang et al. I Journal of Systems Architecture 44 (1998) 955-970 965

(ii) Case (a = n): Assume that our constructs work correctly for n-level invocation Invoc(i._t, in, m.).
(iii) Case (a = n + 1): Suppose that Invoe(i ._l, i., m.) further activates an invocation Invoe(i., i.+1, m.+ l).
By case (a = 1) Invoc(i., in+l, rn.+l) works correctly.
Thus we conclude that our DS model can describe all kinds of invocations in an object-oriented pro-

gram. []

Theorem 1 can formally prove the correctness of our semantic constructs. In Section 4.2, we formulate a
performance model of assignment strategies and derive the guidelines for designing effective object assign-
ment strategies.

4.2. Effectiveness o f assignment strategies

The effectiveness of an assignment strategy can be measured by the communication and computation
costs, which are denoted as Ccomm and Ccomp, respectively. By examining our DS model, it is obvious that
Ccomm is incurred by the Transmit and Return phases (time duration of firing transitions tmi fs , and trij's),
while Ccomp by the Execute phase (time duration of firing transitions tl~'s and t2i's). For a distributed object-
oriented system, these costs play an important role for the overall system performance. Hence, an effective
assignment strategy should minimize these costs.

In this section, we use the analytical measurement to measure the costs based on our DS model. We first
assume the following probability values for firing function f as (m indicates type of method):
1. p{ f (t2 i) = 1} = q, and p { f (t l i) = 1} = (1 - q) ,
2. p { f (t m i j) = 1 } = P~i,j, where)--]~7-~ P~i,j = 1,
3. p { f (t f) = 1} = rm,
4. p{ f (t r id) = 1 } = t~d, where E~ -1 ,t~,j + rm = 1.

With the definitions of DS model stated in Section 2, we assume that if the code of the associated
method cannot be found locally, this invocation will be by-passed to other nodes as a non-local invoca-
tion. The probability of this by-passed invocation is defined as Pbypass. Thus the mean value of f(t2i) be-
comes q/(1 +Pbypass), which is denoted as q'. With the above probability values, we can transform our DS
model into Markov chains to evaluate C~omm and Ccomp. The states of these Markov chains are defined as
follows:

S = (O)a,b)n×3,

where ~,b = (t T l a , b , ffa,b2, . . . , O~a,b) is the set of color tokens in the place of subnet ND~, k = number of colors
and O~a,b is the number of tokens of color m in the place of subnet NDa, 6~mb >1 0, m indicates type of
method.

In Fig. 4, we give an example to illustrate the states and the transitions of the Markov chains for an
invocation. This example indicates an invocation of a method m from node N, to node Nj which further
activates a method m' to node Nk. As shown in Fig. 4, there are seven states, namely S1 - $ 7 . The contents
of these seven states are expressed as follows:

966 I/E T. Chang et al. I Journal of Systems Architecture 44 (1998) 955-970

/ ~ Onvocation Onvoct~tion ~ (Invocation Onvocation
returns) transmitted) ~ ~'~ re turns) tmnsmitted)/f

" ,.t m,, m,; A m"

Fig. 4. Markov chains for an invocation m issued f rom node N~ to node Nj, (SI , $7 ~ S).

(. . . , o~1,...)
S1 (. " .)

m t (. . . , ,~,,,...)

(. . . , ,~,,%,...) (...)
m (- - . ,~2 , . . .) (. . . ,°j ,3, . .-)

(...) (. . . , ~?.,,...)

$ 2 =

(. . . , ~ , - 1 , . . .)

(. . . , ~ , , . . .)
m I (. . . , , ~ , , , , . . .)

(...,a,~2 + 1,.. .)

(. . . , q ' ~ , . . .)

(. . .)

. . .)

(. . . , ff~,. . .)
. , . 0 "m .

i , l ' " ")

$ 3 =

(. . . , ~ , . . .)
(, . . , o ' j m l - [- 1 , . . .)

m I (. . . , o,,,,...)

(. . . , o '5, . . .)

(...)

. , .)

(. . . ,q ,~ , . . .)

(. . . , ~ , , . . .)

W.T. Chang et aL /Journal o f Systems Architecture 44 (1998) 955-970 967

$ 4 =

m (. . . , o,,,~...)
(. ,~;~,,...)

m r

(. . . ,~.~, . . .)
(. . . , ~7.'2 + ~,...)

(...)

• • .)

(. . . , ~ , . . .)

m

$ 5 =

(" - , ~ , - . .) (- . . , ~i,%,..-) (. - -)

(. . . . o~71,...) (' " , °~:%,-' ") (. " , ~3 , . . .)

m I (...,o,., + 1,...) (...) (. . . , ~ , , . . .)

$ 6 =

. . . o-m . ~ m ' i,,," " ") ('" ffi.2' " ' ") (' ' ')
m t (- . . , ~ , , . . .) (---,~;,2,.-.) (. - - , ~ 3 , . . .)

. . O'~ II (. , ,,,, .) (...) (. . , ~ , + 1 , . .)

$ 7 - -

(. . . , ~ m . . .) (. . . , ~ , ~ , . . .) (. . .)

m m t (. . . , ~j,l,...) (. . . , "~:,2,...) (..-, ~3 + 1,...)

m t (-.-, ~/,1,-- .) (...) (-.. , ~ , , . . .)

Since we only concern the computation of C c o m m and C c o m p , w e eliminate the places P2i's and P3g's to
simplify the analysis• The set of states S can thus be reduced to a new set of states, namely S', depicted
as follows:

968 W.T. Chang et al. I Journal of Systems Architecture 44 (1998) 955-970

From other states From other states

\[tT-qY'/,:,m.'pi/"
.----7, / , ~ . ~ 7 - q y /'7 ÷Po"

To other states

From other states

,1 t 9.

q /~:,4" + t k l ,,I

To other states To other states

Fig. 5. Simplified Markov chains for the example in Fig. 4.

S ' = (~o~A),×1.

The associated simplified Markov chains for the example stated in Fig. 4 are shown in Fig. 5.
With the above descriptions, we can construct the whole simplified Markov chains for a given assign-

ment strategy. Moreover, based on these Markov chains, we can obtain the cost of an invocation of method
m from node Ni to node Nj, denoted as Cinv(i,j, m), as follows:

Cinv(i,j,m) = 2/2 + 1/# m + 1/It~. (9)

Besides, in the main program, we can also compute the startup cost of an initial method m invocation in
node N/, denoted as C~tart (i, m)

Cstart(i,m) = 1/ItT'. (10)

Moreover, we can further obtain the average total cost of an object-oriented program, namely Cprg, as
oc

Cprg = Z{P(/r)lr Z Cinv(i,j, m)} + Z{p(l s) l s Z Cinv(i, m)}, (11)
/r =0 ij,m I t=0 i,m

where p(ls) is the probability of Is startup invocations in the main program and P(/r) is the probability of lr
inter-node invocations running in the target system. From the above cost functions, we can observe from
the Markov chains that Ccomp comes from the duration of #,." and Ccomm comes from the duration of 2. We
can also conclude that if the probability Pbypa~s decreases, that is, the probability of finding required method
codes locally increases, q' also increases, and cost of invocations thus decreases.

In our DS model, the parameters/~,j's, ~.'s and 2 can be determined by the number of nodes n and the
topology structure G in the target system, while the other parameters can be determined by the assignment
strategies. Therefore, p~/,fs, ti~.'s and 2 can be depicted as p~i,j(n, G), ti~(n , G) and 2(n, G). For a static assign-
ment strategy, the parameters /~7' and q' are fixed since objects are assigned to nodes before execution.

V~ T. Chang et al. I Journal of Systems Architecture 44 (1998) 955-970 969

However, for a dynamic assignment strategy, since objects are created, assigned or destroyed in run-time,
p~ and q' also vary in run-time. Hence, pm and q' m i can be viewed as time-varying functions, denoted as pro(t)
and q'(t).

To reduce Cprg caused by these by-passed invocations, there are two approaches: duplicating all the nec-
essary method codes invoked in a node, or grouping objects with sub- or super-class relation in a node. For
the first approach, the by-passed invocations can be eliminated, however the total space cost will be in-
creased due to redundant code duplication. For the second approach, the space cost will be minimized,
however the cost of inter-node invocations may not be minimized since objects that interact frequently
are usually of different classes (without superclass or subclass relation). Therefore we should minimize
the combined cost of space and by-passed invocations in designing an effective object assignment strategy.

5. Conclusions

In this paper we propose a model DS to describe the behavior of object invocations when an assignment
strategy is applied. This model also depicts the detailed phase transitions for various kinds of object invo-
cations. It should be noted that our model permits multiple invocations runs in parallel to simulate the be-
havior of a distributed object-oriented system.

There are many ways to measure the costs of a system. In this paper, we applied the analytical measure-
ment by our CGSPN model DS for an object-oriented program in a distributed manner. In our five-phase
protocol, we observed that the communication cost results from the Transmit and Return phases (caused by
transitions trails, and trifs), whereas the computation cost results from the Executephase (caused by tran-
sitions tl{s and t2i's). Finally, we provided guidelines to evaluate a given assignment strategy. Such guide-
lines are helpful in designing an effective object assignment strategy.

References

[1] Wen-Tsung Chang, Chien-Chao Tseng, The Object Support via FIFO Links on Message-Passing Systems, 1 lth International
Conference on Technology of Object-Oriented Languages and Systems, Santa Babara, 1993, pp. 231-238.

[2] Wen-Tsung Chang, Chien-Chao Tseng, Supporting Distributed Objects in FIFO-Based Message-Passing Systems, Journal of
Object-Oriented Programming (2) (1995) 5(~64.

[3] Wen-Tstmg Chang, Chien-Chao Tseng, Analytical Modelling on Object Invocations and Assignment Strategies in Message-
Passing Systems, International Computer Symposium, Hsinchu, Taiwan, December 1994, pp. 1203-1208.

[4] S.H. Bokhari, Assignment Problems in Parallel and Distributed Computing, Kluwer Academic Publishers, Dordrecht, 1987.
[5] Lo, Virginia Mary, Task Assignment in Distributed Systems, Ph.D. Thesis, University of Illinois, Urbana-Champaign, 1983.
[6] V.B. Gylys, J.A. Edwards, Optimal Partitioning of Workload for Distributed Systems, IEEE COMPCON'76, 1976, pp. 353-357.
[7] A.N. Tantawi, D. Towsley, Optimal Static Load Balancing in Distributed Computer Systems, Journal of Association for

Computing Machinery 32 (2) (1985) 445-465.
[8] F. Ercal, Heuristic Approaches to Task Allocation for Parallel Computing, Ph.D. Dissertation, Ohio State University, 1988.
[9] B. Meyer, Object-Oriented Software Construction, Prentice-Hall, Englewood Cliffs, N J, 1988.

[10] L. Kleinrock, Queueing Systems - Volume I: Theory, Wiley-lnterscience, New York, 1975.
[11] P.G. Harrison, N.M. Patel, Performance Modeling of Communication Networks and Computer Architectures, Addison-Wesley,

Reading, MA, 1992.

970 W, T. Chang et al. / Journal of Systems Architecture 44 (1998) 955-970

[12] F. Baskett, K.M. Chandy, R.R. Muntz, F.G. Palacios, Open, closed, and mixed networks of queues with different classes of
customers, Journal of Association for Computing Machinery 22 (2) (1975) 248-260.

[13] M.A. Marsan, G. Balbo, G. Conte, Performance Models of Multiprocessor Systems, The MIT Press, Cambridge, MA, 1986.
[14] J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.
[15] J.-S. Song, The Modeling, Analysis, and Design of Distributed Systems Based on Communicating Petri Nets, Ph.D. Dissertation,

University of California, Berkeley, 1988.
[16] Y.U. Kim, S. Moon, Object-relationship diagrams for object-oriented modeling with concurrency feature, Microprocessing and

microprogramming 33 (1991/1992) 207-221.
[17] J. Engelfriest, G. Leih, G. Rozenberg, Formalizing the behavior of parallel object-based systems by Petri nets, Semantics for

Concurrency, Leicester 1990: Workshops in Computing, Springer, Berlin, 1990, pp. 204-221.
[18] D.N. Christodoubkis, Petri net semantics of smalltalk-80, Microprocessing and microprogramming 24 (1988) 267 272.
[19] R. Bastide, C. Sibertin-Blanc, P. Palanque, Cooperative Objects: A Concurrent Petri-Net Based Object-Oriented Language,

Proceedings of IEEE Conference on Systems, Man and Cybernetics, vol. 3, 1993, pp. 286-291.
[20] Yang Kyu Lee, Sung Joo Park, OPNets: An object-oriented high-level petri net model for real-time system modeling, Journal of

Systems and Software 20 (1993) 69-86.
[21] J. Billington, Extensions to Coloured Petri Nets, PNPM' 89, Kyoto, Japan, December 1989, pp. 61-70.
[22] K. Jenson, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 1, Springer, Berlin, 1992.
[23] A. Snyder, Modeling the C++ Object Model, European Conference on Object-Oriented Programming (ECOOP'91), 1991, pp. 1

20.
[24] C. Tomlinson, M. Scheevel, W. Kim, Sharing and organizational protocols in object-oriented systems, Journal of Object-Oriented

Programming 2 (6) (1989) 25-36.

Wen-Tsung Chang is currently a senior
engineer and a project manager in Mul-
timedia Laboratory, Institute of In-
formation lnsustry, Taipei, Taiwan,
ROC. He received his B.S, M.S and
Ph.D. degrees in Computer Science from
National Chiao-Tung University, in
1989, 1991 and 1995, respectively. His
research interests are object-oriented
design and programming, performance
evaluation and distributed systems.
Currently, he is interested in applications
of multimedia and computer-aided ar-
chitectural design.

Chien-Chao Tseng is currently a pro-
fessor in the Department of Computer
Science and Information Engineering at
National Chiao-Tung University, Hsin-
Chu, Taiwan. He received his B.S. de-
gree in Industrial Engineering from Na-
tional Tsing-Hua University, Hsin-Chu,
Taiwan, in 1981; M.S. and Ph.D. degrees
in Computer Science from the Southern
Methodist University, Dallas, Texas,
USA, in 1986 and 1989, respectively. His
research interests are in Mobile Com-
puting, and Parallel and Distributed
Processing.

Wen-Kuang Chou is an associate pro-
fessor of the Department of Computer
Science and Information Management
at Providence University, ShaLu, Tai-
wan, ROC. He received B.S. from the
National Chiao-Tung University in
Computer Engineering, M.S. in Com-
puter Science from National Taiwan
University, and Ph.D. from the South-
ern Methodist University in Computer
Science and Engineering, in 1983, 1986,
and 1991, respectively. From 1984 to
1986, he was a research assistant in In-

stitute of Information Science at Academic Sinica, Taipei, ROC.
Also from 1986 to 1987, he was an assistant research fellow in the
same institute. From 1989 to 1991, he was an assistant researcher
of Pacific International Center of High Technology Research
(PICHTR) in Information Technology Division, Honolulu, Ha-
waii. At the same time, he was also an assistant researcher of
Lab. of Intelligent and Parallel Systems (LIPS) at University of
Hawaii. His research interests include applications of artificial
intelligence and neural networks, theorems of neural networks,
speech and image processing and recognition, parallel archi-
tectures in discrete transforms, computer architectures and
multimedia systems. Currently, he is interested in the network
management and mobile computing.

