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ABSTRACT : Owinff to most physical phenomena observed as nonstationarv processes and the form 
of  discrete sequences, it becomes realistic to process the nonstationa O' sequences in the laboratory 
(/there exists a bijective transfbrmationjbr stationarization. In this work, our study is emphasized on 
the class o f  nonstationarv one-dimensional random sequences with wide-sense stationao' increments 
(WSSI), wide-sense stationa O' jumps (WSSJ) and a famous case, the.fractional Brownian motion 
(FBM) process. Also, the concept o f  linear algebra is applied to process the stationarization 
concisely. Our goal is to derive a stationarization theorem developed by linear operators such that 
a nonstationa O' sequence with WSSI /WSSJ  may be stationarized by an easi O' realizable perfi'ct 
reconstruction-quadrature mirror filter structure o[the discrete wavelet trans;/brm. Some examples 
./or FBM proeesses andnonstationary signals.qenerated b.v autoregressive integrated moving average 
models are provided to demonstrate the stationarization. ~2, 1998 The Franklin Institute. Published 
by Elsevier Science Ltd 

L Introduction 

In most physical phenomena,  there are strong long-term dependencies involved and 
the 1/J ix spectral behaviors observed over a wide range of frequencies (1). The appli- 
cation of fractal characteristics extended to the measurement by power spectral statistics 
are examples such as measurements in geology and geophysics, the spatial distribution 
of oxygen isotope ratios in sea floor coves, the distribution of stratigraphic hiatuses, 
interpolating between measured data (1), detection of  sea-surface targets and image 
texture analysis. A convenient modeling to deal with these kinds of  process has been 
developed by Mandelbrot  and Van Ness (2) and is referred to as fractional Brownian 
motion (FBM). An important  problem appearing in the applications of  stochastic 
processes is the estimation of  various statistical parameters in terms of real data. Most 
parameters are expressed as the moment  values. However, the calculation of power 
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spectrum of  a nonstationary process is not defined in stochastic processing. There have 
been many methods developed to approximate the power spectrum of a nonstationary 
process, such as time-interval approximation (3), Wiener-Khinchin spectrum (4) and 
Wigner-Ville spectrum (5). But the functions of these estimations are not mature since 
the time interval is not long enough. 

Recently, the novelty of wavelet transform emerged as a powerful tool for non- 
stationary signal analysis and has been considered in the literature (6--10). Provided 
with a time-scale decomposition of  processes, the properties of wavelet transform can 
be read off. In a recent correspondence, Flandrin (11) proposed that the stationarization 
of an FBM process may be approximated by discrete wavelet transform (DWT). 
However, the result from Flandrin is available only for the FBM process corresponding 
to is just an example of nonstationary process with WSSI. Until 1993, the second-order 
statistics of a process characterized through its continuous wavelet transform are 
further approached by Houdr6 (12, 13) in which some strict assumptions are still 
necessary to be conditioned. Through the application of continuous wavelet transform 
(CWT), not only the self-similarity is preserved (14, 15), but also a nonstationary 
process with wide-sense stationary increments (WSSI) is further transformed to a wide- 
sense stationary (WSS) process (12, 13, 16) as well. 

However, the CWT at least suffers from two drawbacks of redundancy and heavy 
load of computation, and these two disadvantages possibly affect one another. There- 
fore, the DWT proposed in (7, 17, 18, 9) is advanced to overcome these problems, 
so that the computational complexity and redundant information can be reduced 
dramatically. Additionally, multiresolution signal processing applied to implement the 
DWT will promote the function efficiency with redundancy nearly cleared. Through 
the multiresolution analysis (19, 20), the DWT will be well performed in the structure 
of subband filter system, called PR-QMF (perfect reconstruction-quadrature mirror 
filter) (9) which is a realizable finite-impulse-response (FIR) filter system. 

The concept of linear algebra by linear operators introduced below will be used to 
show that a nonstationary stochastic sequence with WSSI or wide-sense stationary 
jumps (WSSJ) may be stationarized by using a PR-QMF structure of DWT. Some 
examples such as sampled FBM sequence, WSS sequence generated by A RMA  model, 
stochastic sequences with WSSI and WSSJ generated by ARIMA (auto-regressive 
integrated moving average) models (16) are provided to present the stationarization 
procedures. Here, the ARIMA model (16) is characterized by fitting an ARMA model 
to increments or jumps, in which the signals generated by the ARIMA models using 
white stationary kernels are nonstationary with WSSI or WSSJ. 

In Section 2, we summarize the notation and brief definitions of  nonstationary 
processes with WSSI/WSSJ. The Discrete-time Stationarization Theorem by the DWT 
based on the PR-QMF structure is derived in Section 3. Some examples are shown in 
Section 4. The conclusion and some interesting directions for the further research are 
given in Section 5. 

11. Review 

In fact, a physical measure device can only observe a signal at a finite resolution, i.e. 
a discrete sequence of observed data. The properties of WSSI and WSSJ for stochastic 
sequences are defined as follows: 



Sta t ionar iza t ion  o[" S tochas t ic  Sequences  1217 

Let ff e £2. If x[in, cj] is a random variable for each fixed integer in in an index set Z, 
then x[n, if] is a stochastic sequence (21), denoted by x[n] for simplicity. 

Defini t ion I (13) 
A stochastic sequence x[n] has WSSI if the second moment of the increment 

R,[nl,  ml; n2, m2]  = ~{(x[nl + m l ] -  x [ n l ] ) ( X [ n 2  q - n ' t 2 ] - - x [ n 2 ] ) * }  depends on ni and in 2 only 
through nt --n2,  i.e. R,[nl, mG in2, m2] = R,.[nl -- no, m~; 0, m2], for all n~, n2, m b  m2 • Z .  

Defini t ion H (16) 
A stochastic sequence x[n] has WSSJ if the jump x [ n ] + x [ n - m ] ,  for all n , m • Z ,  is 

WSS. 
Furthermore, the definition for the discrete wide-sense cyclostationary (WSCS) is 

directly followed the continuous case (23). 

Defini t ion I I I  
A process x[n] is called WSCS with period T if, for every integer m, 

~'{x[n+mT]} = ~{x[n]}, R.~[n, + r n T ,  n 2 + m T ]  = R,[n, ,  n21. 

A mathematical tool proposed by Mallat (9) to adopt the use of wavelet basis applied 
in the Discrete-time Stationarization Theorem is extracted here. 

IIL Stationarization by D WT with PR-QMF Structure 

Let the scaling and wavelet coefficients of  a stochastic sequence x[n], denoted by am, 
k and din, k, respectively, be defined by 

a,,,.k = ~ h [ i -  2kla,,, l,i, dm,k = ~ 9[i-- 2k]am , j ,  (1) 

for m >~ O, with the reasonable assumption (22) 

f ao,~ = x( t ) (o( t - -  k)  d t  = x[k]. 
-)c, 

Also, the autocorrelation and crosscorrelation functions of am, k and d,,, k are defined 
a s  

• "t 
R~,[k,,k2],,,,.m~ =- ,~{a,,q., a.,2.k~, Rd[kl,k2],,,, ..... =- g'{d,,,, k,d,*,, , } 

. • 2 ,  2 ~ 

& , ~ , [ k . , k 2 ]  . . . . . . .  2 - a'{a,,,,,kd,*,,~,<}. ( 2 )  

Let X, a., and dm be the stochastic vectors of  {x[n]},,Ez, {am.k}a-~Z and {d,,,.a.}k~_z, 
respectively. Then am, k and rim, k, for all k • Z and m > 0, can be expressed as 

a,. = Ha,, ~ = Hmx, (3) 

d,, = Gain i = GH"'  iX, (4) 

where the linear operators H and G can be found as infinite matrices whose entries are 
defined as 
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[H]k.i=_h[i_2k], [G]k,i=__9[i-2k], for alli, k E Z ,  (5) 

and satisfy 

[H]~..~ = [H]k+,,i+2, [G]k.i = [G]k+l,i+> for  all k, i eZ .  (6) 

In this f r amework ,  the reconstruct ion fo rmula  in (11) can be writ ten as 

X = H * a I + G * d L .  ( 7 )  

Now,  let Rx = ~'{XX*} be the corre la t ion matr ix  of  X. Define R,~ . . . .  ), as the 
corre la t ion matr ix  of  am, and a,. 2, and similarly for Rd~m,,m=) and Rad~m,,m2)" Then  these 
corre la t ion  matr ices  have the forms as in the following l emma used by the P R - Q M F  
structure according to the recursion of  the coefficients a,,,,k and d,,,.k. 

Lemma I 
With the above  definitions of  the infinite matr ices  H and G, and the corre la t ion 

matr ices  Rx, R.I . . . .  2) and Rd~ . . . . .  ) are linear t r ans format ions  a m o n g  Rx, R,( . . . . .  ) and 
Rd( . . . . .  ) and recursive a lgor i thms derived as follows: 

= R,<,.,)(H ) - = H,,,,Rx(H.)m_ ~, (8) Ra(m,.in=) H m, t , m. 1 

r~U,,,~ Z• tH*'e"-~ 2G* GI-I'",-~Rx(H*) ''2 ~G* (9) 
g d ( m l , m 2 )  ~--- L * H  a~,a(1,1)\** / = 

rv , , , -~  tI4*v,,~ 2G* = If",Rx(H*)'"~-~G *, (10) 
g a d ( m l , m 2  ) = ** a~a(1 ,1) \a*  ] 

provided that  the initial condi t ion R,{L ~) is (liven. 
Proo/! The results are obta ined directly by recursive manipula t ion  f rom Eqs (3) and 

(4) and (20, 9). • 
The  main  result derived f rom this section is the following s ta t ionar izat ion theorem 

called the Discrete- t ime Sta t ionar izat ion T h e o r e m  (DTST) ,  in which condi t ion (D) is 
restricted to the signal itself to ensure the existence of  the DWT.  The  not ion of  'cross 
WSS'  means  that,  for any two stochastic sequences x[n] and y[m], R,~[n,m]- 

E{xtnly*[m]} = R , , t n -  m]. 

Theorem I (Discrete-t ime Sta t ionar iza t ion  Theorem,  DTST)  
Let x[n], n e Z, be a stochastic sequence with constant  mean  and autocorre la t ion  

funct ion R,[n, m] =- ~o {x[n]x*[m]}. Suppose  that  {2""2(o(2"t--k)}k~z is a compac t ly  sup- 
por ted  o r thono rma l  wavelet  basis as in (9), two finite-impulse response (F IR)  filters h 
and ,q satisfy the perfect reconstruct ion condi t ion as in (9), x[n] satisfies the condi t ion 

Rx[nl, n2] (D): ~ U ,  for some NR > 0, N R ~ Z  and for all nt,n2~Z, 
(1 +,,~+n~) N~ 

and the scaling and wavelet  coefficients am, k and d,,,. k are defined as in Eq (2). Let m~ 

and m2 be positive integers. 
(Gl) :  If  x[n] is WSS then a,,,. k and d,,, a. have cons tant  means  for all m and k, and the 

entries of  corre la t ion matr ices  of  a,,,. k and din. k satisfy 

[R.~ . . . .  )]/%, k2 = I R a (  . . . .  )]k i +  2'":, k e + 2 ..... ( 1  1 ) 

[ R d (  . . . .  )]k,,*2 = [Rd{ . . . .  )]k I + 2'"~. ke + 2 ..... (12) 

[Radt . . . .  2)]k, " ~'2 = [Rad{m. mz)]k ' + 2'%./*e + 2 ..... ( 1 3 )  
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for  all k~, k2~Z ,  which means  that  these entries are function o f  k 2 - 2 ' " '  .... ~-.kt, for 
m~ >m_~, or  k~ -2" '~ .... ', k2, for m~ < m2. 

(G2): I f  x[n] has WSS1 then the wavelet  coefficient din. k has cons tant  mean  for  all m 
and k, and the entries of  the correlat ion matr ices of  d,,,. ~ satisfy 

[Rd~m,. m2)]/, , .k, = [Ralm,. roD]l,, + 2'":. k: + 2 ..... (14)  

for  all k~, k 2 e Z ,  i.e. [Rd~ . . . . .  )]x-,.k. is a function of  k_~-2'", '": .kt ,  for m >~ m2, or 
k ~ - 2 " ' :  '",,k~, form~ < rn> 

(G3): If a,,,., and d,,,. ~ have constant  means,  and the entries of  correlat ion matr ices 
ofam.  k and d,,,. ~ satisfy Eqs (11~(13), for all m and k, then x[n] is WSCS with period 2. 

Moreover ,  as a special case, for  any positive integers m~ = m~ = m, the results become 
interesting as follows: 

(SI): I f  x[n] is WSS, then the scaling coefficient a,,,, k and wavelet  coefficient d,,. ~ are 
WSS and cross WSS, for  all k e Z. 

($2): If  x[n] has WSSI,  then the wavelet  coefficient d,,,.k is WSS for all k e Z .  
($3): I f  the scaling coefficient am. k and wavelet  coefficient d,,. k are WSS and cross 

WSS for all k e Z, then x[n] is WSCS with period 2. 
ProoJ! We begin by proving  (G l). Since x[n] is WSS with constant  mean,  its cor- 

relation matr ix  Rx is Hermi t ian  Toeplitz.  
(i) Based on Eqs (3) and (4), we have 

o~,.{am~ = H " ' d ,  [ X } ,  (15)  

~{dm}  = ~/4'" ' ~ { x } ,  (16) 

for all m, k e Z. They are constant  vectors as the mean  of  X is a cons tant  vector.  
(ii) For  any positive integers mj and m2, the au tocorre la t ion  o f  a,,,.k is shown to be 

bounded  and qualified as Eq (11) for any  bounded  integers kt and k2 expressed as 

]R,,[k,,]~'z],,q.,,,2[ ~ Id~{a,,,,.k,a*>k~}], 

× (1 +i7,,, + lT , , : ) ' ~"h[ i , -2k , ]h[ i2 -2 i , ] . . .  h[ i , , , -  2i,,, ~]h[l~-2k2] 

R,.[i,,,,, t,,, 2] 
x h[t~- 2t l ] . . .  h[/,,,~ - :t,,,~ - l] (1 + , ,~ , - - ,  + tL),,--~l 

l ]  l ib 1111 lilt l lh l lh tlh 

= E E ' Y. Y. E . - E  ~ 1 + ( ; , , , , + 2 ; o , , - 1 + " + 2 " " k , )  -~ 
~tll i2=ll /  i21111 ~ltl ]l ~lll 12=lll /ritz=It! 

+ (l,,,. + 2 ..... , + . "  + 2"'~kz)Z)N,h[i,]h[i:]... h[i,,,,]h[ll]h[12].., h[l,,,~] 

R , [ ( i , , , ~ + 2 i - m , -  1 + . . .  +2 '" ' k , ) , ( l , , ,~+21, , ,~z l  + . . .  +2 ' "  Zk:)] 

< oe, (17) 
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since R,~[nl, n2]/(1 + n 2 + n2) NR 61 "~, for  some NR > 0, and h is an F I R  with finite length 
n j , - n z  and kl and k 2 a r e  bounded.  

Now,  we will prove  the result (G1) by using inductive method.  Let  m~ = 1 and 
m2 = 0. F r o m  Eqs (8) and (6), we have 

[R,a.o)lk,..% = [HRxlk, .k2 = ~. [H]k,.i[Rx]~.<. 
i 

= ~[H]I , ,+, . i+2[Rx] ,+2,~,+' ,  = [Ra~,.O)]k,+,.k~+2. (18) 
i 

Assume that ,  for  all k~, k2 e Z, 

[R.(m,,=~)]<, k~ = [Ra( . . . . .  )]k, + 2"2 k, + Z'",, V kl, k2 e z ,  (19)  

Then,  for  any positive integers m~ and m:, using Eqs (8), (6) and Eq (19), it yields that  

[ R a ( m l + l , n ' z q - l ) ] k t . k 2  = [ O R a (  . . . .  2 ) H * ] k l . k 2  = Z 2 [ O ] k l , i [ R a , m l , m z ) l i ,  i [ H * l j ,  k2 ,  
f / 

H * = Y~ Z [  ],.,+,.,+.,[e..,.,,.,.~,],+2,,,~,+:~,,,[l-I ]j+2.<+, 
i J 

= Z Y~ [HL+2'",+' , ,+2'", '~[R.,  . . . . .  ,],+2 ..... ,~+2,.,+, 
i j 

[ H * ] / +  2 . . . . . .  k 2 + 2  . . . . . .  , 

~--- IRa (m,  + I,m, + I)]/,-, + 2% + I, k2 + 2,,,, * ' • ( 2 0 )  

As a result, the p r o o f  o f  Eq (11) is completed.  The  proofs  o f  Eqs (12) and (13) are 
similar to the above.  F r o m  Eqs (11) (13), the numbers  of  the elements  of  these cor- 
relat ion matr ices  at (kl, k2) and (kl + 2  m2, k 2 + 2 " ' )  are equal,  which indicates that  the 
indices of  these two elements have the relat ionship 

(k2 ) -2 ' " '  '"e(kl) = ( k 2 + 2 " " ) - 2  ''~ " '~(k~+2"0, for  m~ ~> m2, 

(k l ) - -2  m-~ "q(k2) = ( k ~ + 2 " 2 ) - 2  ''-~ "q(k2+2m'), for  m~ < m 2. (21) 

It means  that,  for  any rn~ and m> these entries are functions of  k 2 - 2 " '  .... ek l ,  for  
m, >_ r/12 or k~--2 - k> for  rn~ < m 2. 

N o w  we prove  (G2). Suppose  tha t  x[n] has WSS1. 
(iii) The  mean  of  dm, k is shown to be cons tan t  as in the p r o o f  of  (G 1). 
(iv) Also, for  any positive integers nh and m2, the au tocorre la t ion  of  d,,,. k will be 

bounded  with the same procedures  as in the p r o o f  of  (ii). Moreover ,  ~,gg[i] = 0 so that  
we have, for  any u, v ~ Z, 

Rd[kl ,  k2] . . . . . . . . .  = Z Z g [  il --  2k~].q[l, - 2k2]R,[i~, It] .... , ..... , 
il 11 

= ~ Y , "  ~ ~ ~ " ~ g [ i , - Z k d h [ i 2 - 2 i d . . . h [ i , , - 2 i , , , - 1 ]  
i I i 2 i,% I I 12 Im. 

× g[l, - 2k-,]h[12 - 21d. . .  h[l,,,. - 2l,,,~ - 1](R,.[i,,,, l,,,~] - R.~[i,,,, v] 

- -  R,~[u, l,,,~] + R. , [u,  v]). (22)  
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Since the process x is of  WSSI, then define y,[n] =- x[n]-x[n-r] ,  for  every r t Z .  
Therefore ,  x[n] has WSSI if the pair y, and A,. is stationarily correlated, for  every r and 
s, i.e. the correlat ion matrix Rv,,v~ is Toeplitz,  where Yr and Y,. are the infinite vectors 
{y,.[n]},,~ and {y,.[n]},,~ z, respectively. So, choose any u, v t Z such that r = i -  v, s = 1 -  u 
and the correlat ion funct ion o f  y,[i] and y,[/] satisfies R,[i,l] = Rdi, i] 
--R~[i, v]--R,[u, l ]+  R,[u, v]. Therefore,  from Eq (22), for all kj and k2, we have the 
correlat ion matr ix of  d,,,k as follows: 

Rd..,,m2) = G H  m'- IRv. v~(H*)m~ tG*. (23) 

Based on Eq (6), it implies that the entries o f  GH satisfy, for  all k, i t  Z.  

[GH]k,, = ~,[G]k,/[H]/j = E[G] / , .+ t , /+2[H ] /+ 2 , i+ 4  = [GH]k+~,,+4. (24) 
/ i 

By recursive s t ra ightforward manipulat ion,  we find that  the elements of  GH re,- 
have the following equality, for  all k, i t  Z, 

[G//" ' , -  ']k.~ = [ G H ' , -  1]~.+ ,.,+ :,,,. (25) 

Therefore,  f rom Eqs (23) and (25), the entry o f  Rd< . . . .  ,) has the relationship 

[Rd~ . . . . .  )]k,.k~ = [GH'" 1 , . . . .  1 , _ RVr, v~(H ) - G ]k,,k2 

= E Z [GH"',--x R * "'~-' * ]~,-'[ ,'r v~li / [ ( H  ) - G l/,k~ 
i j 

m I - -  I = Z ~ [GH L+-~,,,,-2 ......... [R~,,~j,+,,,,-,,,,+~ ......... 
i / 

[ ( H * ) " ' ~  ' G % +  .. . . . . . . .  k + .... i • 2 - i 

= [Rd~m,,.,,)]k, +2":.~-~+2'",, Vkl, k2 t Z. (26) 

Hence, the p roo f  is completed.  
Next we prove (G3). Suppose that, for  all k~,k2tZ ,  a,,,,.k, and d,,,~,k~ have constant  

means and the correlat ion functions satisfy the properties in Eqs (11) (13), F rom Eq 
(7), we obtain 

~{X} = H*g:{a, } + G*a{d,  }. (27) 

Therefore,  ~ Ix[n]} is also constant .  Since R~o ' ,), Rd~,. ~, R.d~,, h and Rd.a, ~ are Hermit ian 
Toeplitz,  the entries at (n~, n2) o f  the correlat ion matr ix of  x[n] are represented as 

[Rx],,,.,,: = [H*R.{,, ,)H+ G*Rd<L i)G q- H ' R a d i i ,  ,)G + G *Raa(l, ,)H].,,,,e 

= E E [ H * J n l , / I R a ( l ,  1)],.J[H]i.n2 -}- E E [G *]nl.i[Rd(l. I,],,[[G]j.n 2 
i i i j 

+ ~ ~ [H*J,,,.,[R.d<.. ,],./[G]/,,,~ + ~ ~ [G*],,,.i[Rd.,., ],.,[H]/.,,: 
i j i j 

= _ G* 2 ~[H*],,,+2,,+,[Ra,,,I)]i+,,/+,[H]/+,,,,,+ 2+ EZ[  ]n,+2,i+l 
i ,; i / 
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[R~(,. , , ] ,+,  ,~+, [G],+ ,.,,2 +2 + ~ ~ [H*],,, + ~,,+, 
i / 

[R ,d , , , , ] ,+  ,, ,+ , [G ],+ , ,,2 + ~ + E ~ [O*] , , ,  + ~,,+ , 
i j 

[Rd,~,, ,~],+ 1, j+.  [ H ] j +  ~.,,~ +2 = [Rx]~,  + 2.,,~ + 2, ( 2 8 )  

for all nL, n2 e g. Hence, x[n] is WSCS with period 2. 
To prove (S1)-($3), let m~ = m: = m. By substituting into the proof  of  (O1)--(O3), 

the results follow. • 

R e m a r k  I 
Second-order  processes always satisfy the condi t ion (D) in DTST,  and so the stochastic 
sequence x[n] in D T S T  also contains the case of  second-order  processes. 

R e m a r k  I I  
The case o f  s tat ionary white sequences is contained in (S1) because the autocorrela t ion 
function o f  a s tat ionary white sequence ff26[n] belongs to the metric (sequence) space 

Theorem I I  

Suppose that  the same condit ions hold as in DTST.  
(J1): if x[n] is o f  WSSJ then the wavelet coefficient d,,,, ~. has constant  mean  for all m 

and k, and the entries of  the correlat ion matrices o f  d,,,, k satisfies 

[Rd(m,, m~]kl,/,~ = [RO¢ . . . . . .  ~)]k, + 2'"~.k~_ + 2 ..... (29) 

for all k~, k2e Z and any positive integers ml and m> i.e. [Rd~.,,,,,~)]k.,k~ is a function o f  
k 2 - 2 " "  "2kb for ml > m> or k L -  2"'~' '"~k~_, for m~ < m> 

Fur thermore ,  as a special case, for any positive integers m~ = m: = m, the results 
become interesting as follows: 

(J2): if x[n] is of  WSSJ then the wavelet coefficient din, k is WSS for all k ~ Z. 
Proof'. The p r o o f  is similar to the case of  WSS1 in DTST except the following 

paragraph:  

Since the process x is of WSSJ, then define y~[n] = x[n] + x [ n -  r], for every r ~ Z. Therefore, 
x[n] has WSSJ if the pair y~ and y, is stationarily correlated for every r and s, i.e. the 
correlation matrix Rv~,y~ is Toeplitz, where Y, and Y.~ are the infinite vectors {yr[n]},,~z and 
{y~[n]},,~z, respectively. So, choose any u , v e Z  such that r = i - v ,  s = l - u  and the cor- 
relation function of y~[i] and y.,. [/] satisfies R.,[i, l] = R~[i, l] + R,[i, v] + R~[u, l] + R~[u, v]. 

Thereafter,  the remaining p roo f  is taken the same manipulat ion as in the p r o o f  o f  (G2) 
in DTST,  and hence the p roo f  is obtained. • 

The physical meaning of  (G 1) in D T S T  is that  the correlat ion functions o f  the scaling 
and wavelet coefficients for two different dilations 2'"~ and 2"- are functions o f  the 
difference o f  translation, (k2) -- 2"', -"'-(kl) ( = (k2 + 2m0 -- 2'"' -"~(k~ + 2"2)), for m~ > m2, 
or (k~ ) -2  ''~- '"~(k:)( = (kl + 2 m g - 2 " ~ - m ' ( k 2 + 2 " 9 ) ,  for m~ < m> Therefore,  under  the 
same resolution (i.e. ml = m2 = m),  a,,,,k and d,,,, k are stationary,  and the case (G1) in 
DTS F will become to the case (SI) in DTST.  One of  usefulness o f  the stationarity is 
that  the power  spectra of  a,,,, x. and din. k are well-defined by the Fourier  t ransform of  the 
correlat ion functions 
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S,,(C'") L J .... L , (30) = R~,[z] ....... e , S,t(e j ' )  = R,/[z] ....... e J .... 
z =  7~ z =  s 

where r = k r - k 2 .  Moreover ,  for the case o f m  < O, with the definitions 

a,,,.k =- h[i-2kla,,,+,.,, d,,,.k = g[i-~.k]a,,,+l.,, f o r m < 0 ,  (31) 
t =  - -  ~ i =  - - - 1  

the results o f  s tat ionarizat ion are similar to DTST.  

IV. Examples  

The first three examples will present the stat ionarization for WSS process, non- 
s tat ionary processes with WSSI and WSSJ generated by A R M A  and A R I M A  models 
(16). The DTST for the discrete FBM sequences will be demonst ra ted  in the fourth 
example. All examples are Monte  Carlo runs with 10 iterations. 

In the first three examples, the WSS sequence is generated by A R M A  model and the 
nons ta t ionary  sequences with WSSI and WSSJ are created by A R I M A  models (16). 
These examples show the cases o f  (S1) and ($2) with respect to DTST,  and Theorem 
II, respectively. The A R M A  model is used to describe WSS processes. The rep- 
resentation o f  an A R M A ( K ,  L) {x[n]},,~z is given by (16), denot ing ~(q)x[n] = ~(q)~[n], 
where ~(q) is the regression opera tor  o f  order  K, fl(q) is the moving average opera tor  
o f  order  L, and {~[n]},,~z is a zero-mean stat ionary white noise. Fur thermore,  the roots  
o f  the polynominal  ~(q) must  lie inside the unit circle to ensure the stability o f  the 
model. Krim (16) modeled the nonsta t ionar i ty  by fitting an A R M A  (K.L) model to 
~ADr r-l~ - which in turn results in an A R I M A  (K, D, L) process for {x[n]},~z, where ( 2 ~ L t~JJ  t l ~ Z  

A~x[n] = (1 + 2q-  ')Dx[n], and 2 = 1 or  -- 1. 

4.1. The W S S  case 
Consider  a second-order  process {.v[n]},,~z given by 

(1 - 2p cos (2~v)q- ' + p2q 2)x[n ] = ~[n], (32) 

where p = 0.9, v = 0.3, q-~x[n] ==- x[n--1] and {~[n]},,~z is an i.i.d. N(0,1). 
(1) The process x[n] is WSS as follows. The mean of  x[n] is zero and the auto-  

correlat ion function o f  x[n] is 

J rh(0.9ei282~) ''+1 +t72(0.9 e/4398) 'z+l, n ~ 0, 
R.~[n] =- d{x[rt  2 + r/]x*[n2] } = ,,+i ,,+. (33) 

where 

r h = [ (0 .9ei2s28--O.9e/4398)(1--0 .81 eiS656)(l --/ '0.81)] i, 

t/2 = [(0.9eJ4398--O.9eJ2~2~)(1 --./,0.81)(1 --0.81)] l 

q3 = [((1/0.9) e i2s28 -- 0.9 e~282s)((1/0.9) e/282s -- 0.9 eJ43v~)(1 +./.'0.81 )] ~ 

~4 = [((1/0.9)eJ43~8--O.9e'282~)((l/O.9)eJ439~--O.9e'4 39~)(I--jO.81)] ~. 
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Therefore ,  x[n] is certified to be a second-order  WSS process. 
(2) Then  the D W T  of  x[n] is also WSS as follows. Let  d,,,. ~ be the wavelet  coefficient 

o f  x[n] defined by 

dm,k = ~ ' "  . ~g[ i~- -2k]h[ i2 - -2 i l ] . . .  h[ im-2i , ,  1]x[i,,,]. 
i I i m 

The mean  of  d,,,. k is also zero and the au tocorre la t ion  function of  d,,. k, for  any m E Z, 
is 

Rj[z] = Ra[k,, k2] = ~ . ' "  ~ ~ " "  ~g[i,]h[i2 - 2i~]...  h[i,,,- 2i,,,_ ,].q[l,]h[12 - 21,] 
i I i m [ I I m  

. . .h[lm-21, , ,_~]R,[i , , - - lm+2"~].  (34) 

Obviously ,  din, k is also a second-order  WSS process. 

4.2. The W S S I  case 
Consider  a nons ta t ionary  process with WSSI  {x[n]},~z given by (16) 

(1 - 2p cos ( 2 n v ) q - '  + ffq-2)(1 - q- ' )x[n]  = ~[n], (35) 

where p = 0.9, v = 0.3, q-~x[n] =- x [ n -  1], and {e[n]},,~z is an i.i.d. N(0, I). The  mean  
of  x[n] is zero and the au tocorre la t ion  funct ion of  x[n] is 

R~[n,, n2] = g{x[n,]x*[n2]} 

= c~] min  (n l, n2) + ~ (~4ha[nl -- r] + c~4h*[n2-- r] + h4[n, - r ]h*[n2-  r]), 
r ~< m i n ( n  I ,n2)  

where h3[n] = ~4, for n _> 0, and h3[n] = O, for  n < O, is the impulse response of  
0~4/(1 __ q - 1 ) ,  and h4[n] is the impulse response of  

as + =~6q t 

1 - - 2 p c o s ( 2 ~ v ) q  l + f q - : ,  

where ~4, ~5 and ~6 are the residues of  the equa t ion  1 / ( 1 - q - ~ )  
( 1 - 2 p c o s  (2rrv)q ~ + f q - 2 ) ) .  

Since the roots  o f  1 - 2 p c o s  ( 2 ~ v ) q - ~ + f q  -2, denoted by /~ and /32, are complex  
conjugates  inside the unit  circle, we obta in  h4[r] = ~7/3~ + ~/3~, where ~7 and ~8 are 
constant .  This signal satisfies condi t ion (D) in D T S T .  Thus,  checking the auto-  
corre la t ion funct ion of  the D W T  coefficient o f  x[n], din. k for any m, we have 

R,,[kl, k2] ....... =- E "  " E E " " E.qCi,]h[ i2 - 2i , ] . . .  h[i,,,- 2 .... l]#[l,]h[12- 2/d 
i t i,,, I t I,,, 

. . .  h[1,,,- 21,,, ,] ~ (h3[i,,,- r] + h4[im- r])(h3[lm - r + 2"(k,  - k2)] 
r 

+h4[lm-r+2"(k,-k2)])* = Ra[k,-k2] . . . . .  . ( 3 7 )  

Hence,  it is p roved  that  d,,,., is WSS. The  exper imenta l  signal o f  WSSI  x[n] is shown in 
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(a) WSSI  s ignal  b) Corr.  o f  D W T  of  WSSI  for  m = l  
20 2 

'!x" fo r  the error. 
'!o" fo r  b=0. 

0 
~ 1 . . . . . . . . . . . . . . . . . . . .  ~+" for .b=20:  . . . .  
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-40 .~I • 
O9 
O9 n" 

-60 -1 -. "~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-8C -2 
2 5 10 

n , ^4 k 

(c) Corr .  o f  D W T  of WSSI  for  m=2 (d) W S S J  s ignal  
200 

2 '!x" fo r  the  error.  I 

1.5 . . . . . . . . . . . . . . . . .  ' !6" f0Fb=0.  . . . . . . .  ~- 10o 

~+ 1 . . . . . . . . . . . . . . . . . . . .  i~,,. for. b=L;X0: . . . . .  

0 . 5 "  • . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . .  . l o  I 
,q,-. 

-100 . . . . . . . . . . .  . . . . . . . . . .  
(~ . x . . - x - - . x . . . ~  . ~ - - - ~ . - ~ . - ~  m . .  i 

I 

• ~ -200 L : J0 ~ ~ 
0 5 10 0 1 3 

k n x 104 

(e) Corr.  o f  D W T  of  WSSJ  for  m = l  (f) Corr .  o f  D W T  of  WSSJ for  m=2 
15000 

'~x" fo r  the error. 
• • • • e. • • • • '!o" fo r  b=0. 

1000C . . . . . . . . . . . . . . . .  'ix~'-for.the error.-. ~ " . . . . . . . . . . . . . . . . . .  "4-" f0 i "b=20:  . . . .  

-Q '!o" for b=0. ~- L i 
+ '%" for  b=20. + 

5 0 0 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , 
~J I . - .x . . .x . .x .  ~ . . - ~ - - ~  . ~  ~ . . , , .  

nr- / 

x x x x x x x ~ , ,  / e 

-5000(~ 5 10 -20 10 
k 

FIo. 1. (a) WSS] signal generated by A R I M A  model. (b) Autocorrelation function of the DWT 
coefficient of the WSS! signal as in (a) for m = 1. (c) Autocorrelation function of the DWT 
coefficient of the WSSI signal as in (a) for m = 2, where (a), (b), (c) are the results of  the example 
in Section 4.2. (d) WSSJ signal generated by A R I M A  model. (e) Autocorrelation function of the 
D W T  coefficient of the WSSJ signal as in (d) for m = 1. (f) Autocorrelation function of the 
D WT coefficient of the WSSJ signal as in (d) for m = 2, where (d), (e), (f) are from the example 

in Section 4.3. 

Fig. l(a) .  The  a u t o c o r r e l a t i o n  f u n c t i o n  o f  the wavele t  coefficient  RJtk~, k2] at  two 
dif ferent  t r a n s l a t i o n  sets a n d  the e r rors  be tween  these two a u t o c o r r e l a t i o n s  are  s h o w n  
in  Fig.  l (b )  a n d  (c). F i g u r e  l (b )  is for  the  case o f  m = 1 a n d  Fig.  l(c) is for  m = 2. In 
Fig.  l (b )  a n d  (c), the a u t o c o r r e l a t i o n  fu n c t i o n s  a t  the first set [kj, k2] = [0, 0] ~ [9, 0] 
are  d e n o t e d  by  o, the a u t o c o r r e l a t i o n s  at  the second  set [kl, k2] = [20, 20] ~ [29, 20] 
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denoted by + ,  and the errors between these two autocorrela t ions  denoted by x, in 
which the autocorrela t ion functions o f  the D W T  of  WSSI at different translat ions are 
the same with the same increments o f  translations. 

4.3. The W S S J  case 
Consider  a nons ta t ionary  process with WSSJ {x[n]},~z given by (16) 

(1 - 2p cos (2~zv)q-' + pZq-2)( 1 + q- ' ) x [n]  = e[n], (38) 

where p = 0.9, v = 0.3, q lx[n] - x [ n -  l], and {e[n]},,~z is an i.i.d. N(0,1). The mean of  
x[n] is zero and the autocorrela t ion function o f  x[n] is 

R,[nl,  n2] =- 8'{x[nl]x*[n2]} 

= ( - - l ) " ' + " 2 ~ m i n ( n b n 2 ) + 7 1  ~ (--  l)"~-rh2[n, - d  + c q ~ ( -  1)"' 
r <  m i n ( n l , n 2 )  r <  m i n ( n  I ,n2) 

- rh*[n2 - r l  + ~ h2[nl - rlh*[n2 - d, (39) 
r _< mln(¢t  I ,n 2 ) 

where hi[n] = 7L(-  1)", for n > 0, and hi[n] ---- 0, for n < 0, is the impulse response o f  
71/(1 + q  ~), h:,[n] is the impulse response o f  

~:q_ 73 q 1 

1 - -  2p COS (27zv)q t + pZq 2, 

and 7~, 72 and ~3 are the residues o f  the equation,  1/(1 + q -  t)(1 - 2p cos (2zv)q ~ + f - q  2). 
Since the roots  o f  1 - 2 p  cos ( 2 ~ v ) q - ~ + f q  - z  are inside the unit circle and complex 
conjugates,  h2[r] =~22flq+733fi'_;, where 722 and 733 are constant  values, and 
Z L  ,h2[r] < ce, the x[n] is therefore shown to satisfy condit ion (D) in D T S T  also. 

Thus,  checking the autocorrela t ion function o f  the D W T  coefficient o f  x[n], d,,,. k for 
any m, it yields that  din. k is WSS, i.e. 

R,{kl ,  k2] ....... = ~ . . . ~  ~ . . . ~ g [ i ~ ] h [ i : - 2 i ~ ] . . .  h[i,,,-2i,,, ~]g[l,]h[l:- 2l d 
i L i m I t I m 

. . .  h[l, , ,-  21,,,_ t] ~. ~. (h,[i,,, + 2"'k, - rl],  + h2[i,,, + 2mkl - r,]) 
r I r .  

x (h, [1,,, + 2"'k: - r:] + h 2 [ l  m q -  2ink2 - 1"2])'6, [r~ - r2] 

= ~ ' "  ~ ~ ' " ~ , q [ i t ] h [ i 2 - 2 i , ] . . .  h[i,,,-2i,,, L],q[l~]h[12--2ll] 
i~ i,,~ I I I,,, 

. . .  h[l, , ,-  2lm_ ,] ~ (hi[i,,,-- r] + h2[im - r])(h ,[lm -- r + 2"'(k, -- k2)] 
r 

+ h2[l,,,- r + 2m(k, - k2)])* -- R,dk, - k.,] ........ (40) 

The experimental WSSJ sequence is shown in Fig. l(d). The simulation results are 
shown in Fig. l(e) for the case o f m  = I and Fig. l(f) for the case o f m  = 2, where the 
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notat ion is the same as defined in Fig. l(b). In Fig. l(e) and (f), the autocorrela t ion 
functions o f  the D W T  at different translations are the same with the same increments 
o f  translations. 

4.4. The F B M  case 
The FBM process (11, 24, 25) is recognized a famous nons ta t ionary  stochastic 

process with WSSI.  Since the autocorrela t ion functions o f  a sampled FBM sequence 
satisfy the condit ion (D) in D T S T  for N = 1, the sampled FBM sequence are used to 
demonst ra te  the cases (G2) and ($2) o f  DTST.  

Consider  a sampled FBM process (22). B[n] = BH(nAx), n e Z ,  where Ax is the 
sampling period. The autocorrela t ion o f  B is denoted by 

Re[hi,hal= A.~[ (Inl[ +[nz[ --In~--n,_[ ), (41) 

which satisfies condit ion (D) in DTST for NR = 1. Let Ax = I and choose Haar  basis 
for simplicity, that is h[0] = h[1] =.q[0] = -911]  = 1/v/~- From (20, 9), the wavelet 
coefficients for mj 1 and m, 1 is written as d~ Z ~ = = _ =  .,,= i,= ,.q[il-2n]aoj, 
Z ~ Bin]. Thus, the autocorrela t ion functions o f  the ,, = ~.q[ij- 2n]B[i~], where ao.,, = 
wavelet coefficients are shown as follows: 

(G2) case: For/n~ ¢ m> let m~ = 2 and m2 = 1 for simplicity. Substituting Eq (41) 
into the autocorre la t ion function o f  the wavelet coefficients, we have 

O -2 
R,,[]~'bk2124 : ~ {12(2 /q - - / , ' 2 ) - l [2" -212(2k~-k2)+  112"+12(2k~--/;2)+ 312H} - (42) 

For  any positive integers mt ~> m2, f rom Eq (41) and (20, 9), we obtain that the 
correlat ion depends only on k 2 - 2 " ,  "'~k~ as follows: 

R,~[k,,k2],,,,.,,,~ = ~ Z "  " ' ~ ' " ~ 0 ' [ i ~ ] "  .h[i',, ,- 2ib, ,].q[l'~]...h[l',, -21;,,: ,] 
"'t i~ ,%, g /;,, 

v 

X O - - " "  , 2 H - -  , ,,,~ m I _ K I I [  __[lml__l,h__ ~tlt,,,I 4-11, , ,+2-(k,_-2 ... . . . .  _~n . . . . .  _ 2'"~'(k~-2", "'-~k012"). (43) 

($2) case: Fo r  m~ = m~ = m = 1, 

0-2 
&,[k,,k~],., = ~ ( 1 2 ( k , - k 2 ) - 1 1 2 ' / + 1 1  +2(k, -k2)12r ' -212(k~-k~_)12") .  (44) 

For  any posit ive integers m~ = m~ = m. f rom Eq (41) and (20, 9), we obta in that the 
corre lat ion depends only upon the difference o f  t ranslat ion k l - k >  That  is, 

R,,[k~, k2] ....... = ~ y . - .  ~ ~ ~ . . -  y .g [ i~ ] . . ,  h[i~,~- 2i~,, ~]9[l'~]h[l~- 2/~]. . .  h[l ; , , -  2l;,, ~] 

2"'(k x ~ (/l~,,+ 2-k,)[2H+[i~,,l '-"-Iib-l;, ,-2'"(k2-k,)l~-').  (45) 
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TABLE 1 
Autocorrelation data q[the wavelet coefficient d.,.t., with m~ = m2for the sampled FBM sequence 

O = 0 . 1  H - - 0 . 5  H = 0 . 9  
[k,, k2] ~°{xy*} <xy*} ~°{xy*} 

Rd[kl, k211,1 [0,0] 2 . 3 8 0 3 e - 0 1  7.0250e--05 2.0389e--08 
[10,10] 2.3804e--01 7 . 0 2 5 7 e - 0 5  2 . 0 3 8 2 e - 0 8  

[4,0] --6.801 l e - - 0 3  - 1.8503e--06 8 .0060e--09 
[14,10] - - 6 . 8 3 1 6 e - 0 3  - 1 .8632e -  06 7.9947e-- 09 

Ra[kL,k2]2.2 [0,0] 1 .2292e+00 5 . 2 0 0 8 e - 0 4  2 . 6 0 0 2 e - 0 7  
]10,10] 1 .2291e+00 5 . 2 0 0 8 e - 0 4  2 . 5 9 8 3 e - 0 7  
[ 14,10] - 2 . 2 3 1 3 e -  02 - 7.8963e - 06 1 . 0 9 8 6 e -  07 
[14,10] - 2 . 2 4 8 % - 0 2  - 8 . 1 3 5 1 e - 0 6  1 . 0 9 5 5 e - 0 7  

Ra[k>k2]3.3 [0,0] 6 .5196e+00  4 . 1 7 5 2 e - 0 3  3 . 4 9 3 0 e - 0 6  
[10,10] 6 .5183e+00  4.1745e--03 3 .487%--06  

[4,0] -- 1 .5449e-01  -- 1 .0560e-  04 1.443e--06 
[ 14,10] - 1.5257e-- 01 - 1.0572e-- 04 1.4390e - 06 

d{xv*} denotes  d~{a,,,,,ka*>k~} or ~'{d,,,~.A~d*:.k:}. 

TABLE 2 
Autocorrelation data (?.[the walrelet coq[ficient d.,.k, with m~ ~ m2for the sampled FBM sequence 

H = 0.1 H = 0.5 H = 0.9 

R,~[k~, k212.~ [0,0] 5.4444e-- 01 3 . 0 0 5 6 e -  05 1.7700e-- 08 
[ 10,20] 5.4451 e - 01 3.0087e - 05 1.7665e - 08 
[ 10,10] 7.9458e -- 05 5.4716e - 07 7.0506e - 09 

Rd[kb, k213.2 [0,0] 1.4612e - 01 1.2429e - 04 1.1829e-- 07 
[10,20] 1 .4634e -  01 1.2460e-- 04 1 .1784e -  07 
[10,10] 3.2288e--03 2.4195e--06 4 . 5 1 2 4 e - 0 8  

RJtk~, k214,3 [0,0] 3.6900e-- 01 4 . 9 9 9 2 e -  04 7.8494e - 07 
[ 10,20] 3.7213e -- 01 5.0252e - 04 7.8092e - 07 
[10,10] 2 . 7 9 5 3 e -  02 2.7285e-- 05 2.9063e-- 07 

T h e  e x p e r i m e n t a l  r e s u l t s  s u m m a r i z e d  in  T a b l e s  1 a n d  2 r evea l  t h e  s t a t i o n a r i t y  o f  t he  

w a v e l e t  coef f i c ien t  o f  t he  F B M  s e q u e n c e  f o r  t h r e e  d i f f e r e n t  p a r a m e t e r s  H = 0.1,  H = 0.5 

a n d  H = 0.9. In  T a b l e  1 fo r  t h e  case  ($2)  o f  D T S T ,  t h e  c o r r e l a t i o n  f u n c t i o n  a t  

[k~, k2] --  [0, 0] is e q u a l  t o  t h e  o n e  a t  [kl, k2] = [10, 10] a n d  t h e  c o r r e l a t i o n  f u n c t i o n  a t  

[kL, k2] = [4, 0] is a l so  e q u a l  t o  t he  o n e  a t  [kb  k2] = [14, 10] f o r  t h e  w a v e l e t  coef f ic ien t  

a n d  eve ry  r e s o l u t i o n  2m,  w h e r e  m = 1 ,2 ,  3. T h e  p r o p e r t i e s  o f  c a se  ( G 2 )  in  D T S T  a re  

s h o w n  in  T a b l e  2, w h e r e  t h e  c o r r e l a t i o n  a t  [k~,k2] = [0,0]  is e q u a l  to  t he  o n e  a t  
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[k~,k2] = [10,20] and the correlat ion at [k~,k2] = [0,0] is different f rom the one at 
[kj,k2] = [10, 10] for distinct resolutions 2 m, and 2"-', where m ~ - m 2  = 1. Therefore,  the 
proper ty  R[k~,k2]m,,m 2 = R[k 2 - 2  -k~],,,, ..... is verified. 

V. Conclusion 

Physical data  are observed in the form of  a discrete sequence in practice, and the 
C W T  suffers f rom redundancy  and heavy load of  computa t ion .  In this work,  we have 
developed the easily realizable F I R  P R - Q M F  structure for the I -D  discrete wavelet 
t ransform which can stationarize the r andom sequences with WSSI/WSSJ.  Moreover ,  
we have also shown the stat ionarizat ion o f  a sampled F B M  signal by the P R - Q M F  
structure o f  DWT.  These results provide a well-defined method  for power  spectra o f  
those nons ta t ionary  stochastic sequences useful for fractal modeling. 
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