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Abstract

The single vortex structure is derived in the presence of applied magnetic field. According to our results, the winding
number of the s-wave does not change regardless of the vector potential. The generic London equation for a d,z_.-wave
superconductor with mass anisotropy is expressed. By neglecting higher order terms, this work analyzes the magnetic-field
distribution with and without a vortex. The interaction force between two parallel vortices is derived as well. Our results
further reveal the presence of a torque between vortices irrespective of s- or d-wave order parameter, which is expected to
vanish for isotropic cases. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, microscopic theory and experimental phenomenology of high-T, superconductors have demon-
strated that high-temperature cuprate superconductors favor an order parameter with an unconventional system
[1-7]. The symmetry of the order parameter provides further insight into mechanism of superconductivity.
Accordance with experimental observations regarding the phase of the order parameter [8—10], the symmetry
belongs to the d,._,. symmetry with a line of nodes aong the |k,|=|k,| directions. Some experimental
measurements, Photoemission studies [11,12], Josephson interference [13] and c-axis Josephson tunneling
experiment [14], can not be clarified within a pure d-wave order parameter. For instance, Sun et al. [14] studied
the Josephson tunneling between a conventional superconductor (Pb) and a series of high-T, cuprates
(YBa,Cu,;0,_; and the dloys Y,_,Pr,Ba,Cu,0,_;) and observed the nonzero tunneling current. This
observation contradicts the assumption that YBa,Cu;0;_; is a pure d,._,. superconductor. Theoreticians
suggest that there are two gaps in YBCO. The main gap is caused by the CuO, planes and an induced smaller
one results from the CuO chains. Therefore, the structures of YBCO can not be confined in tetragonal crystal
symmetry due to the existence of CuO chains. Moreover, YBCO exhibits a large anisotropy between the aand b
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directions, as evidenced by the measurements of the penetration depth [15] and the vortex structure by scanning
tunneling microscopy (STM) [16].

The vortex structure in d-wave superconductors has received increasing attention owing to the different
nature of vortex from that of the conventional one. Soininen et al. solved the Bogoliubov—de Gennes (BdG)
equations for electrons on a square lattice with attractive nearest-neighbor interaction [17]. They found an
admixture of the s-wave component to the d-wave order parameter in the vicinity of the vortex core. Berlinsky

al. [18], Franz et al. [19] and Ren et al. [20] analyzed the structure of the admixtured s-wave order parameter
using the Ginzburg—Landau (GL) theory. In a related work, Heeb et al. [21] studied effects of orthorhombic
distortions for YBa,Cu;O, from group-theory arguments. These investigators accounted for nonvanishing
Josephson tunneling currents between s-wave superconductors and orthorhombically distorted d,._,--wave
superconductors by introducing the coupling terms. Xu et a. [22] developed a GL theory for a d-wave
superconductor with mass anisotropy in the presence of a magnetic field. Later, Han and Zhang [23] investigated
microscopicaly the GL theory of a d + s-wave superconductor with orthorhombic distortion in a magnetic field
applied to the ¢ axis. They al showed the single vortex structure in a similar manner. In addition, both the s-
and d-wave order parameters were reduced to twofold symmetry, as expected to be fourfold one for isotropic or
tetragonal superconductivity.

The lower critical field (H,), the upper critical field (H_,), the coherence length, and the magnetic
penetration depth involve the superconducting mechanism of cuprate. The angular dependence of H,, has been
calculated and presented some important note [24]. However, near H,, the GL equations approximately lead to
the nonlinear London equation, which profoundly influences in high-T, superconductors. The corresponding
London free energy offers a ssimple method of investigating the vortex lattice in a type-Il superconductor.
Affleck et a. [25] derived the generic London model to study the vortex lattice structure and investigated
neutron scattering, scanning tunneling microscopy, Bitter decoration, and muon-spin-rotation experiments. In
this work, we derive the London equation for a d-wave superconductor with mass anisotropy. Based on the
Ginzburg-L andau theory, derived by Xu et al. [22], the linear and gradient terms of d-wave component in GL
equations replace the s-wave component. The single vortex structure is obtained by solving GL equations. The
winding number of the s-wave does not change, whether the vector potential exists or not. By varying the
London free energy with respect to the vector potential and restricting magnetic field B along the z direction,
the corresponding London equation was derived. As generally known, the problem involving the field of an
isolated vortex is difficult to resolve due to nonlinearity of the London equation. By neglecting higher order
terms, some specific solutions can be calculated in the absence and presence of vortex. Some interesting
consequences worth mentioning include the dependence of the London penetration depth upon the temperature,
as well as the magnetic field. Of course, we derived the vortex line energy to determine the lower critical field.
This work also demonstrates that the interaction force between two vortices is not only in a repulsion but in a
torque for anisotropic d,._,.-wave superconductors. A summary of our results and some detailed discussion are
finally made.

x2—y

2. The structure of d-wave superconductor with mass anisotropy

The GL theory for a d,._,-wave superconductor with mass anisotropy has been derived com-
pletely by Xu et a. [22]. By assuming that a d-wave pairing interacts with a repulsive on site
Coulomb interaction, the GL free energy was obtained. For convenience, we cast the GL free
energy density into a dimensionless form. At first we introduce the units (ag/y,a)”? for the

s-wave order parameter, [(1+ /_) lagl/ yga (M, + 1)(1+ \/_+ M )] for the d-wave order parameter,
£l = [yda,u( — /M, +3M,+M \/_) (1+ a) m |ad|] for the length, (e £2)~* for the A field, and
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[adz(l + \/M_a)4/'yda( M, + 1)(1 + M, + Ma)] for the energy density. After tedious calculations, we obtain
the following:

Eaensity = Al el + el el — igl® + [yl — By * by + g * i) + 4B, gl Ll
+ Bo(s" W + WA 2) + Balel? (W g + Wiy * ) + Baltigl® (W't + W)
o el? + M T gl ) LTl 4 | T

+ (Vs T Iy % g+ — v I IT, % g+ + D) +£2(VX A)? (1)
where
L (M D1+ M, +M,)a? , (M, —1) \/(1+M+Ma)as
ag= ) = !
(1+ M, ) o l (1+¢M_a)“lad| (Mo + Dl
M, + 1) ag 2(yM ad?
32:—( )20‘ L By (M, -1 32\/(M +1)(1+ M, +M,),
(1+\/M_a)|ad| (1+\/_|d|/
2
Ba= ( -

1+\/_ (Ma+ 1)1+ M, +M,)lagl
- (M, +D)(1+ M, +M,)a,
T (L= M+ 3M, + MM, (1 M gl

M(1+3/M, — M, + M, /M,)
2T, 3, + MM,

~ (M, +2/M, —1) (M, +1)(1+ M, +M,)a,
7T 1= M, +3M, + MM, lagl(1+ M) ’

L M2M, + 1M, (M +1)(1+ M, +M,)a,
" (1- M, +3M,+M,M,) lagl(1+ M, ) !

1(M—1)\% 2(1+M,) T . AL
M,+1 (1+ /_) (&2 )
Here we introduce an anisotropic mass parameter M, /m,, I, = —iV, —2A, the screenmg length A,

[,u(M +1)(1+\/_+M )/87re m, | agl 1+\/_ /L+3M +M \/_)] and the coherence

length &5 for the anisotropic d-wave superconductivity. In comparison with the isotropic free energy density
[20], the extra terms are second-order coupling terms B,(y.' ¥, + Y, ) and fourth-order terms B, |y/°
(" by + py"). These terms play an important role in bringing about an s-wave order parameter in the bulk.
Different from isotropic system, in which s-wave component can only be nucleated from the mixed gradient
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terms in a nonuniform system, these new terms induce a nonzero s-wave component even in a uniform case. For
M, > 1, the coefficient of the second-order coupling terms must be negative and we obtain the lower free
energy. These extra terms due to mass anisotropy are similar to those caused by orthorhombic distortion [23].
By varying the GL free energy with respect to the order parameter ¢, *+ and i, *, the corresponding GL
equations are obtained as

o= (L2 + o IL )by + (Vs L2 = v ILZ ) s + 2145y — Buths + 4Bl |3y + 2B, s” + Bl s

+ Ba( W5 d + 21yl s), (3
4 2 2
= — 2l + @wd - ﬁwdizws— ﬁw;wf— o g — ﬁ% o
ag ag g Ay
(H2+|v| T2)y, — H%pd szd = It/fdl . (4)

S

For a bulk system in the absence of the magnetic field, the gradient terms in the two GL equations are equal to
zero. Xu et d. indicated that the bulk system in the mixed s+ d system is stable [22]. Neglecting the higher
term [y Wy, Y and y, can be expressed as

bom — &dfd (5)
and
=I'(M,) (6)
with
B
a

S

r(M,)*=

( L OBIB. _ BiB: 2B.B,

a o o

S S S

The mixed gradient terms in the d-wave component on the right hand side of Eq. (4) plays an important role in
determining the behavior of an induced s-wave component [21] and |¢;)%, is negligible small compared with
the linear term . Obviousdly, it will be convenient to work in the cylindrical gauge expressed in the usual polar
coordinates = (r,f) to determine the vortex structure. In the limit for [y < |yyl, we can neglect the
contribution of the s-wave component and assume the zero-order solution for ¢, and A. The single vortex
solution derived belongs to the pure d-wave case. Using the i, = d(r)e'’ alows us to obtain the source term:

Y
s = &_SHXZ% Hzlﬂd o 'ﬁd (7)
S
1( vy, Ya . 1 3 3 3eA
=——| =11+ = {8 —=d"+ —d — ——d—2eAd + —d eAd — 2e?A%d
2\ ag Y3 2 2r 2r

. 1 1 1 eA : L(v3\( Va
+e"’(——d”— —d + ——d+2eAd + —d+eA’d—2e2A2d)} +e' ——(7 (— - 1)
2 2r 2r r 2 V3

=5(Ne +5(r)e "+ 5,(r)e”, (8)

1 4eAd\ B,
d + — d/— —d+ —) + —d
r2 r ag
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where B, /&y, is due to anisotropic and appears here only in the form of e'?. The vector potential is expressed
as

A=A(r)0. (9)

The asymptotic solutions near the center of the vortex and outside the core are easily solved. Different from the
work of Xu et al. [22], we don't limit the anisotropic mass parameter value. Furthermore, the winding number of
the s-wave does not change regardless of the vector potential A. Meanwhile, we assume that two different order
parameters correspond to the same transition temperature for a d-wave superconductor, proposed by Muller
[26]. We also show that the coefficient of cos 20 term in |y exists when M, # 1, i.e, there is a two-fold
symmetry for an anisotropic d-wave superconductor.

In the case of || ~ [y4l, the feedback of s-wave can not be neglected. Above considerations are no longer
valid. This problem is much more complex and solutions can be obtained only numericaly.

3. The London equation

Affleck et al. [25] have derived the generalized isotropic London model, starting from the GL free energy
density with both ¢, and ¢, order parameters. Here, the generalized anisotropic London model is presented. By
substituting Eq. (7) into &yengyy, the leading derivative terms in iy, of the form can be expressed as

Y4
Edensity = Cl|17><(r[ld|2 + C2|17y'7[jd|2 - ea( gda)2|(nx2) - y_Hyz) l/jd|2 +oe (10)
3
with

B B1
C = 3(3’1+2?’3) +1, ¢,= E(VlMa_zﬁ) + 7.

S S

and

) (1+ M) (M, + 2/M, — 1) a?
Ly TR v =V VI v g %

m,

The above eguation does not consider higher order terms because they are tedious in our problem. The
parameter €, determines how the s-wave component couples with the d-wave component. To avoid complex
mathematical calculation, we follow the example of €, << 1. Namely, the strength of the s-d coupling is rather
weak. Assuming that the London penetration depth > ¢2 leads to

g = d eV, (11)

In this region, the vector potential effect can be negligible. We set A, = A, = Ag. By doing so, the London free
energy density £, can be written as

+/%B?, (12)

2 2
2 Ya Ya
g =d; (01Uf+ Cz”i) —&( &) [(Uf_ 7”5) + (axe_ y_ayvy)
3

expressed in terms of the superfluid velocity

T=Vo—2A
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and 6 isthe phase of ;. The corresponding London equation can be derived by varying £, with respect to the
vector potential A and written as:

2
2_dg(v>< B) = (Cwy &+ Cov, ) — 2¢€,( £8)°

X

R e N N DU Ya
X— — - — — —(%3,—9d, )| dv,— —29, . 13
o Y Uyy)(ux sty) 2( X yy)( Kx Y3 yUy” (13)
The supercurrent j, can be obtained from the Maxwell equation VXB= 477 .. The second term of Eq. (13) in
the square brackets is ‘ nonlocal” owing to spatial derivatives. This term is the dominant one in determining the
single vortex structure [25]. The superfluid velocity can be written in terms of B and its derivative. For €,=0,
we have the following form:

U<°>=@ U(O):(ﬁxﬁ)y (FxB),

, = (14)
Box Y B Cy2 Boy

0y

with By, =2c,d2//? and c,, =c,/c,. Substituting the expressions for v into the London free energy
density, we get:

_ 2 . 2
s§°’=/2{82+)\§ (VX B), + (VX |§)y}}. (15)
So, the London penetration depth of the magnetic field for e, = 0 is
) 1 /?
Ay = = . (16)

2c, By, 4c,d3

Deriving the London equation in closed form for v as a function of B for €, # 0 is extremely difficult. Next,
the small €, is considered for convenience and the perturbative method is used. The first order corrections are

26 a 2 1 1
o® = ﬂ — (ayB)3 - 274 (8,B)(4, B)2 - —|1+ o (9x29y B)
c, B2, cly 2By, C1273

12 /'3
and
2€ 1
o = L £0)° { - [(a B)(4,B) —( )( B)} 1+ )(aa B)}
C, CY SBOx Ch Y3 2By, Co73
(17)
This subsequently leads to the London free energy density
3 'Y4 2 74 2 2
g =0+ e, &8 /2/\2( ) a,B) — a.B)? —(1+ ) d.0,B
- A £0) BOX ( ) C%z?’s( -B) Cip73 ( Y )
+0(e2)+ . (18)

In the above equation, the free energy is expressed in terms of magnetic field B and its derivatives. The
coefficients of the fourth-order terms B* and higher-order gradient terms V# in the above equation are not
important [25]. The same result can also be obtained by considering the generation of quasiparticles near gap
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nodes in a d-wave superconductor [27], in a range of temperature and field where the supercurrent can be
Taylor expanded in the superfluid velocity [25]. The corresponding London equation is derived by varying the
free energy €, with respect to B to have a minima €, . For B = Bz, we obtain

) (, y)2 66a(§ ) Az(clz)

BS, C

2 2 2
[1 A3(92 +cpp0?) + e, £8)°A ( . 01273

— 4B )H(ayB)z—

The final term is nonlinear due to the first term in brace in Eq. (18).
In the local field approximation, this final term of Eq. (18) is discarded. To solve the London equation, we
give an exponentially decaying field

Bae '/, (20)

where A, depends on the angle 6. For the specific case, we assume a weak field which depends only on x or
else only on (x+y). The solutions of the linearized London equation correspond to A, are A, = A, for
variation along the x axis and

1

Ya
2
(8 )B+(8yBc9y—

ChYs

(8XB)2} =0. (19)

CHh Y3 C273

A= /\o\/(l +Cp)/4+ {(1 + C12)2/4 — €& fda)z( C1o/Cy)[1+ 7’4/((31273)]2/)\(2)}1/2/2

for variation at 7 /4 to the crystal axis. The London penetration depth depends not only on the temperature, but
also on the direction of applied field. In the weak-coupling limit of a d,._,.-wave superconductor the slope of
the penetration depth curve near T_ is much lower than in the correspondmg s-wave isotropic case.

To calculate the linearized London free energy, or vortex-line energy, the magnetic field B can be expressed
in terms of Fourier components

§k=f§(x,y)exp(—iﬁ)-?)dxdy. (22)

As long as the vortex spacing is large compared to A,, there will be negligible overlap or interaction of the
vortices, so that each can be treated in isolation. Next, the Fourier Transformation (FT) is used to evaluate the
total London free energy E, for a single vortex. The magnetic field can be written in FT as
bo
B;= 2 (22)
2( 12 2 a2 ,2[ G2 Ya 2,2
L+ 25(KE+ k) + ea €97 A3 — |1+ k2k3
G CoY3

Then we obtain the energy:

1
Barge = 57 Jeudk,dk,

(2w
— Z;g/)zf{dk dk,

-2
c Ya )2
X 1+/\%(k§+clzkf,)+ea(§da)2/\%(—12)(l+—4 ) k2k2| 1. (23)
C, Ci27Y3

L+ 25(KE+ kY — ea &) /\2( )(1+ e )kzkzl

C12Y3
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To avoid the integral divergent at k — <, the cutoff at k’s of the order of 1/ &4 is employed. Choosing the
integration domain in k plane over the circle of the radius 1/&5 is more reliable than that over the ellipse with
semiaxes k,=1/£7 and k, = c;,'/?/£;, respectively. Kogan [28] made a similar argument for anisotropic
type-1l superconductors. Finally, the asymptotic London free energy is obtained as

20-1/2
—¢ — {In(m; %,) + a(f) ( -
4mAg 4r5c, C1u Y3

Egngle = ) [In(m; %?) + const.] } + O(€2) +

(24)

where the coherence length ¢2 can be simplified as

&8 = \my &
with &} = £(M, = 1) and mé = 21— 4/M, /(1 + /M, )?]. Here we neglect the 1's with respect to m; 2.
The Ginzburg—Landau parameter by defining « = Ay/&S, is introduced. During calculation, the perturbed
method is applied owing to e, (£)2A2k* /(1 + Ay k?) ~ €, < 1 within the limits of integration from k=0 to
k=1/£8 When M, =1 and €, = 0, the London free energy becomes

= ~In(§d)~lnx. (25)

This is the same as that for conventional superconductors. Calculating the line energy is an attempt to determine
the lower critical field H,, at which flux first penetrates the sample. By definition, at H = H_,, the Gibbs free
energy must have the same value regardless of whether the first vortex is in or out of the sample. Thus,

4
Ho, = ?0 Esingle' (26)

Next, the asymptotic behavior of B(Xx,y)is calculated. We return to B(x,y) in real space by the inverse FT
of By given by Eq. (22) The inverse Fourier transform provides B(X,y)

B(x.y) =

(ik- )2k (27)

(2)

Therefore, we have

1 b€ dk, dk
B(X,y) = (Zw)zf 0 y

c
14+ A3(K2+ cppk2) + e,( £8)°A2—2 |1+ i ) k2k?
Gy C1273
- % / e’ dk,dk, _¢ofa(§da)2)\3(2)(1+ % )2
(2m)? 1+)\%(kx+clzk§) (2m)? Cy G273

ek Tk2k2dk dk
Xf y y -
[1+ 23(K2+ cppk2)]

$oCi? AREACHE v \° p
_ %o 122 ko[ 2] + al( dz 140 2k, 2
27AG Ao 8¢5 C1273 Ao

.o (28)
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where p?=x%*+c,y? and K, is a zero-order Hankel function of imaginary argument. Qualitatively,
Ko(p/A,) cuts off as e /% at large distances and diverges logarithmically as In(A,/p) a p — 0. Notably,
some useful mathematical integral relations [29] are applied while deriving Eq. (28). From the expression
B(x,y), the anisotropic effect introduces the second power of (£3/A,).

4. Interaction between two vertices

Next, we calculate the interaction energy between two parallel vortices Aa p=0and B a p=R. The
interaction energy can be expressed as

Eint =E- 2Esingle

dk,dk,
1 Ci27Y3

fo 2
1+ 23( K2+ cppk?2) — e gda)z)\g(%)(u i) k2k?

2/2
= %% 2[ ;—cos(k-R)
(27T) ')/4 2 212
1+ ——| k2K

Ci273

2 Cr2
1+ Ag("i +Cp ki) + e &7) )\%(C_

1

2
Y.
14+ —2 )
Ci27Y3

doea 5&’")201‘21/2/2( 1 )“2

=2d,/°B,(R) +
$o/"BA(R) 8mA Cp,Cy

R R R R R
2Ko| — | + =S Ky[— | + Ky —
A 4Aq Ay 4, Ay
Here B,(R) is the field of vortex A at point R and RZ = X2+ ¢, Y2 The interaction showing in Eq. (29) is

repulsive. The force arises from this interaction by taking a derivative of E;

~ JE
f= —

X +0O(eZ)+ . (29)

nt-

int &

IR

2.-1/2 2
_‘1’0012//

3
A

1 (R
= (X)’Z-i-ClZW){EKl(/\—)

2 R, 1 R,
- Kl ] - — KO J—
R, Ay 4A, A
It proves that the direction of this force between two vortices for anisotropic d-wave superconductor is not

consistent with vec R = XX + Yy, which connects the interacting vortices. Therefore, a torque of the system
exists and can be expressed as

a)2 2
_'_ea(gd) (1+ Ya )

8¢, A5 Cn73

: } (30)

7=Rxf

2,-1/2 p2 [ 2 _ A2
pic,' 2/ (CZ_Cl

Tr)\g

C.C,

2 (R 1 R,
- Kl ] - — KO J—
R, A ] 4r Ol

a)2 2
+6a(§d) (1+ Ya )

8¢, A5 CoY3

+} (31)
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It is worthy noting 7 disappears if both vortices are limited to either x or y axes and the system reduces to
isotropic d,._.-wave superconductivity with M, =1. In the anisotropic s-wave superconductor, a torque
between two vortices also exists [30].

5. Summary and discussion

Substituting the linear and gradient terms of d-wave component for the s-wave component in the
Ginzburg—Landau free energy allows us to determine the vortex structure in anisotropic form. The effect of the
twofold symmetry of a single structure is small but remains far from the core. Moreover, our results reveal the
presence of r-component of the supercurrent as r — 0 for anisotropic d-wave superconductor in the Appendix.
No r-component of the supercurrent as r — 0 exists for isotropic d-wave superconductors.

We aso derive the generic London model and calculate the London free energy to determine the lower
critical field H,. Using this model alows us to express the magnetic field in the absence and presence of the
vortex. The London penetration depth A, depends not only on temperature but also on the direction of an
applied weak fiedld. As mentioned earlier, this work has demonstrated not only how the weak s—d coupling
influences the London penetration depth, the London free energy, the lower critical field, and interacting force,
but also how c,, affects the mass anisotropy dependence of magnetic properties. Hence, the interaction between
two vortices and stability of the vortex lattice is changed. The vortex—vortex interacting force can be used to
determine the stable structure of the vortex lattice. This force is a contributing factor to the vortex motion,
subsequently leading to energy dissipation and a longitudinal resistive voltage. It provides further insight into
the dynamics of flux penetration and the mechanisms of vortex pinning.

The vortex lattice problem is also worth mentioning. In the vicinity of the upper critical field H,, the
linearized GL equation corresponding to d-wave component, by neglecting the nonlinear terms and substituting
Eq. (7) for s wave, can be written as

(Ho = 1) by + Hihy =0, (32)
where
2 2
Ho= (112 + v Hf)—?(ﬂf ﬁnyz)
a3 Y3
and
B, 2y3 2y,
H1:B1[7¢d+ — | I1Z— —1I7||.
aS aS aS

Chang et a. [31] derived the perturbative solution of the isotropic linearized GL equations. The term H, s,
involving the second order coupling terms, shifts the H,, value but does not change the power of temperature.
Also, the vortex structure would be changed because including the term H, i, breaks the fourfold symmetry
into twofold symmetry.
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Appendix A. Supercurrent

In this Appendix, we investigate the distribution of supercurrent around a d-wave vortex with mass
anisotropy. In the limit of £ << A,, the supercurrent can be expressed as

N 1 x .
j = m{)’z[lpdx(ﬂx‘l’d) + 71¢s*(nx¢s) + 73(‘!’5( Hxlr[/d) + l!fd*(de/s)) + h'C']

9] vaths' (1) + VMt (1) = v (i) + w5 (1T0)) + hc ] ). (AD)

The solutions of order parameters s, and 4, neglecting the magnetic field effect, can be estimated simply.
Far away from the vortex, we set

d(r) =1 (A2)
and obtain
— 1_{_& 373 =3;3.0 —_1+£ 3 =_E
%1 vs )\ dagr?)  r?2’ %2 vs )\ dagr?) 2’
b
(2 ) g (A3)
V3 2ar 7 oy
The supercurrent is
| y(1—M 2b 8(1+ M
= ——5{F|(y,—1)sn20- 2L Ma) By o[ 21 |- ( Na)zlﬂla‘)sinze
Aw/“r s ag r ar
10(1—-M™M 2 2b 8 -
_ ( v a)zhﬁlaosin40—(73+ 7)) ﬁ + —Zo)sin20— (73 274)aosin20
agr g r r
25(y,+ v, ] ~ 8(M,— 1)y ]
—(3—24)aosm40 +0|(y,+ 1) + (v, — 1)cos26 — (Mo - )zlﬁlaosnzze
4r agr
YoBi [ v(1+ M v(1+M B 12 2b
_ 4~1( i - 2 . o) 0526 — v, || = + floc0529+—20
a &, as as r r
8(v, — 1
L Em )% 2y3)aosin226 +O(F). (A4)

Both r- and 6-components of the supercurrent have the same leading order 1/r. Near the vortex core,
hy ~ Cyre'?
and

CoB1
g~ ——re'’.

As

(A5)
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The supercurrent can be written as

N 1 yi(1=M)BY  2(vs+ )by
j= ——{c?rsin20 -1) - -
J 4rr? | ° (2= 1) a? a
v(1+M Bz 1-M Bz 2(y3+7v,)PB
vl 1)+ (s tyoosz0 s 2T MIBE  (A-MIBE 20t 0P,
as a Qg
2(ys+7v,)B ~
+(+4)100326 0}. (AB)

Qs

We find an interesting result that there exists an r-component in the supercurrent as r — 0 for a d-wave
superconductor with mass anisotropy which vanishes for isotropic case. Namely, the current does not flow
around the vortex uniformly along the tangent line.
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