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A graphical procedure to calculate stresses in a transversely isotropic half-
space subjected to a three-dimensional surface load has been developed. The
surface load can be distributed on an irregularly-shaped area. The planes of
transverse isotropy are assumed to be parallel to the horizontal surface of
the half-space. The closed-form solutions for stresses at a point under the
vertex of a loading sector, with a unit load intensity are presented ®rst.
Based on these solutions, ®ve in¯uence charts are constructed for calculating
the six components of a stress tensor at any given point in the half-space.
The charts are composed of unit blocks. Each unit block is bounded by two
adjacent radii and arcs, and contributes the same level of in¯uence to the
stress within the half-space. An example is presented to demonstrate the use
of the new graphical method. For the case analyzed, results from the new
graphical method agree with those of analytical solutions within 3%. The
new in¯uence charts can be a practical alternative to the existing analytical
or numerical solutions, and provides results with reasonable accuracy. #
1998 Elsevier Science Ltd.

INTRODUCTION

Anisotropy in deformability is common for foliated
metamorphic, strati®ed sedimentary, and regularly
jointed rock masses. Existing analytical solutions
based on linear and isotropic elasticity for stress ana-
lyses in these types of rocks or rock masses are only
rough approximations. To obtain more desirable
results, it is imperative to consider the anisotropic
deformability.
There have been several reports [1±3] on the closed-

form solutions of displacements and stresses due to a
point load for a transversely isotropic half-space.
Solutions other than point load conditions, however,
are limited. Elastic solutions for displacements or stres-
ses in a half-space, subjected to loads of regular
shapes, (e.g., line loads [4±6], rectangular loads [6], tri-
angular loads [7], circular loads [4, 8±14], parabolic
loading over a circular region [12, 15±17], ring
loads [18, 19], elliptical loads [20, 21]), and other re-
lated problems [22±25] have also been proposed. These
solutions are only applicable to loading of speci®c
and/or regular geometric patterns. It is possible to esti-
mate the stresses and displacements due to an arbitra-
rily-shaped loading. The loading area is divided into
many regularly-shaped sub-areas; in¯uences from these
sub-areas are then superimposed. However, the process
of superposition is tedious and inconvenient.

With the advances in high-speed computers, numeri-
cal techniques have been developed for calculating the
stresses underneath an irregularly-shaped foundation
in the past few decades. These developments include
the techniques of equivalent area [26], three-dimen-
sional ®nite element [27], triangulating [28±31], compu-
ter-aided graphics [32], parametric mapping [33], and
methods using a packaged software such as
MathCAD [34, 35]. Through the use of computer,

these methods can easily be automated and hence can
be e�cient to use.

A graphical method for general shapes of loaded
area was ®rst devised by Burmister [36]. That method
provided the basis of the Newmark's in¯uence
charts [37±39]. The in¯uence charts are e�cient to use
in calculating stress/displacement as compared to other
complex mathematical or numerical methods.

However, the advantages of Newmark's charts dimin-
ish if the loading area is not uniform or stresses at
multiple depths are required simultaneously. Salas [40]
proposed modi®ed in¯uence charts. This method is not
practical because it involves the use of a table for cal-
culating stress, which is complicated and tedious.
Several extensions of the Newmark's method are avail-
able. Barber [41, 42] and Barksdale and Harr [43]
developed in¯uence charts for the vertical stress due to
horizontal shear loading. Huang [44] constructed dia-
grams for an embedded, distributed uniform vertical

load. Poulos [45] proposed a graphical procedure
called the sector method. His method can calculate the
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displacements and stresses due to any general shape of

loaded area.

Applications of the above-mentioned methods are

mostly restricted to the stress/displacement evaluation

in isotropic media. To the authors' knowledge, no

graphical method of stress/displacement calculation

has been proposed for a transversely isotropic medium.

The aim of this paper is to construct a set of in¯uence

Fig. 1. Uniformly loaded sector area.

Fig. 2. Distribution of the three types of the characteristic roots for transversely isotropic rocks.
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charts analogous to those of Newmark's [38]. The new

in¯uence charts are applicable to transversely isotropic

media subjected to three-dimensional, arbitrarily-

shaped loads. By superposition of values correspond-

ing to the in¯uence charts, the six components of stress

tensor at any point in the half-space can be estimated.

This paper describes the background of the new in¯u-

ence charts and their application procedure. An il-

lustrative example is presented at the end of the paper

to demonstrate the procedure of calculating induced

stress using the proposed in¯uence charts. The results

are then validated with analytical solutions.

DEFORMABILITY OF TRANSVERSELY ISOTROPIC

ROCKS

Anisotropy is a general characteristic of foliated
metamorphic rocks (e.g., argillite, slate, schist, phyllite,
gneiss), strati®ed sedimentary rocks (e.g., shale, sand-
stone, coal, limestone), and regularly jointed rock
masses. Deformability anisotropy implies that the
deformability of a material is direction dependent.
Depending on the planes of elastic symmetry, rock can
be of general anisotropy, orthotropy, transverse iso-
tropy, or complete isotropy. Practically, an anisotropic
rock can be modelled as either an orthotropic or a

Table 1. Root types of transversely isotropic rocks according to published data

Reference Material Test methods E (GPa) E' (GPa) n n' G' (GPa) Root type

Pinto [46]
schist I uniaxial compression,

parallel
95.4 74.5 0.27 0.27 27.2 case 1

schist II uniaxial compression,
inclined

76.9 41.0 0.22 0.27 20.5 case 1

schist III uniaxial compression,
inclined

63.4 20.0 0.13 0.21 7.9 case 1

Homand et al. [47] slate ultrasonic 121.3 58.9 0.19 0.11 15.1 case 1
Liu et al. [48] argillite uniaxial compression 51.8 32.2 0.19 0.18 13.3 case 1
Amadei [49] Loveland sandstone I uniaxial compression 29.3 23.9 0.18 0.13 6.2 case 1

Loveland sandstone II uniaxial compression 33.5 44.6 0.08 0.13 19.1 case 3
Liao et al. [50] argillite direct tension 59.1 51.9 0.22 0.10 14.9 case 1
Liao et al. [51] argillite ultrasonic 68.3 51.4 0.20 0.16 21.0 case 1

Fig. 3. In¯uence chart for aAi (in¯uence value per block is20.001, negative in¯uences are indicated by a minus, (ÿ), sign).
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transversely isotropic material. Orthotropy implies that
three orthogonal planes of elastic symmetry exist and
that the orientations of these planes remain the same
throughout the rock. For a transversely isotropic rock,
there is an axis of symmetry of rotation. The rock has
isotropic properties in planes normal to this axis. A
rock is completely isotropic if it is elastically identical
in any direction. The number of elastic constants for
describing their deformability is 21, 9, 5, and 2 for
generally anisotropic, orthotropic, transversely isotro-
pic, and isotropic rock, respectively. The deformability
of a transversely isotropic material can be expressed as
the following matrix form, in which the z-axis be the
rotation axis of elastic symmetry, x- and y-axes in the
plane of transverse isotropy.

sxx
syy
szz
tyz
tzx
txy

26666664

37777775 �
C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

26666664

37777775
exx
eyy
ezz
gyz
gzx
gxy

26666664

37777775
�1�

where sxx,syy,szz are normal stresses; exx,eyy,ezz are
normal strains; tyz,tzx,txy are shear stresses; gyz,gzx,gxy

are shear strains; C11, C12, C13, C33, C44, C66 are elas-

tic constants. The elastic constant C12 is equal to

C11ÿ2C66. Hence, only ®ve elastic constants, i.e., C11,

C12, C13, C33, C44, C66 are independent for a transver-

sely isotropic material. These constants are directly re-

lated to the engineering elastic constants E, E', u, u'
and G' as follows:

C11 � E�1ÿ ��E=E 0�u 02�
�1� u��1ÿ uÿ ��2E=E 0�u 02�� ,

C13 � Eu 0

1ÿ uÿ ��2E=E 0�u 02� ,

C33 � E 0�1ÿ u�
1ÿ uÿ ��2E=E 0�u 02� ,

C44 � G 0,

C66 � E

2�1� u�

where E, E' are the Young's moduli in the plane of

transverse isotropy and its normal, respectively; u, u'
are the Poisson's ratios characterizing the lateral strain

Fig. 4. In¯uence chart for cBi (in¯uence value per block is 0.001).
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in the plane of transverse isotropy to a normal stress
acting parallel and normal to it, respectively; and G' is
the shear modulus in planes normal to the plane of
transverse isotropy.
These engineering elastic constants can be deter-

mined by static or dynamic experiments in the labora-
tory. Readers are referred to [46±51] for details of
these methods.

CONSTRUCTION OF THE INFLUENCE CHARTS

This paper concentrates on the development of in¯u-
ence charts that calculate the stresses at a point, in a
transversely isotropic half-space, subjected to surface
loads. Similar to Newmark's charts [38] for isotropic
materials, the proposed charts contain unit blocks.
Each block is bounded by two radial lines and two
adjacent arcs. The radii of the circles relate to the
depth of the interested point in the half-space. The in-
¯uence value of a unit block in stress should be equal
and independent of its location in the chart. To facili-
tate block counting, the plan of the surface load is
drawn to a scale that is proportional to the depth of
the interested point. The unit blocks are made roughly
square. The number of blocks covered by the scaled
loaded area is then counted.

Combining the solutions for stresses induced by
di�erent sectors with uniform loads (Fig. 1 shows a
typical sector), one can obtain the stresses at point C
with depth uiz due to the uniform load on a unit
block.

Stresses under the vertex of a uniformly loaded sector of
a circle

The solutions of stresses in a transversely isotropic
half-space subjected to a point load have been derived
by several investigators (e.g. [1±3]). Integrating the
point load solutions, one can obtain the stresses in the
half-space subjected to a uniform surface load of any
irregularly-shaped area. Details of deriving stresses
under the vertex of a uniformly loaded sector of a cir-
cle in a transversely isotropic half-space, based on the
point load solutions by Liao and Wang [3] are
described as follows.

Figure 1 depicts a uniform load, �Pj (force per unit
area, j= x, y, z) acts on a sector bounded by two
radial lines and a circle arc. In the ®gure, the depth of
point C(0, 0, uiz) under the vertex is uiz, radius of the
arc is r, and the central angle is symbol b (positive
counterclockwise with respect to x-axis). Consider an
elementary area of r dr db in the sector, the stress at
point C, [s]C is derived by integrating the point load

Fig. 5. In¯uence chart for dCi (in¯uence value per block is20.001, negative in¯uences are indicated by a minus, (ÿ), sign).
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solutions [3] with dr from 0 to r and db from 0 to
b [52] as:

�s�C �
�b
0

�r
0

�s�pr dr db �2�

where �s� � �sxx,syy,szz,tyz,tzx,txy�T (superscript T
denotes the transpose of matrix); the superscript C
denotes the point C at which the induced stresses are
evaluated; the superscript p indicates a point load act-
ing at point O. Upon integration, [s]C has the follow-
ing components:

sCxx � �Px

�ÿ �4m1 ÿm3� � aA1 � �4m2 ÿm4� � aA2

� 2u3 � aA3 �m3 � fD1 ÿm4 � fD2 � 2u3 � fD3

�
� �Py

�ÿ �4m1 ÿ 3m3� � bA1 � �4m2 ÿ 3m4� � bA2

ÿ 2u3 � bA3 ÿm3 � gD1 �m4 � gD2 ÿ 2u3 � gD3

�
� �Pz

�ÿ u2�2m1 ÿm3� � cB1 � u1�2m2 ÿm4� � cB2

� u2m3 � eC1 ÿ u1m4 � eC2

� �3�

sCyy � �Px

�ÿ �4m1 ÿ 3m3� � aA1 � �4m2 ÿ 3m4� � aA2

ÿ 2u3 � aA3 ÿm3 � fD1 �m4 � fD2 ÿ 2u3 � fD3

�
� �Py

�ÿ �4m1 ÿm3� � bA1 � �4m2 ÿm4� � bA2

� 2u3 � bA3 �m3 � gD1 ÿm4 � gD2 � 2u3 � gD3

�
� �Pz

�ÿ u2�2m1 ÿm3� � cB1 � u1�2m2 ÿm4� � cB2

ÿ u2m3 � eC1 � u1m4 � eC2

� �4�

sCzz � 4�Px
m1

u21
�aA1 ÿ aA2� � 4�Py

m1

u21
�bA1 ÿ bA2�

� 2�Pz

�
m2

u2
� cB1 ÿm1

u1
� cB2

�
�5�

tCyz � �Px

�
m1

u1
� dC1 ÿm2

u2
� dC2 � dC3

�

� �Py

�
ÿm1

u1
� cB1 �m2

u2
� cB2 � cB3 ÿm1

u1
� eC1

�m2

u2
� eC2 ÿ eC3

�
� 4�Pz

u2m1

u1
�bA1 ÿ bA2� �6�

Fig. 6. In¯uence chart for eCi (in¯uence value per block is20.001, negative in¯uences are indicated by a minus, (ÿ), sign).
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tCxz � �Px

�
ÿm1

u1
� cB1 �m2

u2
� cB2 � cB3 �m1

u1
� eC1

ÿm2

u2
� eC2 � eC3

�
� �Py

�
m1

u1
� dC1

ÿm2

u2
� dC2 � dC3

�
� 4�Pz

u2m1

u1
�aA1 ÿ aA2� �7�

tCxy � �Px�ÿm3 � bA1 �m4 � bA2 � 2u3 � bA3 ÿm3 � gD1

�m4 � gD2 ÿ 2u3 � gD3� � �Py�ÿm3 � aA1

�m4 � aA2 � 2u3 � aA3 ÿm3 � fD1

�m4 � fD2 ÿ 2u3 � fD3� � �Pz�u2m3 � dC1

ÿ u1m4 � dC2�, �8�

where

m1 � u21
u2 ÿ u1

m2 �
�
u2
u1

�2

m1, m3 � 2u23
u1�n� u1�m1,

m4 � n

u1
m3, n � �C13 � C44�u1

C33u
2
1 ÿ C44

;

a � sin b, b � 1ÿ cos b, c � b
2p

, d � 1ÿ cos 2b
2

,

e � sin 2b
2

, f � sin 3b
3

, g � cos 3bÿ 1

3
;

Ai � 1

8p

�
ÿ sin ai � ln

���� 1� sin ai
cos ai

�����, Bi � 1ÿ cos ai
2

,

Ci � 1

4p

�
2 ln

���� 1� cos ai
2 cos ai

����� cos ai ÿ 1

�
,

Di � 1

8p

�
ÿ �1ÿ cos ai ��7ÿ cos ai �

sin ai
� 3 ln

���� 1� sinai
cos ai

�����,
and tan ai � r

uiz
�i � 1, 2, 3�;

u3 �
�����������������
C66=C44

p
; u1 and u2 are the roots of the follow-

ing characteristic equation:

u4 ÿ su2 � q � 0 �9�
where s = [C11C33ÿC13(C13+2C44)]/(C33C44), q = C11/

C33. If the strain energy is assumed positively de®nite

in the medium [53], the root of Equation (9), u1 and u2
are restricted to the following three cases:

Fig. 7. In¯uence chart for fDi (in¯uence value per block is20.001, negative in¯uences are indicated by a minus, (ÿ), sign).
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Case 1. When s2ÿ4q>0,

u1,2 �2

�������������������������
s2

���������������
s2 ÿ 4q

p
2

s
are two real distinct roots.

Case 2. When s2ÿ4q = 0,

u1,2 �2

���
s

2

r
, 2

���
s

2

r
are real double roots (i.e., complete isotropy).

Case 3. When s2ÿ4q < 0,

u1 �
�����������
s� 2
p ���

q
p

2
ÿ i

��������������ÿs� 2
p ���

q
p

2
� gÿ id, u2 � g� id

are two conjugate complex roots (where symbol g can-
not be equal to zero [1]);

Using engineering elastic constants, the following cri-
terion can distinguish the root type of Equation (9).

�
G

G 0

�2

�1� u� ÿ
�

E

E 0

��
1ÿ u�

�
E

G 0

�
u 0 ÿ 2

�
E

E 0

�
u 02
�

> 0, for case 1

� 0, for case 2

<0, for case 3

8><>: �10�
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Gerrard [54] and Amadei et al. [53] demonstrated that,
for most transversely isotropic rocks, E/E' and G/G'
are within 1 and 3; the Poisson's ratios u and u' are
within between 0.15 and 0.35. Figure 2 presents the
distribution of the three types of the characteristic
roots for transversely isotropic rocks with E/E' and G/
G' ranging from 1 to 3. This ®gure reveals that ap-
proximately two thirds of transversely isotropic rocks
belong to case 1 (i.e., two real distinct roots). The
results shown in Fig. 2 are compatible with available,
published data [46±51] listed in Table 1 where all but
one transversely isotropic rock belong to case 1.

Preparation of the in¯uence charts

The new in¯uence charts include an index scale
representing the depth of the desired point, and num-
bers of concentric circles and radial lines. A unit
block, except for those adjacent to the point C, is
formed by two radial lines and two concentric circle
arcs. [s]C depends on the geometry of the loaded sec-
tor as described in Equations (3)±(8). The geometry is

de®ned by a set of coe�cients a, b, c, d, e, f, g, Ai, Bi,
Ci and Di. The values of a, b, c, d, e, f and g depend
on the central angle b. The coe�cients Ai, Bi, Ci and
Di relate to the ratio of r/uiz. The value of c is positive
regardless of the value of b. The others (i.e. a, b, d, e, f
and g) can be either positive or negative. For a given
depth uiz, the values of Ai, Bi, Ci and Di depend only
on r, and A1=A2=A3, B1=B2=B3, and so on. Charts
for aAi, bAi, cBi, dCi, eCi, fDi and gDi are required for
estimating [s]C in a half-space graphically. Considering
the symmetric properties of triangular functions, the
charts for aAi and bAi are identical, except that the x-
and y-axes are exchanged. The same is true for fDi

and gDi. Consequently, only ®ve independent charts
(i.e. aAi, cBi, dCi, eCi, fDi) are needed for computing
[s]C. Figures 3±7 depict the in¯uence charts of aAi,
cBi, dCi, eCi, fDi, respectively. The index length of
depth uiz in these ®gures is set to 1.3 cm. The calcu-
lated r is symmetrical with respect to the origin O,
therefore, only one quarter of the charts is drawn. The
sign ``ÿ '' in the ®gures indicates that the values of a,

Table 3. Values of Ai with various r/uiz
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b, d, e, f and g are negative. The in¯uence value is
negative for blocks with a ``ÿ '' sign.
To explain the construction of the in¯uence charts,

details of the preparation for aAi chart are described
below.
Considering a unit load intensity, the values of a (as

a function of b) and Ai (as a function of r/uiz) are cal-
culated and listed in Tables 2±3. Table 2 shows incre-
ment of a in the ®rst quadrant, the increment value of
a is negative when the blocks locate in the second and
third quadrants. Ai increases with r/uiz as shown in
Table 3. For a given value of a with respect to b, the
increment value of Ai, 0.001, 0.002, 0.004, 0.006, 0.008,
etc., is selected for the ®rst, second, third, fourth, ®fth,
etc., ring group of the area formed by two adjacent
concentric circles. The corresponding values of r/uiz
for the circles are listed in Table 3. Combining the nu-
merical values of a and Ai, the radial lines and the
concentric circles are drawn so that aAi for all blocks
in the chart is 0.001. For example, with speci®c values
of b and r/uiz (the value of aAi being 0.001 at the
shaded area), the blocks numbered 1, 2, 4, 6, 8 in
Fig. 8 are determined. The ®ve independent charts are
constructed according to the same unit length uiz.
For a medium with conjugate complex roots of its

characteristic equation (Equation (9)), the value of uiz

is a complex variable and the in¯uence charts cannot
be drawn in this manner. For case 3 material, the
preparation of in¯uence charts requires elastic con-
stants as a prior and uiz being replaced by z. It means
that the charts prepared for case 3 material are valid
only for a particular medium. Appendix A illustrates
the method for constructing the in¯uence charts and
procedure to calculate vertical stress in a half-space for
case 3 material.

PROCEDURE FOR USING THE INFLUENCE CHARTS

The in¯uence charts provide an estimate of the six
components of [s]C at a point in the half-space sub-
jected to three-dimensional surface loads with arbitrary
shapes. A detailed procedure for establishing the charts
and their applications is described as follows:

(1) Identify the type of rock (i.e. isotropic, transver-
sely isotropic, orthotropic or generally anisotropic). If
the rock is isotropic, the desired stresses can be com-
puted using the Newmark's charts [38]. If the rock is
orthotropic or generally anisotropic, there are no in¯u-
ence charts available.

Fig. 8. The example of construction the in¯uence chart for aAi.
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(2) Verify if the planes of isotropy are parallel to the
surface. The in¯uence charts reported herein are appli-
cable only if the planes of isotropy are parallel to the
surface.
(3) Determine the root type of characteristic

equation [i.e. case 1, 2 or 3, in Equation (10)] for the
half-space. Continue to step (4) through (9) if the root
type is case 1 or case 2. If the root type is case 3, the
in¯uence charts will have to be prepared individually
and the following steps do not apply.

(4) Calculate the characteristic root ui (i = 1, 2, 3)
from Equation (9), functions n and m10m4.

(5). Compute uiz (i = 1, 2, 3) and use that as the
unit length to scale the loaded areas on each in¯uence
chart (shown at the right hand corner in Figs 3±7).

(6) Redraw the plan of the loaded area using the
scale obtained in step (5). A transparent paper is rec-
ommended.

(7) Place the plan of the loaded area plotted in step
(6) on the in¯uence charts. The point at which the

Fig. 9. Flow chart for computing the stresses induced by irregular loading shapes using in¯uence charts.
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Fig. 10. (a) Plan of loaded area acting on the surface. (b) The blocks covered by the plan of the loaded area for aA1. (c)
The blocks covered by the plan of the loaded area for aA2.
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stresses are desired should be placed over the center of
the circles on these charts.
(8) Count the number of blocks on the in¯uence

charts covered by the plan of the loaded area.
(9) Compute the stress tensor using Equations (3)±

(8) based on functions n, m10m4 [from step (4)] and
the number of blocks covered by plan of the loaded
area [from step (8)].
Figure 9 presents a ¯ow chart that illustrates the

use of the in¯uence charts. Although the charts are
proposed for uniform loads, the stress induced by
non-uniform loads can be estimated by dividing the
entire loading area into several sub-areas, each with
an approximately uniform load.

DEMONSTRATION AND VERIFICATION

To validate the proposed stress in¯uence charts and
demonstrate its capabilities, an example is presented in
this section. The half-space is subjected to a uniform
normal load (�Pz) on the horizontal surface with a
loading area shown in Fig. 10(a). The point (i.e. point
C) where [s]C is to be computed is at 8 meters below
point O. The half-space is transversely isotropic (argil-
lite) and the planes of transverse isotropy are parallel
to the horizontal surface. The ®ve elastic constants are
E = 51.8 GPa, E' = 32.2 GPa, u = 0.19, u' = 0.18,
and G'= 13.3 GPa [48]. From Equation (10), the
medium belongs to case 1 with two real distinct roots.
Equations (3)±(8) are rewritten as:

sCxx
�Pz

� ÿ u2�2m1 ÿm3� � cB1 � u1�2m2 ÿm4� � cB2

� u2m3 � eC1 ÿ u1m4 � eC2 �11�

sCyy
�Pz

� ÿ u2�2m1 ÿm3� � cB1 � u1�2m2 ÿm4� � cB2

ÿ u2m3 � eC1 � u1m4 � eC2 �12�

sCzz
�Pz

� 2m2

u2
� cB1 ÿ 2m1

u1
cB2 �13�

tCyz
�Pz

� 4u2m1

u1
�bA1 ÿ bA2� �14�

tCxz
�Pz

� 4u2m1

u1
�aA1 ÿ aA2� �15�

tCxy
�Pz

� u2m3 � dC1 ÿ u1m4 � dC2 �16�

Equations (11)±(16) indicate that, knowing the elastic
constants, ui and m10m4, one or two independent in-
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¯uence charts would be enough to determine the six
components of [s]C. For example, in¯uence charts for
cBi and eCi can be used to compute sCxx and sCyy; in¯u-
ence chart cBi is enough for calculating szz

C ; tyz
C , tCxz,

tCxy, and can be estimated from the in¯uence chart of
bAi, aAi, and dCi, respectively. For illustrative purpose,
the procedure of calculating tCxz=�Pz is described as fol-
lows:

(1) Calculate the characteristic root ui (i = 1, 2, 3)
from Equation (9), functions n and m10m4. The results
are given in Table 4.
(2) Set the unit length as: u1z = 6.064, u2z = 13.264

for aA1 and aA2, respectively.
(3) Redraw the plan of the loaded area using the

scales obtained in step (2) on transparent papers (for
aA1 and aA2).
(4) Place the transparent papers prepared in step (3)

on the in¯uence chart (aAi). Point C should be placed
over the center of the chart. Figures 10(b) and (c)
demonstrate the procedure for overlapping planes of
the loaded area on the chart for aA1 and aA2, respect-
ively.
(5) Count the number of blocks on Fig. 10(b) and

(c) covered by the loaded area. The numbers of blocks,
rounded to the nearest integer, is 32 in Fig. 10(b) and
20 in Fig. 10(c).
(6) From Equation (15), the normalized shear stress

(tCxz=�Pz) at point C is computed as:

tCxz=�Pz � 5:591� �32ÿ 20� � 0:001 � 0:0671

Similarly, the other normalized stress components
can be calculated and the results are shown in Table 4.
Comparing the results with analytic solutions of Lin et
al. [6] by superposition, the six stress components com-
puted using the in¯uence charts agree with the analytic
results within 3%.

CONCLUSIONS

Based on the integration of closed-form solutions
for a point load, a series of ®ve in¯uence charts have
been developed to calculate the stress tensor within an
elastic transversely isotropic half-space that is sub-
jected to a surface load with an irregularly-shaped
area. Following the idea of Newmark's charts for iso-
tropic materials, the new in¯uence charts consist of
unit blocks. Each unit block is bounded by two adja-
cent radii and arcs, and contributes the same in¯uence
to the induced stress. In this article, the in¯uence of
each unit block is selected to be 0.001 of the surface
load intensity. The stress at the point of interest is
computed by counting the number of blocks covered
by the plan of the loaded area drawn to a scale set by
the material properties. The proposed in¯uence charts
are suitable for transversely isotropic materials with
real roots of the characteristic equation. The new in¯u-
ence charts are easy to use and results are reasonably

accurate. These charts o�er a practical alternative to
analytical and numerical solutions.
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APPENDIX A

To demonstrate the construction of in¯uence charts and their appli-
cations for case 3, an example for evaluating vertical stress (sCzz) in
the elastic half-space, induced by a uniform normal load (�Pz) is illus-
trated. Say that u1=ggÿ idd, u2=gg + idd, the normalized vertical stress
(sCzz=�Pz) can be expressed in terms of the central angle bb and a depth
ratio r/z as follows:

sCzz
�Pz

� 2m2

u2
� cB1 ÿ 2m1

u1
cB2 � 2cB 0 �A:1�

where

c � b
2p

, B 0 �
�
1ÿ j�g2 � d2�

hd

�
=2,

h �
�����������������������������������������������������������

r

z

�2

� g2 ÿ d2
�2
� 4g2d2

s
,

j � 1���
2
p

�����������������������������������
h

�
r

z

�2

ÿ g2 � d2

s

In establishing the chart of cB', the elastic constants of the medium
are involved. Assuming that the elastic constants are E= 50 GPa,
E' = 25 GPa (E/E' = 2), G/G' = 1, and u = u' = 0.25, and solving
Equation (9), the characteristic roots are complex and the values of
symbol g and d are 1.0082 and 0.5914, respectively. The rest of the
procedure in setting up cB' chart is similar to those of aAi, cBi, dCi,
eCi, and fDi. Figure A1 shows the in¯uence chart of cB'. For a uni-
form load as shown in Fig. 10(a) and using z as the scale (right hand
corner of Fig. 11), one can redraw the plan of the loaded area. The
number of blocks covered by the loaded area is approximately 75.
Using Equation (A.1), the normalized vertical stress sCzz=�Pz is equal
to 0.15 (=2� 75� 0.001). The result is very close to the exact sol-
ution (0.1535) of Lin et al. [6] by superposition.
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Fig. A1. Plan of loaded area on the in¯uence chart for cB'
(E= 50 GPa, E' = 25 GPa, G/G' = 1, n= n' = 0.25, in¯uence value

per block is 0.001).
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