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Abstract—Distributions of bending stiffness along the spans of laminated composite shafts are determined via
a non-destructive evaluation approach. The finite element method formulated on the assumption of uniform
bending stiffness within each element is used in the deflection analysis of the shafts. Differences between
measured and theoretically predicted deflections at any two points on a shaft are used to construct an error
function for deflection. The identification of bending stiffness is formulated as a minimization problem in which
the elemental bending stiffnesses are determined to make the error function a global minimum. A global
minimization technique and a bounding method for establishing side constraints are presented to solve the
above minimization problem. Experiments are performed to study the feasibility and applications of the
proposed method. © 1998 Elsevier Science Ltd. All rights reserved

Keywords: composite materials, finite element method, nondestructive evaluation, beam theory, structural
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INTRODUCTION

Laminated composite materials have been widely used in the construction of high-performance
structures in recent years. To ensure high reliability, the actual behaviors of the laminated composite
structures in service must be accurately predicted and carefully monitored. As is well known, there
are many methods for manufacturing laminated composite components [1, 2] and different manu-
facturing or curing processes may yield different mechanical properties of the components. Further-
more, the material properties determined from standard specimens tested in laboratory may deviate
significantly from those of actual laminated composite components manufactured in factory. On the
other hand, laminated composite structures subject to dynamic loads may experience progressive
stiffness reduction which will finally lead to the failure of the structures. It has been pointed out that
accurate determination of current stiffness of a laminated composite structure can help prevent
sudden failure of the structure [3]. Therefore, the determination of realistic material or mechanical
properties of laminated composite components has become an important topic of research. In the
past two decades, a number of non-destructive evaluation techniques have been proposed for the
determination of material properties of or damages in laminated composite parts [4—7]. Neverthe-
less, these techniques have their own limitations or specific difficulties when in use. On the other
hand, a number of researchers have presented methods to identify or improve the analytical system
matrices of a structure using vibration test data [8—13]. For instance, Berman and Nagy [§]
developed a method which used measured normal modes and natural frequencies to improve an
analytical mass and stiffness matrix model of a structure. Their method could find minimum changes
in the analytical model to make it exactly agree with the set of measured modes and frequencies.
Kam and Lee [9-11] developed methods to identify the element bending stiffnesses of a damaged
structure from which the damages in the structure could be detected using measured natural
frequencies and mode shapes.

In this paper, a non-destructive evaluation method is presented for the determination of bending
stiffness distribution of laminated composite shafts. The method is based on the minimization of the
sum of the differences between predicted and measured deflections at any two points on the shaft.
Experiments are carried out to investigate the accuracy and feasibility of the proposed method.

DEFLECTION OF LAMINATED COMPOSITE SHAFTS

Consider a laminated composite shaft composed of laminated composite plies of various fiber
angles. The equivalent Young’s modulus E(x) and the wall thickness ¢(x) of the shaft may vary along
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the span of the shaft. The deflection of the shaft is analyzed using the finite element method which is
formulated on the basis of the simple beam theory. The shaft is divided into a number of elements.
The bending stiffness is assumed to be uniform within each element and different elements may have
different bending stiffnesses. If the bending stiffness distribution of the shaft is given, the transverse
deflection of the shaft can be determined by solving the following load—displacement relation [14]:

KU=F (1a)
or
U=K'F, (1b)

where K is the condensed structural stiffness matrix; U is the vector of vertical nodal displacements;
F is the condensed vector of nodal forces. It is noted that K is obtained using the method of static
condensation and the terms in K depend on the bending stiffnesses of the elements. If the elemental
bending stiffnesses are not specified, their values can be identified using measured transverse
deflection of the shaft via the solution of a minimization problem as will be described in the following
section.

DETERMINATION OF BENDING STIFFNESS

It is not uncommon that material properties provided by suppliers or determined from laboratory
tests following the standard procedure [15] are used to predict mechanical behaviors of laminated
composite structures. The bending stiffness determined from the above material properties is termed
as initial bending stiffness (EI)° and the deflection so obtained is initial deflection U°. Let (EI)* be the
actual bending stiffness and U* the actual deflection. In general, the actual bending stiffness is
different from the initial bending stiffness. It can be shown that the actual elemental bending
stiffnesses of a shaft can be determined directly from Eqn (1) if all vertical nodal displacements of the
shaft are available. For cases where a portion of the vertical nodal displacements are measured, the
elemental bending stiffnesses can only be estimated in an indirect way. Herein, the problem of
bending stiffness identification is formulated as a minimization problem. In mathematical form it is
stated as

Min ¢(@®) = (U — U*)(U — U*) B
s.t. ak <ar<a’, i=1,...,m,
@ =a, i=1,... (NE —m),

where a* = [(ED)¥, (EI)%,...,(E])%]; U is an N x1 vector containing measured displacements at
N specific points on the shaft; ¢ is an error function measuring the sum of differences between the
actual and measured deflections; NE is number of elements; m is the number of parameters to be
identified; a” and a! are the lower and upper bounds of a}*, respectively; N < m; a ;are the prescribed
values of the elemental bending stiffnesses for the elements where no uncertainty exists.

The minimization problem stated above may contain a number of local minima and thus the
determination of the global minimum cannot be accomplished by utilizing any local minimizer.
Herein a multi-start global minimization algorithm is presented to solve the above problem. Figure 1
shows the flow chart of the minimization algorithm. The random generator RNUNF of the IMSL
mathematical package [16] is used to generate starting points. For each starting point, the
minimization routine BCONF of the IMSL mathematical package is used to solve the above
minimization problem for determining the elemental bending stiffnesses a*. The BCONF routine
can minimize a function of n variables subject to bounds on the variables using a quasi-Newton
method and finite difference gradient. The upper and lower bounds of the design variables are
properly chosen to ensure the convergence of the solution. A Bayesian argument is used to establish
the probability of the current overall minimum value of ¢ being the global minimum, given the
number of starts and number of times this value has been achieved [17]. The multi-start procedure is
terminated once a target probability, typically 0.998, has been exceeded. The feasibility of the present
minimization algorithm has been validated by existing solutions of global minimization reported in
the literature [18].
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Fig. 1. Flow chart of global minimization algorithm.

EXPERIMENTAL INVESTIGATION

Two hollow shafts, A and B, made of graphite/epoxy prepreg tapes (Q-1115) supplied by the Toho
Co., Japan were cured via the cure cycles as shown in Fig. 2. The dimensions of the shafts are shown
in Fig. 3. It is noted that wall thicknesses of the shafts vary between the two ends of the shafts. The
angles between fibers in different layers and the longitudinal axes of the shafts ranged from 0° to 10°.
Shaft A was further filled with foam material and cured at room temperature. Bounds on material
properties of the shafts were determined from specimens manufactured via two different curing
processes as shown in Fig. 4. Curing processes A and B were used to simulate, respectively, the “best”
and “worst” material properties of the shafts that might be made in factory. Curing process A is the
same as the one shown in Fig. 2 and curing process B is as shown in Fig. 4. The properties of the
composite materials determined from standard laboratory tests in accordance with relevant ASTM
specifications [15] for the two curing processes are listed in Table 1 in comparison with those
provided by the supplier. The densities of shafts A and B are 1450 and 726 kg/m?, respectively. The
two shafts were first subjected to static flexural tests as shown in Fig. 5. Each shaft was clamped at
the end with smaller outer radius and subjected to a load of 230 gf at the other end. The shafts were
mathematically divided into ten elements of equal length. Vertical displacements at nodes along the
span of each shaft were measured using a displacement gage (LV DT). The measured displacements
at nodes 5 and 10 will be used in the bending stiffness identification as described in the following
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Fig. 2. Cure cycle for manufacture of laminated composite shafts.
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Fig. 3. Dimensions of shafts. (a) Shaft A (d; =4.48 mm, d, =10.0 mm, d; = 15.38 mm, d, = 18.4 mm); (b)
Shaft B (d; =5.2 mm, d, =10.05 mm, d; = 15.3 mm, d, = 18.24 mm).

section. The two shafts were also subjected to vibration tests using a vibration measurement system
which consisted of a laser vibrometer and a spectrum analyzer. The fundamental frequencies of the
shafts were extracted from the measured frequency response spectrums of the shafts. Figure 6 shows

the measured frequency response spectrums of shafts A and B.

DETERMINATION OF BOUNDS

The diameters of shafts A and B are assumed to vary linearly along the spans of the shafts.

X
d;=d; + I (d3 — dy) (3)

and

X
d,=d, + I (dy — ds),
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Fig. 4. Curing process B.

Table 1. Material properties of composite lamina

Cure cycle E, (Gpa) E, (Gpa)
A 91.0 7.2
B 80.0 6.7
Provided by Supplier 142.5 9.8
Shaft

1 2 3 4 5 6 7 8 9 10

Fig. 5. Flexural test of shafts.

where d;, d, are the inner and outer diameters, respectively. The area moment of inertia of a hollow
circular cross section is expressed as

Y
I = o (d¥ —a¥). &)

The area moment of inertia at the right end of an element together with the Young’s modulus E;
obtained via curing process A are used to determine the upper bound of the bending stiffness of the
element.

afj:ElAIiR(l-l-Vl), i=17"'7m9 (6)
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Fig. 6. Frequency response spectra of shafts. (a) Shaft A; (b) Shaft B.

where I; is the elemental bending stiffness at the right end of the ith element; E, 4 is E; obtained
from curing process A; 7 is a fraction. Similarly, the lower bounds of the elemental bending stiffnesses
are expressed as

aF =Eglyp(l—n), i=1,..,m (7

where I;; is the elemental bending stiffness at the left end of the ith element; E, 5 is E; obtained from
curing process B.
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RESULTS AND DISCUSSION

The accuracy of the present method for bending stiffness identification is first studied by means of
an example. Consider the system identification of the cantilever beam which has been discretized
into 10 elements of equal length as shown in Fig. 5. In the identification process, the bounds of the
element bending stiffnesses in Eqn (2) are set as

ar = a¥(l—n), al =a*(1+ 7).

The beam is subjected to a vertical force of magnitude 230 gf at the free end. The actual vertical
displacements at nodes 5 and 10 are given as 2.724 and 7.434 mm, respectively. Herein, different
values of n are used to identify the element bending stiffnesses of the beam. The errors of the
identified element bending stiffnesses for different values of # are listed in Table 2. The actual and
identified deflections of the beam are plotted in Fig. 7. It is noted that the errors of the identified
deflections are insignificant. Therefore, the use of # less than or equal to 30% can give reasonably
good results for the identified elemental bending stiffnesses. Next, consider the bending stiffness

Table 2. Errors of identified element bending stiffnesses using different values of 5

Identified — Actual

Error=——————— x 100%
Actual
Element Actual EI
No. (N-m?) n=>5% n=15% n=25% n=30%
1 52.1 —0.54 —2.83 —5.27 3.49
2 67.4 0.69 2.66 5.28 —9.98
3 84.7 0.68 5.61 9.68 7.05
4 104.0 —0.05 —2.13 —17.25 —5.47
5 125.0 —0.28 —3.12 —4.22 —6.81
6 147.2 —0.31 —1.88 —2.08 8.80
7 170.3 —1.19 —3.03 —5.03 5.86
8 193.7 —0.64 —1.48 —0.90 10.58
9 216.8 —0.05 0.37 —2.13 —6.92
10 2389 0.47 1.42 5.22 8.98
9k
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Fig. 7. Actual and identified deflections of a cantilever beam.
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identification of the two shafts in Fig. 3. The shafts are discretized into 10 elements in the finite
element analysis. Measured displacements at nodes 5 and 10 are used for bending stiffness identifica-
tion. The bounds of the elemental bending stiffnesses are determined from Eqns (6) and (7) with the
choice of # =0.1. Using the material properties in Table 1 and the shafts dimensions in Fig. 3, the
upper and lower bounds of the elemental bending stiffnesses for shafts A and B are computed and
listed in Table 3. Using the proposed minimization algorithm, the identified elemental bending
stiffnesses are determined and listed in Table 4. It is noted that around 10 starting points were
generated and less than 10 iterations were performed for each starting point for the cases under
consideration. The theoretical and experimental deflections of the shafts are listed in Table 5 for
comparison. It is noted that when compared with the experimental deflections, the use of the
identified elemental bending stiffnesses in the finite element analysis can yield very good results for
deflection. For the comparison purpose, the elemental bending stiffnesses derived from the material
properties provided by the supplier are also used in the deflection analysis of the shafts and the
predicted deflections of the shafts are shown in Fig. 8. It is noted that erroneous results may be
obtained if incorrect bending stiffnesses or wrong material properties are used in the analysis. It is
also worth noting that if the upper or lower bounds are not properly chosen or they significantly
deviate from the “exact” values, erroneous results may be obtained. For instance, if the side
constraints, 0 < af < a (i =1,...,m), are adopted for solving the minimization problem, multiple
global optima will occur and incorrect elemental bending stiffnesses will be obtained even though

Table 3. Bounds of elemental bending stiffness

Bending stiffness (N -m?)

Element No Lower bound  Upper bound

1 34 63
2 45 82
3 59 103
4 74 127
5 91 152
6 109 179
7 128 207
8 148 235
9 168 262
10 188 288

Table 4. Identified elemental bending stiffnesses

Element bending stiffness (N - m?)

Shaft 1 2 3 4 5 6 7 8 9 10
A 48.590 55.210 57.460 79.050 101.33 103.09 154.70 23148 234.11 262.97
B 46.72 52.51 56.75 60.73 65.18 69.60 128.40 253.16 264.67 272.40

Table 5. Theoretical and experimental deflections of shafts

Node displacement (mm)

Shaft Method 1 2 3 4 5 6 7 8 9 10
A Theoretical 0.169 0.634 1340 2227 3230 4315 5456 6.625 7.180 9.0
Experimental ~ 0.172  0.672 1417 2239 3229 4307 5410 6.504 7430 9.0

B Theoretical 0.176 ~ 0.661 1396 2334 3434 4660 5964 7298 8.646  10.0

Experimental ~ 0.160  0.623  1.374 2122 3434 4559 5847 7014 8146  10.0
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Fig. 8. Deflections of shafts obtained by different methods. (a) Shaft A; (b) Shaft B.

the theoretically predicted displacements at the two measured points agree well with the experi-
mental ones. Therefore, the choice of proper bounds for the elemental bending stiffnesses is vital for
having a successful parameter identification. It is noted that since the differences between the
material properties obtained from cure cycles A and B are small, the process of determining bounds
of elemental bending stiffnesses can be further simplified by using the material properties obtained
from cure cycle A together with an appropriate value of #. In general, good engineering judgement
and experience can help make an appropriate choice. Next, consider the capability of the identified
parameters in determining the fundamental frequencies of the shafts. It has been found that
theoretically determined fundamental frequencies can closely match the experimental results as
shown in Table 6.

CONCLUSIONS

The bending stiffness identification of laminated composite shafts was studied using a global
minimization algorithm. Bounds on design variables were determined from experimental results.
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Table 6. Theoretical and experimental fundamental frequencies

Fundamental frequency (Hz)

Error
1-ul,
Shaft Theoretical (I) Experimental (IT) m |
A 15.1 163 74
B 124 12,6 1.6

Flexural tests of the shafts were performed and displacements at two points on each shaft were used

for

the bending stiffness identification. It was found that the proposed minimization algorithm when

used with proper choice of bounds on elemental bending stiffnesses could yield reasonably good
results for the identified elemental bending stiffnesses. Vibration test data were also used to further
validate the proposed method. The proposed method may find applications for material character-
ization or damage detection of different types of laminated composite members such as golf shalfts,
rotor shafts, transmission shafts and pipes.
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