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Abstract

The single vortex structure is derived in the presence of applied magnetic field. According to our results, the winding
number of the s-wave does not change regardless of the vector potential. The generic London equation for a d 2 2-wavex yy

superconductor with mass anisotropy is expressed. By neglecting higher order terms, this work analyzes the magnetic-field
distribution with and without a vortex. The interaction force between two parallel vortices is derived as well. Our results
further reveal the presence of a torque between vortices irrespective of s- or d-wave order parameter, which is expected to
vanish for isotropic cases. q 1998 Elsevier Science B.V. All rights reserved.

PACS: 74.20.De; 74.60.-W; 74.72.-h
Keywords: Magnetic properties; d 2 2-wave; Superconductivityx yy

1. Introduction

Recently, microscopic theory and experimental phenomenology of high-T superconductors have demon-c

strated that high-temperature cuprate superconductors favor an order parameter with an unconventional system
w x1–7 . The symmetry of the order parameter provides further insight into mechanism of superconductivity.

w xAccordance with experimental observations regarding the phase of the order parameter 8–10 , the symmetry
< < < <2 2belongs to the d symmetry with a line of nodes along the k s k directions. Some experimentalx yy x y

w x w xmeasurements, Photoemission studies 11,12 , Josephson interference 13 and c-axis Josephson tunneling
w x w xexperiment 14 , can not be clarified within a pure d-wave order parameter. For instance, Sun et al. 14 studied

Ž .the Josephson tunneling between a conventional superconductor Pb and a series of high-T cupratesc
Ž .YBa Cu O and the alloys Y Pr Ba Cu O and observed the nonzero tunneling current. This2 3 7yd 1yx x 2 3 7yd

observation contradicts the assumption that YBa Cu O is a pure d 2 2 superconductor. Theoreticians2 3 7yd x yy

suggest that there are two gaps in YBCO. The main gap is caused by the CuO planes and an induced smaller2

one results from the CuO chains. Therefore, the structures of YBCO can not be confined in tetragonal crystal
symmetry due to the existence of CuO chains. Moreover, YBCO exhibits a large anisotropy between the a and b

) Corresponding author.

0921-4534r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII: S0921-4534 98 00292-5



( )M.C. Dai, T.J. YangrPhysica C 305 1998 301–312302

w xdirections, as evidenced by the measurements of the penetration depth 15 and the vortex structure by scanning
Ž . w xtunneling microscopy STM 16 .

The vortex structure in d-wave superconductors has received increasing attention owing to the different
Ž .nature of vortex from that of the conventional one. Soininen et al. solved the Bogoliubov–de Gennes BdG

w xequations for electrons on a square lattice with attractive nearest-neighbor interaction 17 . They found an
admixture of the s-wave component to the d-wave order parameter in the vicinity of the vortex core. Berlinsky

w x w x w xet al. 18 , Franz et al. 19 and Ren et al. 20 analyzed the structure of the admixtured s-wave order parameter
Ž . w xusing the Ginzburg–Landau GL theory. In a related work, Heeb et al. 21 studied effects of orthorhombic

distortions for YBa Cu O from group-theory arguments. These investigators accounted for nonvanishing2 3 7

Josephson tunneling currents between s-wave superconductors and orthorhombically distorted d 2 2-wavex yy
w xsuperconductors by introducing the coupling terms. Xu et al. 22 developed a GL theory for a d-wave

w xsuperconductor with mass anisotropy in the presence of a magnetic field. Later, Han and Zhang 23 investigated
microscopically the GL theory of a dqs-wave superconductor with orthorhombic distortion in a magnetic field
applied to the c axis. They all showed the single vortex structure in a similar manner. In addition, both the s-
and d-wave order parameters were reduced to twofold symmetry, as expected to be fourfold one for isotropic or
tetragonal superconductivity.

Ž . Ž .The lower critical field H , the upper critical field H , the coherence length, and the magneticc1 c2

penetration depth involve the superconducting mechanism of cuprate. The angular dependence of H has beenc2
w xcalculated and presented some important note 24 . However, near H , the GL equations approximately lead toc1

the nonlinear London equation, which profoundly influences in high-T superconductors. The correspondingc

London free energy offers a simple method of investigating the vortex lattice in a type-II superconductor.
w xAffleck et al. 25 derived the generic London model to study the vortex lattice structure and investigated

neutron scattering, scanning tunneling microscopy, Bitter decoration, and muon-spin-rotation experiments. In
this work, we derive the London equation for a d-wave superconductor with mass anisotropy. Based on the

w xGinzburg-Landau theory, derived by Xu et al. 22 , the linear and gradient terms of d-wave component in GL
equations replace the s-wave component. The single vortex structure is obtained by solving GL equations. The
winding number of the s-wave does not change, whether the vector potential exists or not. By varying the

™
London free energy with respect to the vector potential and restricting magnetic field B along the z direction,
the corresponding London equation was derived. As generally known, the problem involving the field of an
isolated vortex is difficult to resolve due to nonlinearity of the London equation. By neglecting higher order
terms, some specific solutions can be calculated in the absence and presence of vortex. Some interesting
consequences worth mentioning include the dependence of the London penetration depth upon the temperature,
as well as the magnetic field. Of course, we derived the vortex line energy to determine the lower critical field.
This work also demonstrates that the interaction force between two vortices is not only in a repulsion but in a
torque for anisotropic d 2 2-wave superconductors. A summary of our results and some detailed discussion arex yy

finally made.

2. The structure of d-wave superconductor with mass anisotropy

The GL theory for a d 2 2-wave superconductor with mass anisotropy has been derived com-x yy
w xpletely by Xu et al. 22 . By assuming that a d-wave pairing interacts with a repulsive on site

Coulomb interaction, the GL free energy was obtained. For convenience, we cast the GL free
Ž .1r2energy density into a dimensionless form. At first we introduce the units a rg a for thes d1r24

< <s-wave order parameter, 1q M a rg a M q1 1q M qM for the d-wave order parameter,Ž .( (ž / ž /a d d a a a
1r23

a a y1< < Ž .j s g am 1y M q3M qM M r 1q M m a for the length, e j for the A field, and( ( (ž / ž /d d a a a a a x d d
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4
2a 1q M rg a M q1 1q M qM for the energy density. After tedious calculations, we obtainŽ .( (ž / ž /d a d a a a

the following:

< < 2 < < 4 < < 2 < < 4 < < 2 < < 2´ sa c qa c y c q c yb c )c qc )c q4b c cŽ .˜ ˜density s s s s d d 1 s d d s 2 d s

) 2 2 2 ) 2 < < 2 < < 2 ) )qb c c qc c qb c c )c qc c ) qb c c c qc cŽ . Ž .Ž .2 s d s d 3 s s d s d 4 d s d s d

< < 2 < < 2 < < 2 < < 2qg P c qM P c q P c qg P cž /1 x s a y s x d 2 y d

22q g P c P )c )yg P c P )c )qh.c. q ll ==A 1Ž . Ž .Ž .3 x s x d 4 y s y d

where

2M q1 1q M qM a 1q M qM aŽ . ( (M y1Ž .ž / ž /a a a s a a sa
a s , b s ,˜ )s 14 4 < <M q1 a2 Ž .a d< <1q M a 1q M a( (ž / ž /a d a d

3r22 M y1 a(M q1 aŽ . ž /a sa s
b s , b s M q1 1q M qM ,Ž . (( ž /2 3 a a a2 3 3r2< < < <1q M a 1q M a( (ž / ž /a d a d

2 M M y1( až /a a s
b s ,4 ( < <1q M M q1 1q M qM aŽ .( (ž / ž /a a a a d

M q1 1q M qM aŽ . (ž /a a a s
g s ,1

< <1y M q3M qM M 1q M a( ( (ž / ž /a a a a a d

M 1q3 M yM qM M( (ž /a a a a a
g s ,2 1y M q3M qM M( (a a a a

M q2 M y1 M q1 1q M qM aŽ .( (ž / ž /a a a a a s
g s ,3 ) < <1y M q3M qM M a 1q M( ( (ž / ž /a a a a d a

M 2 M q1yM M q1 1q M qM aŽ .( (ž / ž /a a a a a a s
g s ,4 ) < <1y M q3M qM M a 1q M( ( (ž / ž /a a a a d a

2 21 M y1 2 1qM T lŽ .a a c sc2
a s y g ln , and ll s . 2Ž .d d2 2až /a M q1 T jŽ .s a 1q M d(ž /a

Here we introduce an anisotropic mass parameter M sm rm , P 'yi= y2A, the screening length la x y a a sc1r2
2 < <s m M q1 1q M qM r8p e m a 1q M 1y M q3M qM M and the coherenceŽ . ( ( ( (ž / ž / ž /a a a x d a a a a a

length j a for the anisotropic d-wave superconductivity. In comparison with the isotropic free energy densityd
w x Ž ) ) . < < 220 , the extra terms are second-order coupling terms b c c qc c and fourth-order terms b c1 s d s d 3 s
Ž ) ) .c c qc c . These terms play an important role in bringing about an s-wave order parameter in the bulk.s d s d

Different from isotropic system, in which s-wave component can only be nucleated from the mixed gradient
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terms in a nonuniform system, these new terms induce a nonzero s-wave component even in a uniform case. For
M )1, the coefficient of the second-order coupling terms must be negative and we obtain the lower freea

w xenergy. These extra terms due to mass anisotropy are similar to those caused by orthorhombic distortion 23 .
By varying the GL free energy with respect to the order parameter c ) and c ), the corresponding GLd s

equations are obtained as

2 2 2 2 < < 2 < < 2 2 ) < < 2c s P qg P c q g P yg P c q2 c c yb c q4b c c q2b c c qb c cŽ . Ž .d x 2 y d 3 x 4 y s d d 1 s 2 s d 2 s d 3 s s

) 2 < < 2qb c c q2 c c , 3Ž .Ž .4 s d d s

b 4b 2b 2b b1 2 2 3 32 2 2
) 2 2 )< < < < < <c sy2 c c q c y c c y c c y c c y c cs s s d d s s d s d s d

a a a a a˜ ˜ ˜ ˜ ˜s s s s s

g g g b1 3 4 4 22 2 2 2 < <y P qM P c y P c y P c y c c . 4Ž .Ž .x a y s x d y d d d
a a a a˜ ˜ ˜ ˜s s s s

For a bulk system in the absence of the magnetic field, the gradient terms in the two GL equations are equal to
w xzero. Xu et al. indicated that the bulk system in the mixed sqd system is stable 22 . Neglecting the higher

< < 2term c c , c and c can be expressed asd d s d

b1
c fy c 5Ž .s d

ãs

and

c sG M 6Ž . Ž .d a

with

y12 2 3b 6b b b b 2b b1 1 2 1 3 1 42
G M s 1q 2q y y .Ž .a ž / ž /a a a a˜ ˜ ˜ ˜s s s s

Ž .The mixed gradient terms in the d-wave component on the right hand side of Eq. 4 plays an important role in
w x < < 2determining the behavior of an induced s-wave component 21 and c c is negligible small compared withd d

the linear term c . Obviously, it will be convenient to work in the cylindrical gauge expressed in the usual polard
™ Ž . < < < <coordinates rs r,u to determine the vortex structure. In the limit for c < c , we can neglect thes d

contribution of the s-wave component and assume the zero-order solution for c and A. The single vortexd
Ž . iusolution derived belongs to the pure d-wave case. Using the c sd r e allows us to obtain the source term:d

g g b3 4 12 2c , P c q P c q c 7Ž .s x d y d d
a a a˜ ˜ ˜s s s

1 g g 1 3 3 3eA3 4 Y X X X3 iu 2 2sy 1q e y d q d y dy2 eAd q dyeA dy2 e A d2½ ž /ž / ž /2 a g 2 2 r r2 r˜ s 3

1 1 1 eA 1 g g3 4Y X X Xyiu 2 2 iuqe y d y d q dq2 eAd q dqeA dy2 e A d qe y y12 5 ½ž / ž / ž /2 2 r r 2 a g2 r ˜ s 3

=
1 1 4eAd b1Y X 3 iu yiu iud q d y dq q d 's r e qs r e qs r e , 8Ž . Ž . Ž . Ž .1 2 32 5ž /r r ar ˜ s
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where b ra c is due to anisotropic and appears here only in the form of eiu. The vector potential is expressed˜1 s d

as

ˆAsA r u . 9Ž . Ž .
The asymptotic solutions near the center of the vortex and outside the core are easily solved. Different from the

w xwork of Xu et al. 22 , we don’t limit the anisotropic mass parameter value. Furthermore, the winding number of
the s-wave does not change regardless of the vector potential A. Meanwhile, we assume that two different order
parameters correspond to the same transition temperature for a d-wave superconductor, proposed by Muller¨
w x < < 226 . We also show that the coefficient of cos 2u term in c exists when M /1, i.e., there is a two-folds a

symmetry for an anisotropic d-wave superconductor.
< < < <In the case of c ; c , the feedback of s-wave can not be neglected. Above considerations are no longers d

valid. This problem is much more complex and solutions can be obtained only numerically.

3. The London equation

w xAffleck et al. 25 have derived the generalized isotropic London model, starting from the GL free energy
density with both c and c order parameters. Here, the generalized anisotropic London model is presented. Byd s

Ž .substituting Eq. 7 into ´ , the leading derivative terms in c of the form can be expressed asdensity d

g422 2 2a 2 2< < < < < <´ sc P c qc P c ye j P y P c q PPP . 10. Ž .Ž . Ž .density 1 x d 2 y d a d x y d
g3

with

b b1 1
c s g q2g q1, c s g M y2g qg .Ž . Ž .1 1 3 2 1 a 4 2

a a˜ ˜s s

and

5 2
21q M M q2 M y1 a( (ž / ž /a a a d

e s .a g am 3d
1y M q3M qM M a( (ž /a a a a smx

The above equation does not consider higher order terms because they are tedious in our problem. The
parameter e determines how the s-wave component couples with the d-wave component. To avoid complexa

mathematical calculation, we follow the example of e <1. Namely, the strength of the s-d coupling is rathera

weak. Assuming that the London penetration depth4j a leads tod

c ,d eiu Ž x , y. . 11Ž .d o

In this region, the vector potential effect can be negligible. We set A ,A ,A . By doing so, the London freex y R

energy density ´ can be written asL

2 2
g g4 42 22 2 2 a 2 2 2´ sd c Õ qc Õ ye j Õ y Õ q E Õ y E Õ q ll B , 12Ž .Ž .Ž .L o 1 x 2 y a d x y x x y yž / ž /½ 5g g3 3

expressed in terms of the superfluid velocity

™™
Õ'=uy2 A
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and u is the phase of c . The corresponding London equation can be derived by varying ´ with respect to thed L

vector potential A and written as:

ll 2
™ ™ 2a==B s c Õ xqc Õ y y2e jŽ .ˆ ˆŽ . Ž .1 x 2 y a d22 d0

=
g g 1 g4 4 42 2Õ xy Õ y Õ y Õ y xE yyE E Õ y E Õ . 13Ž .ˆ ˆ ˆ ˆŽ .x y x y x y x x y yž / ž / ž /g g 2 g3 3 3

™ ™ Ž .The supercurrent j can be obtained from the Maxwell equation ==Bs4p j . The second term of Eq. 13 ins s

the square brackets is ‘nonlocal’ owing to spatial derivatives. This term is the dominant one in determining the
™

w xsingle vortex structure 25 . The superfluid velocity can be written in terms of B and its derivative. For e s0,a

we have the following form:

™ ™ ™ ™™ ™
==B ==B==B Ž . Ž .Ž . y yxŽ0. Ž0.Õ s , Õ s s 14Ž .x yB B c B0 x 0 y 12 0 x

with B s2c d2rll 2 and c sc rc . Substituting the expressions for ÕŽ0. into the London free energy0 x 1 0 12 2 1

density, we get:

2 2
™ ™ ™ ™2Ž0. 2 2´ s ll B ql c ==B q ==B . 15Ž .Ž . Ž .L 0 12 yx½ 5

So, the London penetration depth of the magnetic field for e s0 isa

1 ll 2

2l s s . 16Ž .0 22c B 4c d12 0 x 2 0

™™Deriving the London equation in closed form for Õ as a function of B for e /0 is extremely difficult. Next,a

the small e is considered for convenience and the perturbative method is used. The first order corrections area

2a2e j 1 g 1 gŽ .a d 4 43 2Ž1. 2Õ s E B y E B E B y 1q E E BŽ .Ž . Ž . Ž .x y y x x y3 2½ 5ž /ž /c 2 B c gB c g1 0 x 12 30 x 12 3

and

2a2e j g g 1 gŽ .a d 4 4 42 3Ž1. 2Õ s y E B E B y E B y 1q E E B .Ž . Ž .Ž . Ž .y x y x x y3 2½ 5ž /ž /c 2 B c gc g B c g2 0 x 12 312 3 0 x 12 3

17Ž .

This subsequently leads to the London free energy density

22c 3 g g12 4 42 22 22Ž0. a 2´ s´ qe j ll l E B y E B y 1q E E BŽ .Ž . Ž . Ž .L L a d 0 y x x y2 2ž / ž /½ 5c c gB c g1 12 30 x 12 3

qO e 2 q PPP . 18Ž .Ž .a

™
In the above equation, the free energy is expressed in terms of magnetic field B and its derivatives. The
coefficients of the fourth-order terms B4 and higher-order gradient terms =

4 in the above equation are not
w ximportant 25 . The same result can also be obtained by considering the generation of quasiparticles near gap
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w xnodes in a d-wave superconductor 27 , in a range of temperature and field where the supercurrent can be
w xTaylor expanded in the superfluid velocity 25 . The corresponding London equation is derived by varying the

™ ˆfree energy e with respect to B to have a minima e . For BsBz, we obtainL L

22 a 2c g 6e j l cŽ .12 4 a d 0 12222 2 2 a 21yl E qc E qe j l 1q E E ByŽ . Ž .Ž .0 x 12 y a d 0 x y 2ž / ž / ž /c c g cB1 12 3 10 x

g g g4 4 42 22 2= E y E Bq E BE y E BE E B y E B s0. 19Ž . Ž .Ž .y x y y x x y x2 2 2ž / ž /c g c g c g12 3 12 3 12 3

Ž .The final term is nonlinear due to the first term in brace in Eq. 18 .
Ž .In the local field approximation, this final term of Eq. 18 is discarded. To solve the London equation, we

give an exponentially decaying field

BAeyr rla , 20Ž .
where l depends on the angle u . For the specific case, we assume a weak field which depends only on x ora

Ž .else only on xqy . The solutions of the linearized London equation correspond to l are l sl fora a 0

variation along the x axis and

1r2222 a 2l sl 1qc r4q 1qc r4ye j c rc 1qg r c g rl r2(Ž . Ž . Ž . Ž .Ž .½ 5a 0 12 12 a d 12 1 4 12 3 0

for variation at pr4 to the crystal axis. The London penetration depth depends not only on the temperature, but
also on the direction of applied field. In the weak-coupling limit of a d 2 2-wave superconductor the slope ofx yy

the penetration depth curve near T is much lower than in the corresponding s-wave isotropic case.c ™
To calculate the linearized London free energy, or vortex-line energy, the magnetic field B can be expressed

in terms of Fourier components

™ ™ ™ ™
™B s B x , y exp yikPr d xd y. 21Ž . Ž .Ž .Hk

As long as the vortex spacing is large compared to l , there will be negligible overlap or interaction of thea
Ž .vortices, so that each can be treated in isolation. Next, the Fourier Transformation FT is used to evaluate the

total London free energy E for a single vortex. The magnetic field can be written in FT asL

f0
™B s . 22Ž .k 2c g12 422 2 2 a 2 2 21ql k qc k qe j l 1q k kŽ .Ž .0 x 12 y a d 0 x yž / ž /c c g1 12 3

Then we obtain the energy:

1
E s ´ dk dkHsingle L x y22pŽ .

2 22f ll c g0 12 422 2 2 a 2 2 2s dk dk 1ql k qc k ye j l 1q k kŽ .Ž .H x y 0 x 12 y a d 0 x y2 ž / ž /½ c c g2pŽ . 1 12 3

y22c g12 422 2 2 a 2 2 2= 1ql k qc k qe j l 1q k k . 23Ž .Ž .Ž .0 x 12 y a d 0 x yž / ž / 5c c g1 12 3
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To avoid the integral divergent at k ™ `, the cutoff at k’s of the order of 1rj a is employed. Choosing thed™ aintegration domain in k plane over the circle of the radius 1rj is more reliable than that over the ellipse withd
a y1r2 a w xsemiaxes k s1rj and k sc rj , respectively. Kogan 28 made a similar argument for anisotropicx d y 12 d

type-II superconductors. Finally, the asymptotic London free energy is obtained as

22 22 y1r2 af c ll 3e j gŽ .0 12 a d 4y1 y1 2 2E , ln m k q 1q ln m k qconst. qO e q PPP .Ž . Ž . Ž .single 1 2 1 a2 2 ž /½ 5c g4pl 4l c 12 30 0 1

24Ž .

where the coherence length j a can be simplified asd

a ij s m j(d 1 d

i a 2 3 y1 2Ž . w Ž . xwith j sj M s1 and m s2 1y4 M r 1q M . Here we neglect the 1’s with respect to m k .( (d d a 1 a a 1

The Ginzburg–Landau parameter, by defining k'l rj a, is introduced. During calculation, the perturbed0 d
Ž a.2 2 4 Ž 2 .method is applied owing to e j l k r 1ql k ;e <1 within the limits of integration from ks0 toa d 0 0 a

ks1rj a. When M s1 and e s0, the London free energy becomesd a a

g0
E ; ln ; ln k . 25Ž .L až /jd

This is the same as that for conventional superconductors. Calculating the line energy is an attempt to determine
the lower critical field H , at which flux first penetrates the sample. By definition, at HsH , the Gibbs freec1 c1

energy must have the same value regardless of whether the first vortex is in or out of the sample. Thus,

4p
H s E . 26Ž .c1 single

f0

Ž . Ž .Next, the asymptotic behavior of B x, y is calculated. We return to B x, y in real space by the inverse FT
™

™ Ž . Ž .of B given by Eq. 22 . The inverse Fourier transform provides B x, yk

1™ ™ ™ 2™B x , y s B exp ikPr d k . 27Ž . Ž .Ž .H k22pŽ .
Therefore, we have

™ ™i kPr1 f e dk dk0 x y
B x , y sŽ . H2 2c g2pŽ . 12 422 2 2 a 2 2 21ql k qc k qe j l 1q k kŽ .Ž .0 x 12 y a d 0 x yž /c c g1 12 3

™ ™ 2 2i kPr a 2f e dk dk f e j l c gŽ .0 x y 0 a d 0 12 4
, y 1qH2 22 2 ž / ž /c c g1ql k qc k2p 2pŽ . Ž .Ž . 1 12 30 x 12 y

=

™ ™i kPr 2 2e k k dk dkx y x y 2qO e q PPPŽ .H a22 2 21ql k qc kŽ .0 x 12 y

2 2y1r2 af c r e j g r r r r rŽ .0 12 a d 4
s K q 1q 2 K q K q K0 0 1 32 2ž / ž / ž / ž / ž /½ 5l c g l 4l l 4l l2pl 8c l0 12 3 0 0 0 0 00 1 0

q PPP , 28Ž .
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where r 2 sx 2 qc y2 and K is a zero-order Hankel function of imaginary argument. Qualitatively,12 0
Ž . yr rl0 Ž .K rrl cuts off as e at large distances and diverges logarithmically as ln l rr at r™0. Notably,0 0 0

w x Ž .some useful mathematical integral relations 29 are applied while deriving Eq. 28 . From the expression
Ž . Ž a .B x, y , the anisotropic effect introduces the second power of j rl .d 0

4. Interaction between two vertices

Next, we calculate the interaction energy between two parallel vortices A at rs0 and B at rsR. The
interaction energy can be expressed as

E sEy2 Eint single

2c g12 422 2 2 a 2 2 2dk dk 1ql k qc k ye j l 1q k kŽ .Ž .x y 0 x 12 y a d 0 x y22 ž / ž /c c gf ll 1 12 30
s cos kPRŽ .H2 222pŽ . c g12 422 2 2 a 2 2 21ql k qc k qe j l 1q k kŽ .Ž .0 x 12 y a d 0 x yž / ž /c c g1 12 3

2 1r22 22 a y1r2f e j c ll 1 gŽ .0 a d 12 42s2f ll B R q 1qŽ .0 A 4 ž /ž /c c c g8pl 12 1 12 30

=
R R R R R1 1 1 1 1 22 K q K q K qO e q PPP . 29Ž .Ž .0 1 3 a2ž / ž / ž /l l 4l l4l0 0 0 00

Ž . 2 2 2 Ž .Here B R is the field of vortex A at point R and R sX qc Y . The interaction showing in Eq. 29 isA 1 12

repulsive. The force arises from this interaction by taking a derivative of E .int

E E™ int ˆfsy R
E R

f 2cy1r2 ll 2 1 R0 12 1
sy Xxqc Yy Kˆ ˆŽ .12 13 ½ ž /R lpl 1 00

2 2ae j g 2 R 1 RŽ .a d 4 1 1
q 1q K y K q PPP . 30Ž .1 02 ž / 5ž / ž /c g R l 4l l8c l 12 3 1 0 0 01 0

It proves that the direction of this force between two vortices for anisotropic d-wave superconductor is not
™

consistent with vec RsXxqYy, which connects the interacting vortices. Therefore, a torque of the systemˆ ˆ
exists and can be expressed as

1r222 y1r2 2 2f c ll c yc 1 R™ ™ 0 12 2 1 1™
tsR= f XYz Kˆ 13 ½ ž /ž /c c R lpl 1 2 1 00

2 2ae j g 2 R 1 RŽ .a d 4 1 1
q 1q K y K q PPP . 31Ž .1 02 ž / 5ž / ž /c g R l 4l l8c l 12 3 1 0 0 01 0
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™It is worthy noting t disappears if both vortices are limited to either x or y axes and the system reduces to
isotropic d 2 2-wave superconductivity with M s1. In the anisotropic s-wave superconductor, a torquex yy a

w xbetween two vortices also exists 30 .

5. Summary and discussion

Substituting the linear and gradient terms of d-wave component for the s-wave component in the
Ginzburg–Landau free energy allows us to determine the vortex structure in anisotropic form. The effect of the
twofold symmetry of a single structure is small but remains far from the core. Moreover, our results reveal the
presence of r-component of the supercurrent as r ™ 0 for anisotropic d-wave superconductor in the Appendix.
No r-component of the supercurrent as r ™ 0 exists for isotropic d-wave superconductors.

We also derive the generic London model and calculate the London free energy to determine the lower
critical field H . Using this model allows us to express the magnetic field in the absence and presence of thec1

vortex. The London penetration depth l depends not only on temperature but also on the direction of ana

applied weak field. As mentioned earlier, this work has demonstrated not only how the weak s–d coupling
influences the London penetration depth, the London free energy, the lower critical field, and interacting force,
but also how c affects the mass anisotropy dependence of magnetic properties. Hence, the interaction between12

two vortices and stability of the vortex lattice is changed. The vortex–vortex interacting force can be used to
determine the stable structure of the vortex lattice. This force is a contributing factor to the vortex motion,
subsequently leading to energy dissipation and a longitudinal resistive voltage. It provides further insight into
the dynamics of flux penetration and the mechanisms of vortex pinning.

The vortex lattice problem is also worth mentioning. In the vicinity of the upper critical field H , thec2

linearized GL equation corresponding to d-wave component, by neglecting the nonlinear terms and substituting
Ž .Eq. 7 for s wave, can be written as

H y1 c qH c s0, 32Ž . Ž .0 d 1 d

where

22g g3 42 2 2 2H s P qg P y P y PŽ .0 x 2 y x yž /a g˜ 3 3

and

B 2g 2g1 3 32 2H sb c q P y P .1 1 d x xž /a a a˜ ˜ ˜s s s

w xChang et al. 31 derived the perturbative solution of the isotropic linearized GL equations. The term H c ,1 d

involving the second order coupling terms, shifts the H value but does not change the power of temperature.c2

Also, the vortex structure would be changed because including the term H c breaks the fourfold symmetry1 d

into twofold symmetry.
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Appendix A. Supercurrent

In this Appendix, we investigate the distribution of supercurrent around a d-wave vortex with mass
anisotropy. In the limit of j a

<l , the supercurrent can be expressed asd a

1™ )

) ) )js x c P c qg c P c qg c P c qc P c qh.c.Ž . Ž . Ž . Ž .ˆ Ž .½ d x d 1 s x s 3 s x d d x s24p ll

)

) ) )qy g c P c qg M c P c yg c P c qc Pc qh.c. . A1Ž . Ž .ˆ Ž . Ž . Ž . 5ž /2 d y d 1 a s y s 4 s y d d s

The solutions of order parameters c and c , neglecting the magnetic field effect, can be estimated simply.s d

Far away from the vortex, we set

d r s1 A2Ž . Ž .

and obtain

g 3g 3a g g a4 3 0 4 3 0
s s 1q ' , s sy 1q 'y ,1 22 2 2 2ž / ž / ž /ž /g g4a r r 4a r r˜ ˜3 3s s

g g b b b4 3 1 0 1
s s y1 q ' q . A3Ž .3 2 2ž / ž /g a a2a r r˜ ˜˜3 s ss

The supercurrent is

1 g 1yM b b 2b 8 1qM g b aŽ . Ž .™ 1 a 1 1 0 a 1 1 0
js r g y1 sin 2uy sin 2u q y sin 2uŽ .ˆ 22 2 2½ ž /a a r a r4p ll r ˜ ˜ ˜s s s

10 1yM g b a 2b 2b 8 g yg aŽ . Ž .a 1 1 0 1 0 3 4 0
y sin 4uy g qg q sin 2uy sin 2uŽ .3 42 2 2ž /aa r r r˜˜ ss

25 g qg a 8 M y1 g b aŽ . Ž .3 4 0 a 1 1 0 2ˆy sin 4u qu g q1 q g y1 cos 2uy sin 2uŽ . Ž .2 22 24r a r˜ s

g b g 1qM g 1qM b 12 a 2bŽ . Ž .4 1 1 a 1 a 1 0 0
y y cos 2uyg q cos 2uq4 2 2ž /ž /a a a a r r˜ ˜ ˜ ˜s s s s

8 g yg a 1Ž .4 3 0 2q sin 2u qO . A4Ž .2 5ž /5r r

Both r- and u-components of the supercurrent have the same leading order 1rr. Near the vortex core,

c ;c reiu
d 0

and

c b0 1 iuc ; re . A5Ž .s
ã s
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The supercurrent can be written as

21 g 1yM b 2 g qg bŽ . Ž .™ 1 a 1 3 4 12js c r sin 2u g y1 y y rŽ . ˆ0 22 2½ aa4p ll ˜˜ ss

2 2g 1qM b 1yM b 2 g qg bŽ . Ž . Ž .1 a 1 a 1 3 4 12qc r g q1 q g y1 cos 2uq y yŽ . Ž .0 2 2 2 2 aa a ˜˜ ˜ ss s

2 g qg bŽ .3 4 1 ˆq cos 2u u . A6Ž .5ãs

We find an interesting result that there exists an r-component in the supercurrent as r ™ 0 for a d-wave
superconductor with mass anisotropy which vanishes for isotropic case. Namely, the current does not flow
around the vortex uniformly along the tangent line.
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