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ABSTRACT: Owing to most physical phenomena observed as nonstationary processes and the form
of discrete sequences, it becomes realistic to process the nonstationary sequences in the laboratory
if there exists a bi jective transformation for stationarization. In this work, our study is emphasized on
the class of nonstationary one-dimensional random sequences with wide-sense stationary increments
(WSS, wide-sense stationary jumps (WSSJ) and a famous case, the fractional Brownian motion
(FBM) process. Also, the concept of linear algebra is applied to process the stationarization
concisely. Our goal is to derive a stationarization theorem developed by linear operators such that
a nonstationary sequence with WSSI/WSSJ may be stationarized by an easily realizable perfect
reconstruction-quadrature mirror filter structure of the discrete wavelet transform. Some examples
Jor FBM processes and nonstationary signals generated by autoregressive integrated moving average
models are provided to demonstrate the stationarization. € 1998 The Franklin Institute. Published
by Elsevier Science Ltd

1. Introduction

In most physical phenomena, there are strong long-term dependencies involved and
the 1/fx spectral behaviors observed over a wide range of frequencies (1). The appli-
cation of fractal characteristics extended to the measurement by power spectral statistics
are examples such as measurements in geology and geophysics, the spatial distribution
of oxygen isotope ratios in sea floor coves, the distribution of stratigraphic hiatuses,
interpolating between measured data (1), detection of sea-surface targets and image
texture analysis. A convenient modeling to deal with these kinds of process has been
developed by Mandelbrot and Van Ness (2) and is referred to as fractional Brownian
motion (FBM). An important problem appearing in the applications of stochastic
processes is the estimation of various statistical parameters in terms of real data. Most
parameters are expressed as the moment values. However, the calculation of power
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spectrum of a nonstationary process is not defined in stochastic processing. There have
been many methods developed to approximate the power spectrum of a nonstationary
process, such as time-interval approximation (3), Wiener—Khinchin spectrum (4) and
Wigner—Ville spectrum (5). But the functions of these estimations are not mature since
the time interval is not long enough.

Recently, the novelty of wavelet transform emerged as a powerful tool for non-
stationary signal analysis and has been considered in the literature (6-10). Provided
with a time-scale decomposition of processes, the properties of wavelet transform can
be read off. In a recent correspondence, Flandrin (11) proposed that the stationarization
of an FBM process may be approximated by discrete wavelet transform (DWT).
However, the result from Flandrin is available only for the FBM process corresponding
to is just an example of nonstationary process with WSSI. Until 1993, the second-order
statistics of a process characterized through its continuous wavelet transform are
further approached by Houdré (12, 13) in which some strict assumptions are still
necessary to be conditioned. Through the application of continuous wavelet transform
(CWT), not only the self-similarity is preserved (14, 15), but also a nonstationary
process with wide-sense stationary increments (WSSI) is further transformed to a wide-
sense stationary (WSS) process (12, 13, 16) as well.

However, the CWT at least suffers from two drawbacks of redundancy and heavy
load of computation, and these two disadvantages possibly affect one another. There-
fore, the DWT proposed in (7, 17, 18, 9) is advanced to overcome these problems,
so that the computational complexity and redundant information can be reduced
dramatically. Additionally, multiresolution signal processing applied to implement the
DWT will promote the function efficiency with redundancy nearly cleared. Through
the multiresolution analysis (19, 20), the DWT will be well performed in the structure
of subband filter system, called PR-QMF (perfect reconstruction-quadrature mirror
filter) (9) which is a realizable finite-impulse-response (FIR) filter system.

The concept of linear algebra by linear operators introduced below will be used to
show that a nonstationary stochastic sequence with WSSI or wide-sense stationary
jumps (WSSJ) may be stationarized by using a PR-QMF structure of DWT. Some
examples such as sampled FBM sequence, WSS sequence generated by ARMA model,
stochastic sequences with WSSI and WSSJ generated by ARIMA (auto-regressive
integrated moving average) models (16) are provided to present the stationarization
procedures. Here, the ARIMA model (16) is characterized by fitting an ARMA model
to increments or jumps, in which the signals generated by the ARIMA models using
white stationary kernels are nonstationary with WSSI or WSSJ.

In Section 2, we summarize the notation and brief definitions of nonstationary
processes with WSSI/WSSJ. The Discrete-time Stationarization Theorem by the DWT
based on the PR-QMF structure is derived in Section 3. Some examples are shown in
Section 4. The conclusion and some interesting directions for the further research are
given in Section 5.

Il. Review

In fact, a physical measure device can only observe a signal at a finite resolution, i.e.
a discrete sequence of observed data. The properties of WSSI and WSSJ for stochastic
sequences are defined as follows:
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Let {€Q. If x[n, (] is a random variable for each fixed integer » in an index set Z,
then x[n, {] is a stochastic sequence (21), denoted by x[#] for simplicity.

Definition I (13)

A stochastic sequence x[#] has WSSI if the second moment of the increment
R[n, my; ny, mo] = E{(x[n, +nm ] —x{m)(x[n,+ m,) — x[n,])*} depends on #, and n, only
through n, —n,, i.e. R[n,, m;n,, m,] = R [n,—ns, m,;;0,ms,], for all ny, ny, m, meZ.

Definition II (16)

A stochastic sequence x[n] has WSSJ if the jump x([n]+ x[r—m], for all nimeZ, is
WSS.

Furthermore, the definition for the discrete wide-sense cyclostationary (WSCS) is
directly followed the continuous case (23).

Definition 111
A process x[n] is called WSCS with period T if, for every integer w1,

E{x[n+mT]} = &{x[n]}, RJ[n+mT,ny+mT] = R[ny,n.

A mathematical tool proposed by Mallat (9) to adopt the use of wavelet basis applied
in the Discrete-time Stationarization Theorem is extracted here.

l11. Stationarization by DWT with PR-QMF Structure

Let the scaling and wavelet coefficients of a stochastic sequence x[#], denoted by a,,,
k and d,, k, respectively, be defined by

s = jx Wi 2Kl 1. d = ,.:Z, oli~2Ka, .. (1)
for m = 0, with the reasonable assumption (22)
Ay = Jx x(yp(t—k)de = xlk].
Also, the autocorrelation and crosscorrelation functions of a,,, k and d,,, k are defined
as
R [k, Koy, = E{@u i@y Ralkrs Kol iy = E{du i, d, 4 )
Rodkis bkl i, = EX @, x5, 0} 2)

Let X, a, and d,, be the stochastic vectors of {x[n]},c2, {@nijcez and {d, (}iez.
respectively. Then a,, k and d,,, k, for all ke Z and m > 0, can be expressed as

a, = Ha,_, = H"X, 3)
d. = Ga, , = GH"'X, 4

where the linear operators H and G can be found as infinite matrices whose entries are
defined as
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[H]., = hli—2k], (Gl = gli—2k], forall i,keZ, 5
and satisfy
[Hlo = [Hivriv2s [Gle; = [Clesriv2s for all k,ie Z. (6)
In this framework. the reconstruction formula in (11) can be written as
X = H*a, +G*d,. )

Now, let Ry = &{XX*} be the correlation matrix of X. Define Ry, my. as the
correlation matrix of a,, and an, and similarly for Ry, my 204 Raagn,,my- Then these
correlation matrices have the forms as in the following lemma used by the PR-QMF
structure according to the recursion of the coefficients a,, , and d,,, ;-

Lemma I

With the above definitions of the infinite matrices H and G, and the correlation
matrices Ry, Rym,my and Rym,.my are linear transformations among Ry, Rym,,m, and
Rm,.my and recursive algorithms derived as follows:

Ra(ml,mz) — Hm' — lRa(l,])(H*)m27 | - Hmle(H*)m:, (8)
Rom.my = GH™ Ry (H*¥)"™72G* = GH™ ~'Rx(H*)"~'G*, )
Rudimmy = H"'™ Ry o (H*)"2G* = H"R(H*)"7'G*, (10)

provided that the initial condition R, 1) is given.

Proof: The results are obtained directly by recursive manipulation from Egs (3) and
(4) and (20, 9). [ ]

The main result derived from this section is the following stationarization theorem
called the Discrete-time Stationarization Theorem (DTST), in which condition (D) is
restricted to the signal itself to ensure the existence of the DWT. The notion of ‘cross
WSS’ means that, for any two stochastic sequences x[n] and y[m], R,[n,m]=
E{x[nly*[m]} = R, In—m].

Theorem I (Discrete-time Stationarization Theorem, DTST)

Let x[n], neZ, be a stochastic sequence with constant mean and autocorrelation
function R [n, m] = &{x[n]x*[m]}. Suppose that {272 (2"t —k)} ez is @ compactly sup-
ported orthonormal wavelet basis as in (9), two finite-impulse response (FIR) filters A
and g satisfy the perfect reconstruction condition as in (9), x[»] satisfies the condition

RJn, no
(D) ——— €l for some N > 0, Nge Z and for all n,neZ,
(14 n5+n3)"x
and the scaling and wavelet coeflicients a,, « and d,, , are defined as in Eq (2). Let m,
and m, be positive integers.

(G1): If x[r] is WSS then a,, « and d,, , have constant means for all m and k, and the

entries of correlation matrices of a,,  and d,, « satisfy

[Raun,,mz)]k,.k2 = [Ra(ml,mz)]kl+2”’:.k3+2”’|7 (1 1)
[Rd(ml,mz)]k,,k2 = [Rd(ml.mz)]kl+2”‘!~k3+2'”u (12)
[Rad(ml,mz)]k,.l\z = [Rad(ml,mz)]kl+2”’1.k3+2”'la (13)
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for all k,, k-e Z, which means that these entries are function of k,—2"1"": k,, for
W = s, or ky—=2"7" k,, for my < ms.

(G2): If x[n] has WSSI then the wavelet coefficient d,, , has constant mean for all m
and k, and the entries of the correlation matrices of d,, , satisfy

[Rmm,,mz)]/‘»,,/\»2 = [Rd(ml,mz)]M+2”"_A3+1’”1~ (14)
for all k,, k»eZ, 1.e. [R, « . is a function of k,—2" "": k,, for m = m,, or
! (my.my)lky Ay
ky—=2""" ks, for my < m,.

(G3): If a,, , and d,, , have constant means, and the entries of correlation matrices
of a,, , and d,, , satisfy Eqs (11)13), for all m and &, then x[n] is WSCS with period 2.

Moreover, as a special case, for any positive integers m, = #, = m, the results become
interesting as follows:

(S1): If x[x] is WSS, then the scaling coefficient a,, , and wavelet coefficient d, , are
WSS and cross WSS, for all ke Z.

(S2): If x[n] has WSSI, then the wavelet coeflicient d,, , is WSS for all ke Z.

(S3): If the scaling coefficient a,, , and wavelet coefficient d,, , are WSS and cross
WSS for all ke Z, then x[»] is WSCS with period 2.

Proof: We begin by proving (G1). Since x[n] is WSS with constant mean, its cor-
relation matrix Ry is Hermitian Toeplitz.

(1) Based on Eqgs (3) and (4), we have

& fa) = H"6 [X). (15)
£y} = GH" 6 (X}, (16)

for all m, k€ Z. They are constant vectors as the mean of X is a constant vector.
(ii) For any positive integers m, and m,, the autocorrelation of a,, , is shown to be
bounded and qualified as Eq (11) for any bounded integers k, and k, expressed as

|Ru[k]* k.’l]nzl./n:I = léﬁ,\'{arnl_kla:z‘l\z}l’

DI D D M)

iy=— % fp=— l|==x h=—x by = —
2 ! 2 >

X (l + irzm + lrj;i:)NRh[il - Zkl]h[ll - 211] vt h[il)l] - 2im| — l]h[ll - 2k2]
R,\‘[imp 1;"2]

.2

(1 + lm‘ + lr?;ll)AVR

x hil,—21). .. hil,,~21, —1]

=Y Y X Y Y Y (AU, + 26, — T4 +27k)

K My "y & "y My
iy=n iy=my ismy = ly=n; ly=n /,7,2211/

+ ([m: +2’”1" i + -+ 2"’2k2)2)J\,Rh[il]h[iZ] e h[lni|]h[ll]h[12] e h[lm:]

R\‘[(i!m +2i*’nl -1+ +2mlkl)’ ([ml+2lmz_ 1 + - +2]”72k2)]'
X
(] +(im, +2im| —1 + +2mlkl)2+([mz+2[mg~ 1 + +2mzk3)2)NR’

< oC, (17)
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since R [n,, ny)/(1+ni+n3)¥=el*, for some Ng > 0, and & is an FIR with finite length
n,—n; and k, and &, are bounded.
Now, we will prove the result (G1) by using inductive method. Let m, =1 and
= 0. From Eqgs (8) and (6), we have

[Ra.(l.n)]kl_kz = [HRx]k,.k2 = Z[H]/k,,i[Rx]:pl\»2
= Z ,+1 i+ 2[Rxlii2 2ky+2 = [Ra(l 0)] ky+ 1 ky+2e (18)

Assume that, for all k,, k, € Z,

[Raim,mpli, .k, = [Raguymple, + 272 1, 4205 Vi r €2, (19)
Then, for any positive integers m, and m,, using Eqs (8), (6) and Eq (19), it yields that
[Ra(m.+1.m2+1>]kl,k2 = [I'fRa-(m,,mz)H*]k..k2 = Z Z [H]kl.i[Ra(ml,mz)]i,j[H*]i,kz,

- z Z |+l 1+’[Ra(m| mz)]1+2 2 [H*]j+2.k3+l
= Z Z [1‘1],‘,l Lomt 1"«+ My Z[Ra(ml.mz)]iJr 2m:+2‘/~+ 2m,+2
[

[H*]j+ 262 fy 2 b,
= [Ra(m|+l‘m2+l)]k| 427 ey 2l (20)

As a result, the proof of Eq (11) is completed. The proofs of Eqgs (12) and (13) are
similar to the above. From Eqs (11)-(13), the numbers of the elements of these cor-
relation matrices at (k. k,) and (k,+2", k,+2™) are equal, which indicates that the
indices of these two elements have the relationship

(kz)__zml—m:(kl) — (kz_*_zml)_zml—m:(kl+2;rxz)’ for m, = m,,
(k) =2 7"(ky) = (k4 272) =27 (k4 2™), for my < m,. 2n

It means that, for any m, and m,, these entries are functions of k,—2" ~"2k,, for
m, = m, or k), =277k, for m; < m,.

Now we prove (G2). Suppose that x[#] has WSSI.

(iii) The mean of d,, , is shown to be constant as in the proof of (G1).

(iv) Also, for any positive integers m, and m,, the autocorrelation of d,, , will be
bounded with the same procedures as in the proof of (ii). Moreover, Y ,g[i] = 0 so that
we have, for any u,ve Z,

1/[k1’ k" m, "y z Zg - Zk 2k2]Ru[ils ll]m, -l —1

i

=X ZZZ Zg[ln—%]h [&2=20) . iy, =20, — 1]

xglly—2k:000 =20 . . Al — 20, — (R (G, L] — RJE,, U]
- R,\’[ua lmz] + R.\'[u’ U])' (22)
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Since the process x is of WSSI, then define y[n] = x[n]—x[n—7r], for every reZ.
Therefore, x[n} has WSSI if the pair y, and y, is stationarily correlated, for every » and
s, 1.e. the correlation matrix Ry vy is Toeplitz, where Y, and Y, are the infinite vectors
{yInl},cz and {y[n)},.z, respectively. So, choose any u, ve Zsuch thatr = i—v,s = [—u
and the correlation function of yli] and y([/] satisfies R[i/] = R]i/]
— R [i,v]— R Ju, [1+ R Ju, v]. Therefore, from Eq (22), for all k, and k,, we have the
correlation matrix of d,,,k as follows:

Rugm,my = GH™ " 'Ry_y (H*)"27'G*. (23)
Based on Eq (6), it implies that the entries of GH satisfy, for all k,ie Z,

[GH]I\'J = Z[G]k./‘[H]j.i = Z[G]k+ L+ z[H]j+2,f+4 = [GH]H 1it4- (24)

i

By recursive straightforward manipulation, we find that the elements of GH™ ~
have the following equality, for all k,ie Z,

[GH™ i = [GH™ —1)i 1y 1y 2. (25)
Therefore, from Eqs (23) and (25), the entry of Ry, m, has the relationship
[Ram, mple, s, = [GH™ ™ 1Rv,,ys(H*)mf lG*]k,,kz

= Z Z[GH'”'/ T, ARy L ACH )™ G H]j,
= Z Z [GH™ ™ 'i, s e i amem[Ry y D am e amsm

[(H*y"~'G i Pyt 2
= [Rd(m,,ml)]k\ £ 27k 2" Vk kel (20)

Hence, the proof is completed.

Next we prove (G3). Suppose that, for all ki, k,eZ, a,, ,, and d,,, ., have constant
means and the correlation functions satisfy the properties in Eqs (11)-(13). From Eq
(7), we obtain

E{X} = H*&{a,} +G*&(d,). (27)

Therefore, & {x[n]} is also constant. Since R, 1), Ry, 1) Ragai.1) and Ry, 4, are Hermitian
Toeplitz, the entries at (n), n,) of the correlation matrix of x[#] are represented as

[Rx]ll|Jh = [H*Ra(l‘ nH+ G*Rd(l‘ l)G+H*Rad(l‘ nG+ G*Rda(l,nH]nl,n2
- Z Z H ]nl [Ra(l 1)]1/ /n + Z Z ”I Rd(l l]l /[G]/,113

=+ Z Z n, : ad(l‘ l)]i. /'[G]j«": + Z Z [G *]H|,i[Rda(l. l)]i, /'[H]/L/lg

= Z Z[H*]n,ﬁ»Z‘H»l[Ra(l.l)]i+I,/'+1[H]/'+l.n:+2+ ZZ[G*]IY|+2,i+1
i 7

i
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Raa.nlis1,411Gi+ Ln:+2+z E[H*]n,+z.r+1
i
[Rad(l l)]H—l J+1 G][+l n7+°+ Z Z G*]ll]+2,i+l
i

[Rda(l. l)]i+ 1.+ I[H]j+ Loy +2 = [Rx]n, + 205429 (28)

tor all ny, n,e Z. Hence, x[n] is WSCS with period 2.
To prove (S1)-(S3), let m, = m, = m. By substituting into the proof of (G1)-(G3),
the results follow. | ]

Remark I
Second-order processes always satisfy the condition (D) in DTST, and so the stochastic
sequence x[n] in DTST also contains the case of second-order processes.

Remark 11
The case of stationary white sequences is contained in (S1) because the autocorrelation
function of a stationary white sequence ¢25[#] belongs to the metric (sequence) space
[
Theorem 11
Suppose that the same conditions hold as in DTST.

(J1): if x[n] is of WSSIJ then the wavelet coefficient d,,, , has constant mean for all m
and k, and the entries of the correlation matrices of d,, , satisfies

[Rd(ml,mz)]kl‘kz = [Rd(m,,mz)]kl 27 kg 4+ 2" (29)

for all k\,k,e€ Z and any positive integers m, and m, i.€. [Rym,,mplk, 4, 18 @ function of
ky—2" """k, for my, > m,, or k,—2"2""k,, for m, < m,.
Furthermore as a special case, for any positive integers m, = m, = m, the results
become interesting as follows:
(J2): if x[n] is of WSSJ then the wavelet coeflicient d,, , is WSS for all ke Z.
Proof: The proof is similar to the case of WSSI in DTST except the following
paragraph:
Since the process x is of WSSJ, then define y,[1] = x[n] + x[n—r], for every re Z. Therefore,
x[#] has WSSJ if the pair y, and vy, is stationarily correlated for every r and s, i.e. the
correlation matrix Ry _y_is Toeplitz, where Y, and Y, are the infinite vectors {ylnl},cz and
{y[n]},cz. respectively. So, choose any w,veZ such that r = i—v, s = [—u and the cor-
relation function of y,[i] and y, [/] satisfies R [i, /] = RJi, {1+ R.[i, v]+ R.Ju, []4+ R Ju, v).

Thereafter, the remaining proof is taken the same manipulation as in the proof of (G2)
in DTST, and hence the proof is obtained. [ ]

The physical meaning of (G1) in DTST is that the correlation functions of the scaling
and wavelet coeflicients for two different dilations 2" and 2™ are functions of the
difference of translation, (ky)—2" ""(k)) ( = (ko +2")—2"1""2(k, +2™)), for m, > m,,
or (k))—2"""(ky) (= (k,+27)—2"""(ky+2™)), for m, < m,. Therefore, under the
same resolution (i.e. m, = m, = m), a,, , and d,, , are stationary, and the case (G1) in
DTST will become to the case (S1) in DTST. One of usefulness of the stationarity is
that the power spectra of a,, , and d,, , are well-defined by the Fourier transform of the
correlation functions
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Su(e/m) = Z R(I[T]nun € 'imr’ Sd(ejm) = Z Rxl[‘c]nun € 7/.(“1» (30)
where T = &k, — k,. Moreover, for the case of m < 0, with the definitions

Ay = Z h[l_ 2k]am+ L.i» []m.k = ) Z g[i_—zk]am+ L.is form <Oa (3 l)

i=—

the results of stationarization are similar to DTST.

1V. Examples

The first three examples will present the stationarization for WSS process, non-
stationary processes with WSSI and WSSJ generated by ARMA and ARIMA models
(16). The DTST for the discrete FBM sequences will be demonstrated in the fourth
example. All examples are Monte Carlo runs with 10 iterations.

In the first three examples, the WSS sequence is generated by ARMA model and the
nonstationary sequences with WSSI and WSSJ are created by ARIMA models (16).
These examples show the cases of (S1) and (S2) with respect to DTST, and Theorem
I1, respectively. The ARMA model is used to describe WSS processes. The rep-
resentation of an ARMA(K, L) {x[n]},.z is given by (16), denoting x(¢)x[n] = p(q)el[n],
where a(g) is the regression operator of order K, fi(¢) is the moving average operator
of order L, and {¢[n]},.z is a zero-mean stationary white noise. Furthermore, the roots
of the polynominal 2(¢) must lie inside the unit circle to ensure the stability of the
model. Krim (16) modeled the nonstationarity by fitting an ARMA (K,L) model to
{A2x[n]},.z which in turn resuits in an ARIMA (K, D, L) process for {x[n]},.z. where
APx[n) = (1+4g~")x[n], and 2 = 1 or —1.

4.1. The WSS case
Consider a second-order process {x{n}},.z given by
(1—2pcos 2nv)g~'+ p’q~)x[n] = €[n], (32)

where p = 0.9, v = 0.3, ¢~ 'x[n] = x[n—1] and {([n]},.z is an i.i.d. N(O,1).
(1) The process x[n] is WSS as follows. The mean of x[n] is zero and the auto-
correlation function of x[n] is

771(09 e/2.828)n+1 +’12(0.9e/4.398)”+1’ n>0

R,\'[n] = g{"c[n2+n]’v*[n2]} = 1 n+1 1 n+1 (33)
m(()hg e_[2.828> +174 <0_6 em.,wx) ; n <0,

= [(0.9¢** —0.9e9)(1 —0.81 /) (1 —j0.81)] ",

7 = (0.9 —0.9¢7%2*)(1 — j0.81)(1 —0.81)] ",

7 = [((1/0.9) €535 —0.9.€7¥2¥)((1/0.9) €/ *2* — 0.9 ¢/***)(1 +,0.81)] '
M = [((1/0.9) €779 —0.9e/52%)((1/0.9) e3¢ —0.9 /% )(1 —j0.81)] .

where
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Therefore, x[#n] is certified to be a second-order WSS process.
(2) Then the DWT of x[n] is also WSS as follows. Let d,, , be the wavelet coefficient
of x[n] defined by

dm.k = Z T Zg[ll - Zk]h[IZ - 2’1] o h[im - 2l.mf 1].Y[i,,,].

il

’m

The mean of d,, , is also zero and the autocorrelation function of d,, ,, for any meZ,
is

Rlt) = Rik,k] =% /Z Zg[in]h[iz-%] oo Bl =20, gl Al —21]

s h[lm - 2lmf l]Rx[lm - lm+ 2'",[.]' (34)
Obviously, d,, , is also a second-order WSS process.
4.2. The WSSI case
Consider a nonstationary process with WSSI {x[n]}, .z given by (16)
(1—2pcos @mv)g~"+pq (1 — ¢~ ")xln] = eln], (35)

where p = 0.9, v = 0.3, ¢ 'x[n] = x[n—1], and {¢[n]},c2 is an 1.i.d. N0, 1). The mean
of x[n] is zero and the autocorrelation function of x[#] is

R jn,n) = (g){-x[nl]X*[nZ]}

= é){l:z (halr, — 1)+ gfny — ”1])6["11:| l:Z (hslny —raol+ hyln, — "z])é[rz]:l*} (36)
=ozmin(n,m)+ Y (hdn, —rl+ohEn,—rl+hin —rihEn,—r),
rEmin(ng .,

where Iy[n] = a,, for n =0, and Ayn] =0, for n < 0, is the impulse response of
os/(1 —g "), and h,[n] is the impulse response of

o5+ oteg !

1 —2pcos2nv)g '+ p*g~ 2’
where oy, oy and o, are the residues of the equation 1/(1—¢7")
(1—2pcos 2av)g '+ p*qg~?)).

Since the roots of 1—2pcos 2nv)g~'+p?¢~?, denoted by B, and f,, are complex
conjugates inside the unit circle, we obtain A,r] = o8] + 085, where a; and oy are
constant. This signal satisfies condition (D) in DTST. Thus, checking the auto-
correlation function of the DWT coeflicient of x[n], d,, , for any m, we have

Rd[kle kZ]m,m = Z T Z IZ: T Zg[il]h[iZ_ 21‘[] ce. h[im— zm— l]g[lllh[[2— 211]
B, =20, 1Y (sl — P Al — Dl — 1+ 27k, — k)]

+hyll—r+ 2"k —k)D)* = Rki— kol (37)
Hence, it is proved that d,, ; is WSS. The experimental signal of WSSI x[x] is shown in
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(a) WSSI signal (b) Corr. of DWT of WSSI for m=1
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F1G. 1. (a) WSSI signal generated by ARIMA model. (b} Autocorrelation function of the DWT

coefficient of the WSSI signal as in (a) for m = 1. (c) Autocorrelation function of the DWT

coeflicient of the WSSI signal as in (a) for m = 2, where (a), (b), (c) are the results of the example

in Section 4.2. (d) WSSJ signal generated by ARIMA model. (e) Autocorrelation function of the

DWT coefficient of the WSSJ signal as in (d) for m = 1. (f) Autocorrelation function of the

DWT coefficient of the WSSJ signal as in (d) for m = 2, where (d), (e), (f) are from the example
in Section 4.3.

Fig. 1(a). The autocorrelation function of the wavelet coefficient R/fk,, k,] at two
different translation sets and the errors between these two autocorrelations are shown
in Fig. 1(b) and (c). Figure 1(b) is for the case of m = 1 and Fig. 1(c) is for m = 2. In
Fig. 1(b) and (c), the autocorrelation functions at the first set [k, k] = [0,0] ~ [9, 0]
are denoted by o, the autocorrelations at the second set [k, k,] = [20,20] ~ [29, 20]
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denoted by +, and the errors between these two autocorrelations denoted by x, in
which the autocorrelation functions of the DWT of WSSI at different translations are
the same with the same increments of translations.

4.3. The WSSJ case
Consider a nonstationary process with WSSJ {x[n]},.z given by (16)

(1—=2pcos (2nv)g ™" +p%q )1 +¢~ Hxln] = €[n], (38)

where p = 0.9, v = 0.3, ¢ 'x[n] = x[n—1], and {¢[n]},.z is an i.i.d. N(0,1). The mean of
x[n] 1s zero and the autocorrelation function of x[x] is

R [ny,m) = &{x[n]x¥[ny]}
= 5{[2 (hy[my — ]+ ho[ny — r Delr 1]:) |:Z (hi[ny —ra) 4 hofn, "2])6[72]}*}

= (= 1y"*"af min (n,, n,) + o, Z (= 1)y —rhyln, —rl4-o z (="

r<minQr,.n5) r<min{sny n.)

—rh¥lm—rl+ Y hln =¥, —r, (39)
r<min(ay Ha)
where /1,{n] = o,(—1)", for n > 0, and /&[n] = 0, for n < 0, is the impulse response of
o,/(1 +g7 "), hy[n] is the impulse response of

Ao+ 23g
—2"

1=2pcos(2nv)g~ ' +pq

and o, %> and o, are the residues of the equation, 1/(1+¢~')(1 —2pcos Qav)g~"'+ p'g ).
Since the roots of 1—2pcos(2nv)g '+ p?q~? are inside the unit circle and complex
conjugates, /[r] = o) +2;5:05, where o, and o,; are constant values, and
35 _ ., hilr] < w0, the x[n] is therefore shown to satisfy condition (D) in DTST also.

Thus, checking the autocorrelation function of the DWT coefficient of x[x], d,, , for
any m, it yields that d,, , is WSS, i.e.
R/[klak m n z Z Zg ll]h[h 211 [m Ly — l] [l ]h[ 2[1]

’/77

- h[[m m l] 2 Z(h lm+ 2”k —rl]n +hﬁ[ m+2m —F 1])

ryors

X (hl[lm + zmkl - rl] + hZ[lm + zmkl - "2])*5( [rl - r'_’]
= z Z 2 Zq[ll h _2111 [ L — 17171].‘][11117[12_2[1]
m m 1 Z (hl Ly — + hy [Im ])(hl[[m —r+ 2’”(/{1 - kZ)]
+ hZ[[m —r+ 2/71(k| - kZ)])* = R(/[kl - kl]m{m' (40)

The experimental WSSJ sequence is shown in Fig. 1(d). The simulation results are
shown in Fig. 1(¢) for the case of m = | and Fig. 1(f) for the case of m = 2, where the
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notation is the same as defined in Fig. 1(b). In Fig. I(e} and (f), the autocorrelation
functions of the DWT at different translations are the same with the same increments
of translations.

4.4, The FBM case

The FBM process (11, 24, 25) is recognized a famous nonstationary stochastic
process with WSSI. Since the autocorrelation functions of a sampled FBM sequence
satisfy the condition (D) in DTST for N = 1, the sampled FBM sequence are used to
demonstrate the cases (G2) and (S2) of DTST.

Consider a sampled FBM process (22), B[n] = B(nAx), neZ, where Ax is the
sampling period. The autocorrelation of B is denoted by

-

Rl ns] = % (AP n P4 sy =2, (41)

which satisfies condition (D) in DTST for Ng = 1. Let Ax = | and choose Haar basis
for simplicity, that is #[0] = A[1] = g[0] = —g[1] = 1/\/2. From (20, 9), the wavelet
coefficients for m, =1 and m,=1 is written as d,,=2X"___ gli—2nlay, =
X/ _ _,gliy—2n]Bli)], where a,, = Bln]. Thus, the autocorrelation functions of the
wavelet coefficients are shown as follows:

(G2) case: For m, # m,, let m, = 2 and m, = | for simplicity. Substituting Eq (41)
into the autocorrelation function of the wavelet coefficients, we have

2] 9,

Rikykoloy = - 12k — ko) = 127 = 2022k — ko) + 1P+ 22k — ko) + 317} (42)

For any positive integers m, = m., from Eq (41) and (20, 9), we obtain that the
correlation depends only on k,— 2" """k, as follows:

Rzl[klﬁkl]m,.m: = 2 Z T ZZ T Zg[li] s h[[r/u, _2i:11, - ]]g[lll] vt h[/r/nz —“2[7,713— ]]
I

s i,’”’ I
) Tl 27 = 2P =, = L= 27— 2 RO, (43)
(S2) case: Fornyy =m, =m =1,
62 R 2 2
Rlki, ko] = 5([2(/"1 —ka)— ]|'H+I] +2(k, —kz)I'H”2|2(k1 —kz),‘H)- (44)

For any positive integers m, = m, = m, from Eq (41) and (20, 9), we obtain that the
correlation depends only upon the difference of translation k, — k,. That is,

R(/[klwkl]m.m = Z Z e Z Z Z e Zg[lll] e /1[1':“—21’,’,,, llg[[/l]h[lé_zrl] e h[[//n—zll,n— ]]
13 I

L [

O.Z
x> (4 27(k, — kD) i P =1 = 1= 2"k =k PPT). (45)
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TaABLE 1
Autocorrelation data of the wavelet coefficient d,, ., with m, = m, for the sampled FBM sequence

H=01 H=05 H=09

k1. ko) E{xy*y E{xp*y E{xy*
Rk:, kol [0,0] 2.3803¢ —01 7.0250¢ — 05 2.0389¢ —08
[10,10] 2.3804e —01 7.0257¢ —05 2.0382¢ — 08
[4,0] —6.8011e—03 —1.8503¢— 06 8.0060¢ — 09
(14,10] —6.8316¢—03 —1.8632¢—06 7.9947¢ —09
Rk kola [0,0] 1.2292¢ +00 5.2008¢ — 04 2.6002¢ —07
110,10] 1.2291e+00 5.2008¢ — 04 2.5983¢—07
[14,10] —2.2313¢—02 —7.8963¢ —06 1.0986¢— 07
[14,10] —2.2489¢ — 02 —8.1351e—06 1.0955¢ ~07
Rky k)i s [0,0] 6.5196¢ -+ 00 4.1752¢—03 3.4930¢ — 06
[10,10] 6.5183¢-+ 00 4.1745¢ — 03 3.4879¢ — 06

[4,0] —1.5449¢ — 01 —1.0560¢ — 04 1.443¢—06

[14,10] —1.5257¢e—01 —1.0572¢e—04 1.4390¢ — 06

&{xy*} denotes &{a,, . ak i }or &{d, . d}

’"2vkz}'

TABLE 2
Autocorrelation data of the wavelet coefficient d,, ., with m, # m, for the sampled FBM sequence

H=20.1 H=20.5 H=09

k., k5] E{xy*} &E{xy*} E{xy*}
Rk, ko, 0,0] 5.4444¢—01 3.0056¢ — 05 1.7700e — 08
[10,20] 5.4451e¢—01 3.0087¢—05 1.7665¢— 08
{10,10] 7.9458¢ — 05 5.4716e—07 7.0506¢ — 09
Riky, ksl [0,0] 1.4612¢—01 1.2429¢ — 04 1.1829¢ —07
{10,20] 1.4634¢—01 1.2460¢ —04 1.1784¢—07
[10,10] 3.2288¢—03 2.4195¢—06 4.5124¢ 08
Rk, k3lss [0,0} 3.6900¢ —01 4.9992¢ —-04 7.8494¢ — 07
(10,20} 3.7213e—-01 5.0252¢—04 7.8092¢ —07
10,10 2.7953¢—~02 2.7285¢—05 2.9063¢—-07

The experimental results summarized in Tables 1 and 2 reveal the stationarity of the
wavelet coefficient of the FBM sequence for three different parameters H = 0.1, H = 0.5
and H=0.9. In Table 1 for the case (S2) of DTST, the correlation function at
[k, k] =[0,0] is equal to the one at [k, k,] = [10, 10] and the correlation function at
k1, ky] = [4,0] is also equal to the one at [k, k;] = [14, 10] for the wavelet coefficient
and every resolution 2m, where m = 1,2,3. The properties of case (G2) in DTST are
shown in Table 2, where the correlation at [k, k,] = [0,0] is equal to the one at
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[k, k,] =[10,20] and the correlation at [k, k,] = [0,0] is different from the one at
[k, ko] = [10, 10] for distinct resolutions 2™ and 2”2, where m, —m, = 1. Therefore, the
prOperty R[kl’ kz]m].mg = R[k2_2m| ;m:kl]m].ml is verified.

V. Conclusion

Physical data are observed in the form of a discrete sequence in practice, and the
CWT suffers from redundancy and heavy load of computation. In this work, we have
developed the easily realizable FIR PR-QMF structure for the 1-D discrete wavelet
transform which can stationarize the random sequences with WSSI/WSSJ. Moreover,
we have also shown the stationarization of a sampled FBM signal by the PR-QMF
structure of DWT. These results provide a well-defined method for power spectra of
those nonstationary stochastic sequences useful for fractal modeling.

Acknowledgement
This work was supported by National Science Council under Grant NSC 86-2213-E-009-
066.

References

(1) Peitgen, H.-O. and Saupe, D. (eds), The Science of Fractal Images. Springer, New York,
1988.
(2) Mandelbrot, B. B. and Van Ness, J. W., Fractional Brownian motions, fractional noises
and applications. SIAM Rev., Vol. 10(4), pp. 422-437, 1968.
(3) Falconer, K., Fractal Geometry: Mathematical Foundations and Applications. John Wiley,
New York, 1990.
(4) Mandelbrot, B., Some noises with 1/f spectrum, a bridge between direct current and white
noise. [EEE Trans. Inform. Theory, Vol. 13(2), pp. 289-298, 1969.
(5) Martin, W. and Flandrin, P., Wigner—Ville spectral analysis on nonstationary processes.
IEEE Trans. Acoust. Speech Signal Process., Vol. 33(6), pp. 1461-1470, 1985.
(6) Beylkin, G., Coifman, R., Daubechies, I., Mallat, S., Meyer, Y., Raphael, L. and Ruskai,
B. (eds), Wavelets and their Applications. Jones and Bartlett, Cambridge, 1992,
(7) Daubechies, 1., The wavelet transform, time-frequency localization and signal analysis.
IEEE Trans. Inform. Theory, 1990, 36, 961-1005.
(8) Kandambe, S. and Boudreaux-Bartels, G. F., A comparison of wavelet functions for pitch
detection of speech signals In IEEE Int. Conf. A.S.S.P., 1991, pp. 449-452.
(9) Mallat, S. G., A theory for multiresolution signal decomposition: the wavelet representation.
IEEE Trans. Pattern Anal. Machine Intell., Vol. 11(7), pp. 674-693, 1989.
(10) Rioul, O. and Vetterli, M., Wavelets and signal processing. IJEEE SP Magazine, 1991,
pp. 14-38.
(11) Flandrin, P., Wavelet analysis and synthesis of fractional Brownian motion. /EEE Trans.
Inform. Theory, Vol. 38(2), pp. 910-917, 1992.
(12) Cambanis, S. and Houdré, C., On the continuous wavelet transform of second-order
random processes. [EEE Trans. Inform. Theory, Vol. 41(3), pp. 628-642, 1995,
(13) Houdré, C., Wavelets, probability, and statistics: some bridges. In Wavelets: Mathematics
and Applications, ed. John J. Benedetto and Michael W. Frazier. CRC Press, Boca Raton,
1993, Ch. 9.
(14) Arneodo, A., Argoul, F., Bacry, E., Elezgaray, J., Freysz, E., Grasseau, G., Muzy, J. F.



1230 Yu-Lin Su and Bing-Fei Wu

and Pouligny, B.. Wavelet transform of fractals. In Wavelets and Applications, ed. Y.
Meyer. Springer, Berlin, 1992.

(15) Heidari, S., Tsihrintzis, G. A., Nikias, C. L. and Jonckheere, E. A., Self-similar set identi-
fication in the time-scale domain. IEEE Trans. Signal Process., Vol. 44(6), pp. 1568—1573,
1996.

(16) Krim, H. and Pesquet, J.-C., Multiresolution analysis of a class of nonstationary processes.
IEEE Trans. Inform. Theory, Vol. 41(4), pp. 1010-1020, 1995.

(17) Daubechies, 1., Orthonormal bases of compactly supported wavelets. Comm. Pure Appl.
Math., Vol. 41(7), pp. 909-996, 1988.

(18) Heil, C. E., Wavelets and frames. In Signal Processing, Part I. Signal Processing Theory,
ed. L. A. Auslander, et al. IMA, Vol. 22, Springer, New York, 1990, pp. 147-160.

(19) Chui, C. K., An Introduction to Wavelets. Academic Press, Boston, 1992.

(20) Daubechies, 1., Ten Lectures on Wavelets. Rutgers University and AT&T Bell Laboratories,
1992.

(21) Stark, H. and Woods, J. W., Probability, Random Processes, and Estimation Theory for
Engineers. Prentice-Hall, New Jersey, 1988.

(22) Kaplan, L. M. and Jay Kuo, C.-C., Fractal estimation from noisy data via discrete fractional
Gaussian noise (DFGN) and the Haar basis. IEEE Trans. Signal Process., Vol. 41(12),
pp. 3554-3562, 1993.

(23) Papoulis, A., Probability, Random Variables, and Stochastic Processes, 3rd edn. McGraw-
Hill, New York, 1991.

(24) Ramanathan, J. and Zeitouni, O., On the wavelet transform of fractional Brownian motion.
IEEE Trans. Inform. Theory, Vol. 37(4), pp. 1156-1158, 1991.

(25) Tewfik, A. H. and Kim, M., Correlation structure of the discrete wavelet coefficients of
fractional Brownian motion. /[EEE Trans. Inform. Theory, Vol. 38(2), pp. 904-909, 1992,



