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Abstract: Traditionally, the performance of a 
stack machine has been limited by the true data 
dependency. A performance enhancement 
mechanism, stack operations folding, was used in 
Sun Microelectronics’ picoJava-I design, and it 
can fold up to 60% of all stack operations. The 
authors use the Java bytecode language as the 
target machine language, and study Java 
instruction folding on a proposed folding model, 
the POC model, which is used to illustrate the 
theoretical folding operations. Various practical 
folding strategies based on the POC model are 
introduced and evaluated. Statistical data show 
that the 4-foldable strategy eliminates 84% of all 
stack operations, and the 2-, 3-, and 4-foldable 
strategies result in overall program speedups of 
1.22, 1.32 and 1.34, respectively, as compared to a 
stack machine without folding. Furthermore, the 
4-foldable strategy is the most practical and cost 
effective of a Java stack machine design with a 
decoder width of 8 bytes. Circuit simulation 
results show that a 100MHz 4-foldable folding 
mechanism can be realized with 0 . 6 ~  CMOS 
standard cells, or 240MHz with 0.251” CMOS 
technology. 

1 Introduction 

The Internet has been widely used and network com- 
puters [l] are being promoted to be the key component 
in this application paradigm due to their simplicity, 
reduced management effort, and low cost. 

A Java stack machine has the advantage of small 
code size, 1.8 bytes per instruction on average [2] as 
compared to other CISC or RISC machines. No source 
or destination register identifiers need to be assigned 
for the instructions, making the instruction size small 
[3]. However, all of the succeeding ALU or other stack- 
related operations must be dependent on the previous 
load or written back data. This inherent true depend- 
ence severely limits the instruction level parallelism. 
Sun Microelectronics proposed the folding technique 
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[2, 4, 51 as a method to avoid the unnecessary loads or 
writes back to the stack. Before that, studies into stack 
machine [3] folding were lacking, and the design results 
revealed by Sun Microelectronics were not clearly elab- 
orated. Stack operations folding (particularly for Java 
bytecode [6]) still requires extensive study and the pur- 
pose of this paper is to present both a theoretical study 
and practical implementation issues. 

In this research, we use trace driven simulation in 
our performance study. Although Java is a popular 
language [7], it is still too immature to have typical 
benchmarks like the SPEC benchmarks. So we 
gathered many Java programs to use as our 
benchmarks, and we hope that these benchmarks will 
serve as a representative sampling of typical Java 
programs. 

Most of our Java benchmarks are applets obtained 
from Sun Microelectronics’ JDK (Java Development 
Kit) [7] samples. These Java benchmarks can be run in 
browsers such as Netscape Navigator or JDK 
appletviewer. Only one benchmark, the Java compiler 
(javac), is an application which can be run in the com- 
mand line. We categorise these benchmarks into three 
types: the first is unimution, which makes web pages 
look more attractive; the second is interaction, such as 
web games; and the last is performance benchmark, 
which tests the performance of a computer, such as 
Caf f eineMark and Jstones. The summary of these 
benchmarks is shown in Table 1. 

To analyse the performance gain associated with the 
eliminated stack operations or execution cycles, we 
need to calculate the theoretical performance upper 
bound that stack operations folding can achieve. Then, 
a practical folding strategy is suggested, based on the 
simulation results of how closely the performance of 
each strategy can approximate the upper bound. The 
theoretical performance upper bound is calculated by 
first finding the theoretical foldable instruction groups, 
then eliminating all foldable stack operations and 
counting the resulting execution cycles. Finally, the 
speedup upper bound is calculated accordingly. The 
following equation calculates the speedup upper bound 
for stack operations only: 

speedup upper boundStackOpsOnly 

- ExecutionTimeAllstackOps 
- 

EXecutionTimeAfterPerfectFoidzng 
where ExecutionTime,,l,,,,,, is the execution cycle 
counts of all stack operations, and ExecutionTimeAfter. 
pefectF,,l&,g is the execution cycle counts after perfect 
folding of all stack operations. 
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Table 1: Java benchmarks summary 

Types Benchmarks 

Animator 

Ba rCha rt 

Blink 

Clock 

Fractal 

Led 

NervousText 

R 0 C-F I a g 

SimpleGraph 

SortDemo 

ArcTest 

Ataxxlet 

CardTest 

DitherTest 

D r a wTest 

Dugout 

GraphicsTest 

Interaction Graph Layout 

Lceblox 

ImageMap 

Jumping Box 

MoleculeViewer 

Spreadsheet 

TicTacToe 

WireFrame 

Javac TicTacToe.java 

Caffeinemark 

Jstone 

Li n packJava 

Plasma 

Animation 

CPU performance 
benchmark 

Instruction counts 
(millions) 

4.5 

0.5 

3.0 

4.2 

2.5 

0.5 

1.7 

4.9 

0.4 

7.1 

1 .o 
80.0 

0.8 
33.8 

20.3 

31.1 

1.2 

16.1 

17.0 

6.6 

3.2 
1.2 

3.0 

1.6 

2.0 

20.3 

30.9 

5.2 

7.8 

3.5 

The following equation calculates the overall spee- 
dup: 
speedup upper boundoverall 

- ExecutionTime Allo,, 
- 

E X e c U t ~ o n T ~ m e A 1 l A f t ~ ~ P ~ ~ f ~ ~ t F o l d z n g  

where ExecutionTimeAllop, is the execution cycle counts 
of all operations, and Execution T i i n e A l l ~ ~ e r P e r ~ e c t ~ ~ ~ ~ i ~ ~  is 
the execution cycle counts of all operations after per- 
fect stack operations folding. 

2 Stack operations folding 

In this Section, some terminology is defined, and the 
basic folding operations are introduced. 

2. I Definitions 
Before we present the details of the POC model of 
stack operations folding we will introduce some folding 
related definitions: 
Stack operations folding: The ability to detect some 
instructions with true data dependency in the instruc- 
tion flow of a stack machine and execute these instruc- 
tions collectively in some way, like a single compound 
instruction. 
Stack Operations folding group: A collection of 
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contiguous stack instructions that can be folded 
together. 
Primary instruction: The instruction in a folding group 
that consumes and produces data (i.e. ALU instruc- 
tions), transfers control (i.e. branch instructions) or 
invokes a microprogram. If none of the above exists in 
a folding group, a null primary instruction (NOP) will 
be assigned. 
Auxiliary instruction: An instruction in a folding group 
that is not a primary instruction (i.e. instruction that 
provides the source address or destination address to 
the primary instruction). 

Considering the operations related to the operand 
stack and their characteristics, the Java bytecode 
instructions can be classified into three types: producer, 
operator and consumer. Their property and percentage 
of occurrences in the benchmarks are listed in Table 2, 
and their definitions are as follows: 

Table 2: Instruction types for Java stack operations 
folding 

Type Symbol Description Percentage (%) 

Producer P push constant/load 47.14 

OE execution unit 10.87 

0, branch type instruc- 11.54 

from LV 

instructions 

tions 
Operator 

0, complex type instruc- 22.19 
tions 

instructions 
OT termination type 3.97 

Consumer C store into LV 4.29 

Producer (P) :  An instruction that transfers data from 
Constant Register or Local Variable (but not Array or 
Constant Pool) to the operand stack. 
Operator (0): An instruction that gets data from the 
operand stack (may be dummy) and then performs the 
different tasks based on the following three operator 
subtypes: 
OE - ALU type operator that writes the result back to 
the operand stack. 
OB - Branch type operator that may jump to the target 
address based on the branch decision. 
Oc - Complex type operator (including array access, 
constant pool access, invokevirtual, ...) which is imple- 
mented by micro-coded ROM. (It may or may not 
write back the result to the operand stack.) 
OT - Termination type operator which is unable or 
finds it hard to join the folding operation (like iinc, 
goto, athrow, ...), or it is a complex type operator but 
with software emulation. 
Consumer (C):  An instruction that consumes data 
from the operand stack, and stores data back into the 
local variable (but not Array or Constant Pool). 
Within a folding group, the operator 0 is treated as the 
primary instruction. Both the producer P and con- 
sumer C are treated as auxiliary instructions. 

2.2 Stack operations folding procedure 
Most operations of a stack machine must push or pop 
data to or from the top of its stack (TOS). This will 
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cause a serious data hazard due to true data depend- 
ence. Typical stack operations before folding are listed 
below: 
Step 1: The Producer writes data accessed from the 
constant register or local variable to the top of the 
operand stack. 
Step 2: The Operator gets data from the top of the 
operand stack. 
Step 3: The Operator (ALU type instructions, branch 
type instructions or complex type instructions) operates 
on the accessed stack data. 
Step 4: The Operator writes the result back to the oper- 
and stack as needed. 
Step 5: The Consumer gets the data from the operand 
stack and writes it back to the local variable. 
This procedure is also shown on the left-hand side of 
Fig. 1, with the numbers showing the execution flow. 

If the stack instructions are of true data dependency 
to form a folding group, then we can fold them 
together by redirecting the data provided by the pro- 
ducer to the corresponding primary instruction, as 
depicted by step 1’ on the right hand side (after fold- 
ing) in Fig. 1. The execution flow will be changed to 
the following after folding: 
Step 1’: The Operator gets data directly from the source 
of producer. 
Step 3: the Operator (ALU type instructions, branch 
type instructions or complex type instructions) operates 
on these data. 
Step 5’: The Operator writes the execution result back 
to the destination of the consumer directly as needed. 
In this case, the number of execution steps is reduced 
from five to three. Hence, the system performance can 
be increased greatly by folding. 

foldable, the folded result instruction will become the 
new instruction N ,  and will be checked with the new 
following instruction N + 1, repetitively, until the end 
of folding. 

The definitions of P, 0, and C have been presented 
in Section 2.1. The other notations are as follows: 
6: Folding operator of instruction N and N + 1. 
Psn, wn/Tos, wnf: Producer with source Sn, data width Wn 
and destination TOS, data width Wn’. 
Osn, wn/D?, wn,; Operator with source Sn, data width Wn, 
and destination Dn, data width Wn’. 
C,,, wn/LK wnf: Consumer with source TOS, data width 
Wn, and destination LV, data width Wn’. 

One of two possible relations exists between two con- 
secutive stack instructions. These two possible relations 
are: 
SI: Instructions N and N + 1 are general pipelined 
serial instructions that are not foldable. 
FL Instructions N and N + 1 are foldable stack instruc- 
tions. 
The possible next state after the folding operation may 
be either of the following: 
C: The result of folding instructions N and N + 1 may 
be checked for further foldability with the next instruc- 
tion. 
E: The result of folding instructions N and N + 1 can- 
not be folded any further, and the folding group check- 
ing can be terminated. 
An example of folding using these notations is given 
below: 
OE,,,, w2/02, w2dFIIC: The folding result of instructions N 
and N + 1 is 0, type with source S1, data width W2 
and destination 02 ,  data width W2’. These two instruc- 
tions are foldable, and they can be checked for further 
folding with the next instruction in the program. 3 POC model of stack operations folding 

In this Section, the POC model of stack operations 
folding, the state diagram of folding rules checking, 
and the folding algorithm are presented. 

3.7 POC model 
To give a clear overview of stack operations folding, a 
generic POC model is constructed. The basic concept 
of the POC model is that it checks the instructions N 
and N + 1 to see whether they can be folded together 
(based on the instruction type, operand source, 
operand destination, data type and width). If they are 

Fig. 2 shows the foldability check for contiguous 
instructions N and N + 1. The foldability check will 
continue if the current checked result is in state ‘C7. 
Otherwise, the process stops if the resulting state is ‘E .  
For example, if the sequence of bytecode instructions is 
11-14, then their type notations are as follows: 

I1 : pt c o n  s t  -2,1 /TO SI 1 

14:CTOS,1/LV(zndez2),1 

Il:const_2 

I 3  :iadd 

14:istore index2 

constant register 

local variable 

I 
A execution unit 1 0 

P 
3 
P 
Q 

?. 

i 5 
{FH*j local variable 

U 

before folding 

Fig. 1 Stuck operations folding 
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constant register 

local variable 

0 U I’=l fold 2 
execution unit 

z P E )  

g .---- (0) (OB) 

5’=4 fold 5 (OC) 

(C) (Lv) 

2 operator branch unit ----, 
X 

complex instr. 

consumer local variable 

U 
after folding 
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Instruction N+l 1 

CTOS,WI / CTOS WI / c T O S , W l /  
CTOS W I / 

CTOS,WI /LV W I ’  Lv,wr~~SIIE Lv ,wi , /S I  LV,WI’/SI LV w i . / S I  

E /E /E 

6 

cT0S.Wl i 
CTOS,WI ILV. 

LV wiJ  SIIE Wl’Isl/E 

Fig.2 
Note 1 Assume that the two contiguous instructions have the matched data type Otherwise they are in SUE state 
Note 2 Assume that the contiguous instructions have the matched data width 
Note 3 Assume that the machine is a stsack machine, and the true data dependency is required in stack operations folding as defined in Section 2 1 P-P type combi- 
nation is treated as serial instructions because of the lack of true data dependency 

Foldabihty check for contiguous instructions Nand N + 1 

The folding process proceeds as follows: 

TOS,1 

I4 c T O S , l /  

, E /  con st-2 

+ L V ( z n d e z l )  

,2 /TOS,1 

F I / C  

E / i  con s t  -2 

+ L V ( i n d e z l ) ,  

2 / L V ( z n d e z 2 )  I , i / F I / E  

In Step 1, the two providers Piconst ~ , I /TOS, I  and PLvIin- 
dexlj,l/ToS,I are combined to becomea single, larger pro- 

general pipdined serial relation (SI) but with a continu- 

folded with oE/Tos,2/Tos,! to form a new instruction O,, 

continually foldable state C. In that step, the sources of 
iadd have been changed to iconst-2 and LV (indexl). 
In the final step, the folding operation combines OEllcon- 

vider Piconst 2+LV(mdexlj,2 iTOS2. The new provider is a 

ally state C. In Step 2, iconst-2+LV(zndexlj,2~TOS,2 is 

iconst~2+LV(zndexl),2/TOS,J with relation (FI> and 

J t 2+L  V(mdexI) ,2iTOS, 1 OE/icon- 
st 2+LVV(indexI),Z/LV(indexZj,I which is (Fr> but 

and cTOS,IiL V(index2), I into 

should not be further checked for foldability (as indi- 
cated by state E>. As a result, the four instructions are 
combined into a single instruction iadd with the two 
source operands iconst-2 and LV (indexl), and the 
destination LV (index2). 

3.2 State diagram and algorithm 
The state diagram of stack operations folding as pre- 
sented with the POC model is shown in Fig. 3 .  In this 
state diagram, the new notations, State’, State-OB, 
State-O,, StatePO,, State-C, are used for the different 
intermediate states during folding. This model allows 
as many contiguous providers (P)  to provide sources to 
the operator as possible, and then enter State-OE, 
State-OB, State-Oc, or State-C upon encountering an 
OE, OB, Oc or C, respectively. In the State-0, and 
State-Oc states, if the upcoming input is a consumer 
(C) ,  then the state will not change, but only the folded 
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instruction will have a different destination address. 
That is because the real operation is performed by the 
primary instruction (0), and all other auxiliary instruc- 
tions (P or C) will redirect the data to this primary 
instruction. All other inputs for StatePO,, State-OE, 
State-Oc and StateC will stop the folding rule check, 
because the stack operations folding group has already 
ended, and cannot be folded with other instructions 
anymore. The input OT will terminate the folding oper- 
ation in any state of Fig. 3. 

/ start foldina r u h  

Fig. 3 N-folduble folding rule check 

In Fig. 3, if the number of examined bytecode 
instructions in State-O,, State-O,, State-O,, and 
State-C is greater than or equal to two, then those 
instructions are foldable and they form a folding 
group. The primary instruction in a folding group must 
be one of OB, O,, 0, or NULL. Its input is provided 
by P(s), and its result is consumed by C(s). 

The algorithm to determine how many bytecode 
instructions can be folded together is listed below. The 
complexity of this algorithm is O(N). 
Algorithm Folding-Check (I, N> 
Input: I (an instruction array in the range A4 >= N), 
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N (an integer representing N-foldable strategy). 
Output: foldable# (foldable stack instructions number 
under N-foldable strategy). 
begin 

foldable# := 1; {default iJ one instruction to be 
issued} 
lfirAt := all; {initialise the first instruction for fold- 
ing check} 
Isetond := 421; {initialise the second instruction for 
jolding check} 
k := 2; 
while k <= N do 

lreJu,Jxly := IfiuTt 6 
i f x  = ‘FT then foldable# := k; 
i f y  = ‘c‘ then 

{folding operation) 

Ifrr,, := L u l t ;  

Iyecond := I[k + 11; 
k : = k + l  

else break 
Issue 411, 1[2], ..., Woldable#] instructions as a 
folding group 

end 

4 Folding strategies and performance 

In this Section, folding strategies of different degrees of 
folding are proposed and examined based on the 
benchmark trace analysis. Performance in terms of 
reduced stack operations and speedup of the folding 
strategies are described. Finally, the cost and complex- 
ity issues of the decoder are discussed. 

4. I Proposed folding strategies 
Based on the POC model of stack operations folding in 
Section 3, the number of combined P, 0, and C opera- 
tions in a single folding group can range up to thou- 
sands. Considering the costiperformance ratio and the 
limited time budget in folding, it may be necessary to 
fold only up to a small number of instructions. Based 
on the benchmark program traces, it is found that most 
of the foldable patterns consist of only 2 to 4 bytecode 
instructions (see data in Section 4.2). So we propose to 
examine in particular three folding strategies in which 
the foldable bytecode instructions are 2, 3, or 4, respec- 
tively. These %-foldable, 3-foldable, and 4-foldable 
strategies are described below: 
2-foldable: Folds two bytecode instructions. The fold- 
ing group can be any one of the proposed foldable pat- 
terns as shown in Table 3. 

Table 3: Proposed 2-foldable patterns 

I1 12 

P 0, 
P OB 
P OC 
P C 
OE C 

Or C 

3-joldable: Folds up to three bytecode instructions. 
Besides the folding capability of the 2-foldable strategy., 

the folding group may be any of the 
Me patterns as shown in Table 4. 

Table 4: Proposed 3-foldable patterns 

13 I1 12 

P P OF 
P 
P 

P 

P 

0, 
OC 

P 

P 

OE 

0, 
C 
C 

0, 
OC 
C 
C 
C 
C 

4-folduble: Folds up to four bytecode instructions. 
Besides the folding capability of the 3-foldable strategy, 
the folding group may be any of the proposed 4-folda- 
ble patterns as shown in Table 5.  

Table 5: Proposed 4-foldable patterns 

I1 12 13 14 

P P P 4 
P P P 0 0  

P P P OC 

P P 0, c 
P P OC C 
P OE C C 
P OC C C 

0, C C C 
OC C C C 

In addition to the 2-, 3- and 4-foldable patterns, 5-, 
6- ,  ..., n-foldable patterns (n may be any positive 
number, but in our benchmark traces, the maximum n 
found is 11) are also possible. We do not include those 
foldable patterns in our study because of the need for a 
very complex decoder. In Section 4.2, we present the 
projected performance bounds of the different folding 
strategies, including the theoretical n-foldable folding. 

50 r 

7 451 
0 animation 

I interaction 

CPU 

U average 

_I 

2-foldable 3-foldable 4-foldable n-foldable 
Fig. 4 Percentage of elcmmated stack operations cn our benchmarks 
n-foldable means theoretical perfect folding 

4.2 Performance of folding strategies 
Fig. 4 shows the percentage of eliminated (folded) stack 
operations in our benchmark programs [SI. As shown 
in Table 2, the percentage of all stack operations (P 
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type and C type as indicated by Sun Microelectronics 
141) is about 51% of the instruction count. The average 
percentage of stack operations eliminated by the fold- 
ing strategies are 31%, 41%, 43% and 44% for 2-, 3-, 4- 
and n-foldable, respectively, of all the instructions. As a 
result, if 4-foldable is adopted, the instruction mix per- 
centage of stack operations will be reduced from the 
original 51% to 14% ((51-43)/(100-43)) in our bench- 
marks. 

Fig. 5 shows the eliminated stack operation ratios 
with respect to all stack operations only. In this Figure, 
the folding ratio for the piCOJava-I architecture [2, 4, 9, 
IO], as announced in October 1996, is also shown. Note 
that the Sun Microelectronics benchmark suite is differ- 
ent from ours. 

lo0l RA% 85% 

80 z 
vi 
o_ 

f 60 
I 

Q 

1 

m 
4- 

$ 40 
a, 

C 
+- 

- E 
20 

0 

2-foldable 3-foldable 4-foldable n-foldable* sun's** 
Fig. 5 
stuck operations 
*c-foldable means theoretical perfect folding 

Percentage of eliminated stuck operations with respect to all 

Sun's picoJava-I with benchmark suite which is different from ours 

4.3 Speedup projection of folding 
The Java bytecode instructions are typically executed 
on a Java Virtual Machine [6]. To estimate the pro- 
gram execution speedup due to folding, the instruction 
execution cycles for the 17 instruction types [8] must be 
assumed. The other necessary assumptions are that 
there is no cache miss and the pipeline never stalls. 
Figs. 6 and 7 show the speedup of executing stack 
operations only and the overall speedup that each fold- 
ing strategy can contribute, respectively. 

6.95 

.g 7' 

E? 6 -  

c? 5 -  

% 3- 

0 

- +. 

4 -  
Y 

LD 
c 
0 2- 
Q < 1 -  

p 0" 
no-folding 3-foldable n-foldable* Sun's** 

2-foldable 4-foldable 
Fig.6 
.p-foldable means theoretical perfect folding 

Speedup of executing stuck operations only for each strategy 

Sun's picoJava-I with benchmark suite which is different from ours 

4.4 Design issues 
The decoder width has a great impact on the efficiency 
of the folding strategies. Fig. 8 shows the percentage of 
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eliminated instructions against the decoder width for 
each folding strategy. It is obvious from this Figure 
that a bytecode decoder width of up to eight bytes, a 
moderate amount, is sufficient for any folding strategy. 
As the number of foldable stack operations decreases, 
the required decoder width may also be decreased with- 
out hurting the performance too much. 

1.4 

1.3 
Q 

m 
4 1.2 

z: 1.1 

& 

- - 
$ 1.0 

0.9 

n~ 
Y." 

no folding 2-foldable 3-foldable 4-foldable n-foldable" 
Overall speedup for each strategy fig.7 

n-foldable means theoretical perfect folding 

g 45 
2 35 

5 30 
E 25 g 20 

15 - 
-g 10 

E 5  
E o  
75 2-foldable 3-foldable 4-foldable n-foldable* 

rig. 8 Percentage of eliminated instructions against decoder width 
n-foldable means theoretical perfect folding 

1 .oo 1 I I I I 

2 3 4 5 6 7 8 > = 9  
decoder width, bytes 

Fig. 9 
strategy 
-0- 2-foldable 

Overall program speedup against both decoder width and folding 

-0- 3-foldable 
-A- 4-foldable 
-0- n-foldable (i.e. theoretical perfect folding) 

We next focus on the achievable speedup of pro- 
grams, the most persuasive performance index. Fig. 9 
shows the overall program speedup against both the 
decoder width and folding strategy. These curves show 
that the 3-foldable strategy with a decoder width of 6 
bytes is at the knee point, a performance/cost design 
choice. This may not hold when designing a real Java 
processor, however. Because an instruction fetch width 
of 8 bytes is not too wide and most instruction caches 
have a line size of a power of 2 bytes, a decoder width 
of 8 bytes is the natural choice without much extra cost 
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for multiple instruction cache accesses, buffering, and 
byte extraction. Furthermore, the incurred extra 
decoder hardware cost in going from 6-byte decoding 
to 8-byte is insignificant compared with the whole Java 
processor design. Hence, the suggested decoder width is 
8 bytes, and this width will be used in the subsequent 
discussion. For an 8-byte decoder width, the perform- 
ance gained from 3-foldable to 4-foldable is that addi- 
tional (43.12% - 40.77%) = 2.35% instructions can be 
eliminated. In our preliminary designs, the decoder cir- 
cuit complexities for 3-foldable to 4-foldable strategies 
are comparable to a fixed decoder width, since the Java 
bytecode instruction length are variable in reality. 
Hence, we suggest that the 4-foldable strategy with a 
decoder width of 8 bytes may be the best choice for 
practical designs. The richer-foldable strategies with 
any decoder width are not recommended, because the 
statistical data show that only 44.18% of instructions 
can be eliminated. 

5 Design of folding mechanism 

In this Section, the POC model of stack operations 
folding is implemented using the VLSI standard cell 
library. This implementation is necessary in evaluating 
the delay time of the actual folding circuit, which is a 
part of the instruction decoder. 

5.1 Logic design 
According to the POC model, one can see that the 
same folding procedure for two instructions can be 
applied repeatedly to fold more than two instructions. 
For the same reason, if we implement the folding func- 
tion into a basic 2-fold folding unit, then the higher 
degree of folding can be realised by simply cascading 
such folding units. In this implementation, we use four 
bits to represent the POC type of each instruction. 
Table 6 lists the instruction types for Java stack opera- 
tions folding and their bit representations. 

Table 6: Bit representation of instruction types for POC 
model 

P 0 C 

bit 3 bit 2 bit 1 bit 0 
Type Symbol 

Producer P 1 0 0 0 
OE 0 1 0 0 

OB 0 0 1 0 

oc 0 1 1 0 
Operator 

OT 0 0 0 0 

Consumer C 0 0 0 1 

As shown in Fig. 10, an n-foldable folding logic can 
be constructed using only basic folding units. An obvi- 
ous advantage of this is its excellent scalability. Each 
folding unit has three inputs and three outputs. They 
are: 
Inputs: 
(1) 4-bit POC, bus from instruction decoder or previ- 
ous folding unit for instructionN type bits. 
(2) 4-bit POCN+, bus from instruction decoder for 

(3) One continue line to indicate the current folding sta- 
tus CIE as shown in Fig. 2. 

type bits. 
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Outputs: 
(1) Foldable line to indicate whether the input instruc- 
tions are foldable or not. 
(2) 4-bit POCcombjned bus representing the type of the 
instruction resulting from folding, which is to be 
checked for further foldability. 
(3) One continue line to indicate if the resulting instruc- 
tion can be checked for further foldability with the fol- 
lowing instruction. 

... 

*.. 
Fig. 10 Scalublejblding logic architecture 

L 

0 continuei, 
I 

Fig. 11 Schematic view of the folding unii 

Fig. 11 shows the gate-level implementation of the 
folding unit. As shown in Fig. 11, the POCcombined will 
equal POCN+I if the first input instruction is of P type 
and the second input instruction is not of 0, type. 
Otherwise, the POC, will be selected. And the foldable 
and continue signal can be generated using the follow- 
ing formula: 
foldable = (POCN [3] . (POCN+1 [l] + POCN+I [2]) + 
P0CNtl [O] . (POC, [3] + POC, [2])) . continue, 
continueout = (POC, [3] . (POCN+l [3] + POCN+l [2] + 
POC,+I [l]) + POCN+l [O] . POC, [2]) . continue, 
We use negative logic devices to implement the above 
formula. This is necessary if a very high clock fre- 
quency is required. 

5.2 Delay calculation 
To calculate the timing overhead of introducing the 
folding circuit, we used the Cadence Verilog-XL v2.2.1 
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and the Verilog Delay Calcul v4.12 to calculate its 
delay times. The sta ary used is the COM- 
PASS 0 . 6 ~  cell library with a SPTM (single poly tri- 

In this library, there are two 
performance (HP) and high 

density (HD). To p he delay more accurately, the 
delay calculation uses the more accurate Verilog ISM 
(input slope model) model with both types of cells 
instead of the linear model. The delay calculation envi- 
ronment is shown in Table 7. The results for both HP 

s are shown in Fig. 12. If we are to 
implement the 4-foldable strategy, the corresponding 
delay is 3.62ns or 6.74ns for HP or HD core cells, 
respectively. Assuming that the other delay time for 
wiring, gates and latches is less than 6ns, then the 4- 
foldable strategy can be implemented to run at a clock 
speed of 100MHz. 

Table 7: Environment for Verilog delay calculation 

Options HP core cells HD core cells 

Calculation mode 

Library name 

Placement sites 

Process 

voltage 

Tempera t u re 

Iteration slew precision 

Rise slew time 

Fall slew t ime 

estimate 

cb60hp231 d 

1000 

typical 

5.000 

25.000 

0.010 

0.500 

0.500 

estimate 

cb60hd231d 

1000 

typical 

5.000 

25.000 

0.u10 

0.500 

0.500 

25 r 23.06 

;fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold 
m a .  number of foldable instructions 

Fig. 12 
-0- HP core cells 
-A- HD core cells 

Deluy time for folding circuits with various degree offoldubrbty 

6 Conclusion 

In this paper, we have focused on solving an inherent 
problem of the stack machine that handles instruction 
level parallelism; the true data dependency. A method 
to deal with this problem, stack operations folding, was 
presented. A generalised stack operations folding 
model, the POC model, was also introduced. Various 

folding strategies based on this POC model were pro- 
posed and evaluated. Simulation results show that 2-, 
3-, 4-, and n-foldable strategies can eliminate 319’0, 
41%, 43%, and 44% of stack operations in the entire 
Java program trace files, respectively. Compared with 
the theoretically perfect folding that can eliminate 44% 
of such stack operations, the 2- to 4-foldable strategies 
can achieve 70%, 94% and 98% efficiencies with much 
less hardware cost. If we translate the instruction 
counts into clock cycles, the corresponding speedups 
are 1.22, 1.32 and 1.34, respectively, as compared to a 
traditional Java stack machine without stack opera- 
tions folding support. 

The proper decoder width is also studied based on 
the many folding strategies of various degrees. Simula- 
tion data shows that the 4-foldable strategy is a good 
choice if an 8-byte decoder width is used. A sample 
folding unit design based on the POC model is then 
presented, and delay calculation shows that this folding 
mechanism can viably be run at l00MHz when 
designed with 0 . 6 ~  CMOS standard cells. 

In this study, we have presented the performance 
analysis of stack operations folding, the POC model, 
the POC based folding algorithm, and the folding cir- 
cuit implementation. Simulation results show that the 
POC based stack operations folding design is very cost 
effective due to its simplicity. 
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