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In modal identification, the use of different actuator and sensor locations results in
different frequency response functions (FRFs) and consequently affects the modes shown
on the FRF plots. This paper presents a method of placing sensors and actuators to obtain
reliable measured data for estimating the modal parameters. The method is based on
proposed controllability and observability measures for second-order linear systems, which
are suitable for identification purposes and have a physical interpretation on the FRF plots.
These measures, combined with an objective criterion, provide a method for ranking the
effectiveness of alternative actuator and sensor distributions and hence a rational basis for
choosing their locations. The method is applied successfully to the selection of actuator and
sensor locations for a set of target modes for the structural characterisation of a simulated
system. Finally, an iterative procedure for performing modal surveys is proposed.
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1. INTRODUCTION

The aim of modal analysis or testing is to estimate and identify the modal parameters
(natural frequencies, damping values, or mode shapes) of a mechanical structure. The
model identified by modal testing allows one to predict, monitor, and control the real
structure. It also allows the analytical dynamic model to be optimised so as to improve
the dynamic behaviour [1]. All these applications depend greatly on the accuracy of the
identified model. In order to increase the accuracy of the estimated modal parameters from
frequency response functions (FRFs), it is necessary to excite the interested modes to a
sufficient level by some form of input. The form of input is sometimes determined by test
and analysis methods, e.g. sinusoids used in frequency response analysis and step functions
and impulses in transient analysis. Although different forms of input influence the response
of the system, the system impulse FRFs are fixed and independent of the type of input
once the response and the input locations and their directions are determined. Some of
the most frequently recurring questions in this regard deal with the advance determination
of the number of excitations, their spatial locations, and the number of measurements and
their locations, so that the quality and quantity of the information derived from these
measurements can be maximised.

The driving point residue (DPR) method was proposed by Kientzy and Richardson [2].
A driving point FRF is an FRF whose response and excitation degrees of freedom (dofs)
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are the same. It always has a resonance–antiresonance pattern [3], and the number of
excited modes can be checked easily. Considering the residue and natural frequency
together for each mode represents a great breakthrough in the problem of the sensor and
actuator placement. This method is simple to use; however, it restricts the placement to
the driving point, and this approach is not general enough when the number of sensors
required is greater than the number of actuators or when the sensor and actuator are
allowed to be non-collocated.

Maximum kinetic energy (MKE) was used by Chung and Moore [4] to place acceleration
sensors according to the modal kinetic energy contribution of each dof. If the objective
function is examined, it appears that is loses frequency information. The lack of temporal
information (time or frequency) makes it unsuitable for comparison of multiple target
modes and for other sensor types. When different locations are compared according to a
certain mode (i.e. one target mode), the frequency component can be ignored. But when
dofs which contain several modes are compared, the individual contributions from each
mode at different frequencies need to be considered.

Niedbal and Klusowski [5] focused on force tuning for the phase resonant method but
also discussed the placement of the exciters for the phase separation method. They defined
the object function as the condition number, which should be as large as possible, of the
target modal partition matrix and found the optimal value by an exhaustive search. The
idea of maximising the condition number is equivalent to that of maximising the input
force or energy. One problem with this method is that the number of actuators can only
be reduced to the number of target modes. In most situations this restriction is too
stringent to perform a modal survey.

Kammer [6] proposed a method called the effective independence method, to select the
sensor locations. This method finds the optimal solution in an iterative manner instead of
using an intractable exhaustive search algorithm. The original modal partition is very
similar to that adopted by [5] for actuator selection. The basic idea is to reduce the analytic
model to a best test analysis model (TAM), whose modal vectors are spatially independent,
and can further be used to modfiy the original FEM by using test analysis correlation
techniques. The number of sensors cannot be reduced to less than the number of the target
modes, however, nor is any information provided about how to place the actuators. In
fact, this method resembles a model order reduction method more than a sensor–actuator
placement method.

Some papers have examined the sensor–actuator placement for control purposes; see,
e.g. the survey in [7]. A degree of controllability definition was proposed by Viswanathan
et al. [8] to select the number and locations of the control actuators. In order to control
a structure’s behaviour, one usually wishes to monitor or depress the response of the
system, but for identification purposes, the response needs to be maximised to obtain a
good SNR. Therefore, the suitability of controllability and observability measures for
various purposes must be examined closely.

This paper proposes a method of placing sensors and actuators to obtain reliable
measured data for estimating the modal parameters. The method is based on the proposed
controllability and observability measures for second-order linear systems, which are
suitable for identification purposes and have a physical interpretation on the FRF plots.
The influence of different types of sensors is also accounted for in the proposed measures.
When linked with an objective criterion, these measures provide us with a method for
ranking the effectiveness of alternative actuator and sensor distributions and hence a
rational basis for choosing actuator and sensor locations. A priori information from FEA
(finite element analysis) is necessary for initialisation. Compared with other methods by
simulation, the proposed method appears to be very promising.
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2. THEORETICAL FORMULATION

2.1.   

The formal definition of controllability for linear time-invariant systems is given in state
space [9]. Consider a first-order system defined by

ẋ=Ax+Bu

y=Cx (1)

where x is an 2n×1 state vector, u is an m×1 input vector, y is a p×1 output vector,
A is a 2n×2n state matrix, B is a 2n×m input coefficient matrix, and C is a p×2n output
coefficient matrix. The standard check for the controllability of a system is a rank test of
a controllable matrix, defined by

Wc =[B AB A2B . . . A2n−1B]. (2)

If the rank of Wc is 2n, i.e. full rank, the system is state controllable.
State observability is a dual concept to state controllability. A system is observable if

information about each of the state variables can be determined by examining the output
(response) of the system. The observability matrix is defined by
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Wo = ···
. (3)

CA2n−1

If the rank of Wo is 2n, the system is state observable.
Although these rank-check conditions are conceptually simple, they may create

computational difficulties for systems with many dofs. Therefore, other methods have been
proposed to check these two system properties [10–12]. Note that there is no way to know
how easily an actuator can control or excite each mode of the system even if the system
is completely controllable. The similar statement concerning the response of the system
is also true regarding observability.

2.2.      

For identification purposes, the measures or degrees of controllability and observability
defined here must meet the following criteria:

(1) the measure of controllability should be zero when the system is uncontrollable; the
measure of observability should be zero when the system is unobservable;

(2) the measures must consider the dependence on total time T or frequency;
(3) the measure of controllability must be independent of the magnitude of input and

the measure of observability must be independent of the gain of output;
(4) the joint modal controllability and observability can be used as an indication of the

success of the identification process;
(5) ordinarily, the results of parameters are defined in second-order form. Thus these

measures should be defined in terms of a second-order system rather than a
first-order state space system.

Assume the second-order vector differential equations are of the form

Mẍ+Dẋ+Kx=Bf (4)
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where x$Rn, f$Rm, y$Rp, M, D, and K are n× n matrices B, is an n× n matrix, and C
and T are p× n matrices. Modal testing usually uses the same sensor type, so without loss
of generality we can let T be a zero matrix. For modal parameter estimation, modal
coordinates are naturally the best choice for measuring controllability and observability.
This study is interested in how strongly the modes are excited defined in the modal
coordinates, and in what information about the target modes contained in the system
response. When the system equation is transformed into the modal coordinates, if the
damping is proportional, the equation will be decoupled.

From equation (4), the FRF between the jth sensor and ith actuator can be represented
as

hji (v)= s
n

r=1

cj8r8
T
r bi

mrv
2
nr [(1− v̄2

r )+ j2zrv̄r ]

= s
n

r=1

8jr8ir

mrv
2
nr [(1− v̄2

r )+ j2zrv̄r ]
(5)

where

v̄r =v/vnr r=1, 2, . . . , n (6)

and zr and vnr are the damping ratio and natural frequency of the rth mode, respectively.
bi is ith column vector of B, cj is jth row vector of C, and 8jr and 8ir are the jth and ith
elements of modal vector 8r respectively, where modal vector 8r is the rth column vector
of modal matrix F.

The FRF matrix can be represented as

H(v)= s
n

r=1 0 8r8
T
r

ar (jv− lr )
+

8*r 8*T
r

a*r (jv− l*r )1
= s

n

r=1 0 Ar

jv− lr
+

A*r
jv− l*r 1 (7)

where

lr =−zrvnr + jvnrz1− z2
r (8)

ar = j2mrvnrz1− z2
r (9)

a*r =−j2mrvnrz1− z2
r (10)

and Ar is the rth residue matrix, in which the jith element is Ajir =8jr8ir /mrvnr ,
r=1, 2, . . . , n. The residue is an invariant property and will not change under any
coordinate transformation [13].

From the definitions of the controllability and observability matrices, it can be seen that
the position selection matrices B and C are important in the transfer functions, or the
FRFs. When the system is transformed to modal space and decoupled into many single
dof sub-systems, each mode (sdof sub-system) behaves in its own way according to its
parameters (natural frequency and damping ratio). The energy exerted by all actuators is
divided into several small parts and then amplified (or attenuated) by matrix FTB before
being fed into several sdof sub-systems. Each sdof sub-system can be regarded as a
band-pass filter. The outputs from all sdof sub-systems are amplified (or attenuated) by
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matrix CF and then transferred to different locations for measurement. In this way, each
actuator (or sensor) location will influence all sdof sub-systems with different weights.

Hamdan and Nayfeh [14] proposed measures of modal controllability and observability
and discussed the influence of different input and output gain matrices on the state
feedback control systems. The matrix of these measures is defined as cos U, and its rith
element is

cos Uri =
=8T

r bi =
>8r>>bi>

. (11)

Similarly, the matrix of modal observability measures is denoted by cos C, and its jrth
entry is

cos Cjr =
=cj8r =

>cj>>8r>
(12)

where >bi>, >cj>, and >8r> are the two-norms of bi , cj , and 8r , respectively.
If one focuses on the issue of actuator and sensor placement, all the actuator and sensor

gains are equally weighted and have no effect on the determination of location. In this case,
all elements of cj will be 0 except for the jth element, which is 1. Similarly, all elements
of bi will be 0 except for the ith element, which is 1. In this way, cj8r and 8T

r bi become
8jr and 8ir , where 8jr and 8ir are the jth and ith elements of modal vector 8r , respectively,
and the norms of cj and bi are 1. cos Uri and cos Cjr are the indices of the controllability
and observability for the rth mode. Although these definitions have some drawbacks as
discussed later, for comparison with the proposed method, they are adopted to choose the
best locations of sensors and actuators by selecting the maximum values defined by
equations (11) and (12). Henceforth, this method is refered to as the COMC method
(controllability and observability measures for control purpose).

From equation (5) it is known that the FRF involves the modal controllability and
observability definition given above, but the contribution of the joint measure (sometimes
called the output controllability) is more important than those of the individual measures.
Examining equations (11) and (12) and (5), one finds that the product of equations (11)
and (12) as the joint measure of modal controllability and observability does not depict
the input–output relationship (FRF) completely, since equation (5) shows that the FRF
is the summation of many modal responses which are related to their modal frequencies.
When identifying multiple target modes, all measures will be summed up for comparison
to find the best sensor–actuator pair. Ignoring the frequency information makes these
measures unsuitable for identification purposes (i.e. finding natural frequencies and
damping ratios by curve fitting). Specifically, these measures lose frequency information,
and the lack of frequency information makes them unsuitable for comparison of multiple
target modes. Therefore, in modal testing the indices should be redefined to determine
actuator and sensor locations.

2.3.        

    

From equation (4), the relation between the rth modal displacement qr and the force
exerted by the ith actuator (fi ) can be derived as follows:

qr

fi
=

8T
r bi

mrv
2
nr [(1− v̄2

r )+ j2zrv̄r ]
. (13)
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Similarly, the relation between the jth sensor output yj and the rth modal displacement
qr can be derived as follows:

yj

qr
= cj8r (14)

First, consider the case where the damping effect is neglected, which is reasonable since
the damping is generally ignored in FEA in order to simplify the computations and there
is no reliable damping information before testing. For such a case, if one regards the
pre-amplifying effects before energy enters the sdof sub-systems as modal controllability
and the post-amplifying effects before the energy is transferred to the sensors as modal
observability, the modal controllability cntri , observability obsjr , and the joint measure of
modal controllability and observability obsjrcntri for the rth mode can be defined as follows:

cntri = b 8T
r bi

mrv
2
nrb= b8T

r bi

kr b (15)

obsjr = =cj8r = (16)

obsjrcntri = bcj8r8
T
r bi

mrv
2
nr b (17)

or

obsjrcntri = bcj8r8
T
r bi

v2
nr b when mr =1 (18)

In light of equation (13), equation (15) can be regarded as the gain between the actuator
and modal displacement. This measure tells us how strongly the energy is transferred into
some sdof sub-systems. By equation (14), equation (16) can be regarded as the gain
between the sensor and modal displacement. This measure indicates to what extent energy
is observed through some sdof sub-systems. The product of equations (15) and (16) yields
equation (17) as the joint measure of modal controllability and observability, which
directly relates to the FRFs in equation (5). It is obvious that cntri and obsjr will change
when the modal vector 8r is normalised by different methods [15]. In order to simplify the
notation and calculation, the unity modal mass scaling method is used (i.e.
mr =8T

r M8r =1, FTMF= I, and kr =v2
nr ), which is commonly adopted in commercial

analytic programs. Then the modal controllability can be expressed more compactly as
follows:

cntri = b8T
r bi

kr b= b8T
r bi

v2
nr b. (19)

However, the modal observability and the joint measure of modal controllability and
observability do not change no matter which scaling method is adopted. This is a useful
system property.

When information about damping is available, e.g. after one trial modal testing, the
modal controllability is redefined as follows:

cntri = b 8T
r bi

2zrv
2
nrb, mr =1, r=1, 2, . . . , n (20)
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which from equation (13) can be regarded as the gain between the actuator and modal
displacement at natural frequencies. This measure indicates how strongly the energy is
transferred into some sdof sub-systems at natural frequencies. In order to obtain a good
signal-to-noise ratio (SNR) in the frequency domain around several modal frequencies of
interest, this measure should be made as large as possible.

If different types of sensors, such as velocity sensors, are used, the FRFs then take on
a velocity/force form. The definition of modal observability for these velocity sensors
should be

obsjr = =cj8rvnr =, mr =1, r=1, 2, . . . , n (21)

and the joint measure of modal controllability and observability should be

obsjrcntri = bcj8r8
T
r bi

mrvnr b= b8jr8ir

mrvnrb (22)

or

obsjrcntri = bcj8r8
T
r bi

vnr b= b8jr8ir

vnr b mr =1. (23)

If accelerometers are used, the FRFs then take on a acceleration/force form. The
definition of modal observability for these acceleration sensors should be

obsjr = =cj8rv
2
nr =, mr =1, r=1, 2, . . . , n (24)

and the joint measure of modal controllability and observability should be

obsjrcntri = bcj8r8
T
r bi

mr b= b8jr8ir

mr b (25)

or

obsjrcntri = =cj8r8
T
r bi ==8jr8ir = mr =1. (26)

From the above definition a small value of joint measure for certain r indicates that the
response of the corresponding mode r is too small to be identified accurately, and obviously
the zero value of joint measure implies that the chosen sensor–actuator pair is either
uncontrollable or unobservable for that particular mode. Recall that the above analysis
is based on the assumption of proportional damping. Classifying structures into
proportionally and non-proportionally damped systems is necessary when estimating the
parameters of the system. In this research, FEA mode shapes information is used to place
the sensors and actuators. Often FEA supplies real mode shapes only. For sensor–actuator
placement, it makes little difference whether proportional or non-proportional damping
is used. It can be assumed that proportional damping is used to simplify the calculation
of the FRFs [16], especially when the system is lightly damped.

2.4.      

In order to employ the joint measures of modal controllability and observability defined
above to choose sensor and actuator locations, one can define the cost Q as follows:

Qjir 0 obsjrcntri = bcj8r8
T
r bi

mrv
2
nr b= b8jr8ir

mrv
2
nrb (COMI method) (27)
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where the COMI method denotes the controllability and observability measures for
identification purposes. Taking the damping ratios into consideration, from equations (16)
and (20), Qjir can be redefined as

Qjir 0 bcj8r8
T
r bi

mrzrv
2
nr b= b 8jr8ir

mrzrv
2
nrb (COMID method). (28)

Referring to Fig. 1 and the summation form of FRF hji (v) defined in equation (5), Qjir

is the approximation of magnitude at the rth resonant frequency in FRF hji (v). Each FRF
contains n values of Q. If one wishes to estimate the rth mode with sufficient accuracy,
one requires a FRF which contains a large Q value. Thus if this idea is extended to include
several target modes, each FRF can have a simple index Pij such as

Pij =min(Qij1, Qij2, . . . , QijTM ) (29)

where TM indicates the number of target modes. Let p and m represent the candidate
number of sensors and actuators; then the number of P values is p×m. Finding the
maximum value of indices P obtains the best locations for sensor and actuator. For
example, if the largest value of P is P23, the best selection for sensors and actuators
locations would be dof 2 and 3. If the structure obeys Maxwell–Betti’s law, P32 will also
be the largest value, i.e. exchanging the locations of sensors with actuators will not affect
the P value. The object function matrix is expressed as follows:

P11 P12 · · · P1p

P21 P22
···G

G

G

K

k

G
G

G

L

l

P= ···
· · ·

. (30)

Pl1 · · · Plp

The best selection (a, b) is determined by

Pab =max (P11, P12, . . . , P21, P22, . . . , Plp ) (31)

Figure 1. Example of Qjir .
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The definition in equation (29) ensures that all target modes will be excited to a certain
level. But the level which is sufficient for successful identification depends on several
factors, such as the SNR and the capability of the estimating program, and thus depends
on the engineer’s judgement.

Another simple index can be defined as the summation of all Q values, expressed as

Pij =sum (Qij1, Qij2, . . . , QijTM ) (32)

which means that the total energy of the excited target modes will be maximised. The best
selection of actuator and sensor locations is also determined by equation (31).

If one of the target modes is not excited, i.e. it is not output controllable, then it is not
identifiable by FRF (j, i), and not all modes of interest can be identified at one time. One
can then define the index in another way:

Pij =mean(Qij1, Qij2, . . . , QijTM ) min (Qij1Qij2, . . . , QijTM ). (33)

This index considers the total energy and minimum individual energy together. In response
to various considerations, such as the capability of the estimation program, several
different indices can be devised by changing the weights of these two values.

Finally, the procedures of selecting the best sensor/actuator locations can be summarised
as follows:

(1) according to the accessibility constant, delete the impossible FRFs;
(2) according to target mode set, compute the Q value for each FRF;
(3) compute the P matrix. The component of P matirx can be defined as equations (29),

(32) or (33);
(4) according to equation (31), find the maximum component of P matrix. The

corresponding indexes a and b of the larger Pab components are the sensor/actuator
locations.

In this way, even for a large structure, the optimal solution can be found efficiently.

3. SIMULATION RESULTS

Figure 2 shows the simulated system, which has 7 dof, and the corresponding natural
frequencies and damping ratios are listed in Table 1. The NSR (noise-to-signal ratio) used

Figure 2. A lumped parameters test model. M1–7 =1 kg; K1, K2, K4, K6, K7, K8, K12 =10 000 N/m; K3, K9, K10,
K11 =20 000 N/m; K5 =5000 N/m; K13 =30 000 N/m; C1–4 =20 N/(m/s).
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T 1

Natural frequencies and damping ratios of a 7 dof lumped system

Mode 1 2 3 4 5 6 7

vn 12.5428 19.9756 26.1116 29.2773 40.276 43.0522 48.8616
zn 0.0162 0.0739 0.0349 0.0433 0.0207 0.0283 0.0745

Figure 3. Comparison of different methods for target modes 1 (Q), 2 (q).
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in all figures and tables is defined as the ratio of the standard deviation of noise to that
of the signal. The estimation is made by using an equation error method [17]. Programs
were developed by using routines of the commercial program MATLAB, especially its
signal processing toolbox [18]. In order to obtain a quantitative comparison, the estimated
modal parameters from FRFs were used to examine the effectiveness of the
sensor–actuator placement methods.

It can be found that if the target mode set contains only a single mode, the FRFs selected
by all methods are the same and give the good estimates (not shown). Figures 3–5 show
the estimated errors for identifying two target modes (1,2), (3,6), and (5,6), respectively.
In these figures, each method and its selected sensor–actuator pair are denoted together
for convenience of representation. For example, COMI3(2,6) represents that the COMI3
method was used to select sensor and actuator for the given target set, and the selected
positions of sensor and actuator are at dof 2 and dof 6, respectively. The DPR and MKE
shown here denote the methods proposed by Kientzy [2] and Chung [4]. The COMI1
to COMI3 methods denote that different indices, Pij =sum (Qij1, Qij2, . . . , QijTM ),
Pij =min (Qij1, Qij2, . . . , QijTM ), or Pij =mean (Qij1, Qij2, . . . , QijTM ) min (Qij1, Qij2, . . . ,
QijTM ) are used, respectively. The same denotations are used for COMID1 to COMID3
methods. From these figures, it can be seen that if target modes are excited easily, e.g.
modes (1,2), then all methods work well. For target modes (3,6), the COMI2, COMI3,
COMID2 and COMID3 methods work better than the others. The COMI1 and COMID1
methods are not suitable for one-step identification; however, one mode (the third) can
be estimated accurately. Some combinations of two target modes do not have sufficiently
large responses simultaneously at any FRFs, e.g. modes (5,6), and it is difficult to find a
method that can identify any two target modes at one time. In this situation, the number
of target modes must be reduced and each mode identified individually.

When more than two modes are to be identified simultaneously, the results from
different methods become more complicated. The case shown in Figs 6 and 7 illustrates
different FRFs selected by different methods. No method obtained accurate modal
parameters for all target modes. If some of the target modes are estimated accurately, it
is regarded as successful sensor–actuator placement. COMI and COMID methods are
found to work better than the other methods, and the COMI1 and COMID1 methods,
provide better results than do the COMI2 and COMID2 methods. The results of the
COMI3 and COMID3 methods fall between the above two indices.

4. A SCHEME FOR MODAL SURVEY

When performing a modal survey, one wants to identify all possible modes shown in
FEA. Since the index P, defined as the summation of Q values (COMI1 or COMID1
methods), ensures that accurate parameters are obtained at least for one target mode, it
is selected for the modal survey. To illustrate the proposed scheme for modal survey,
consider Fig. 8. The procedure for identifying a simulated system is as follows.

(1) First choose the target modes 1, 2, 3, and 4, which are about half of the total number
of modes. By using the COMI1 method (because damping ratio information is not
available), the best selection is found to be (2,2). Since the mode 4 in FRF(2,2) in
Fig. 9 is missing, so it must be included in the next target set (since a priori
information, i.e. information on mode shapes and natural frequencies, is available
from FEA, one can judge which mode is missing).

(2) Select modes 4, 5, 6 and 7 as the target set. If one uses the COMI1 method again,
the best pair is (5,5). Modes 5 and 7 in FRF(5,5) are not clearly observed.



1
Error of estimated damping ratios (%)

42 30

DPR(5,5)
3.8869

3.1519

MKE(4,4) 0.4831 22.6361

COMC(4,4) 0.4831 22.6361

COMI1(1,1)
false

0.1353

COMID1(1,1)
false

0.1353

COMI2(4,5) 1.7668
2.0057

COMID2(4,5) 1.7668
2.0057

COMI3(4,5) 1.7668
2.0057

COMID3(4,5) 1.7668
2.0057

0.3
Error of estimated natural frequencies (%)

0.60.4 0.50.20.10

DPR(5,5) 0.0084
0.2099

MKE(4,4) 0.0762
0.5641

COMC(4,4) 0.0762
0.5641

COMI1(1,1)
false

0.026

COMID1(1,1)
false

0.026

COMI2(4,5) 0.01649
0.1076

COMID2(4,5) 0.01649
0.1076

COMI3(4,5) 0.01649
0.1076

COMID3(4,5) 0.01649
0.1076

.-.   .-. 652

(3) Modes 5 and 7 now become the target modes for this estimation step. The best result
is found to be FRF(3,3) and mode 7 is still not obvious.

(4) The best FRF for estimating mode 7 is FRF(7,7). All modes have been estimated at
this point. The results are shown in Table 2.

(5) Now switch the sensor-actuator placement method to COMID1 by using the damping
values just identified and repeat the estimation process from step 1. The first selection
is FRF(6,6). Although the target modes are 1, 2, 3, and 4, the modes identified are
1, 2, and 4.

Figure 4. Comparison of different methods for target modes 3 (q), 6 (Q).
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Figure 5. Comparison of different methods for target mode 5 ( ).

(6) Now the target modes change to 3, 5, 6, and 7. The best selection is FRF(1,1); but
only modes 3 and 5 are identified.

(7) The target modes now are 6 and 7. FRF(4,4) is chosen and mode 6 is estimated, but
mode 7 is missing. Thus this estimation is similar to an estimation of a single target
mode.

(8) Treating the single mode 7 as the target mode, one finds the best selection is FRF(7,7),
which is the same as before. Thus there is no need to estimate this mode again.
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Figure 6. Comparison of different methods for target modes 1 ( ), 2 (Q), 4 (;), 5 ( ) (natural frequencies).

(9) All estimated parameters obtained by the COMI1 and COMID1 methods are listed
in Table 2. The differences between them are small except for mode 2. Therefore, the
mode 2 is estimated as a single target mode and find that the best selection is
FRF(2,2).

(10) If the difference between the parameters estimated in two successive estimations is
small, one can take the mean values of the two successive estimated parameters as
the final values. When parameters are identified using the single target mode, they
should be taken directly as the final values. In this way, a better and meaningful
parameter set can be obtained. The final estimates are compared with the true values
in Table 3.

5. DISCUSSION AND CONCLUSIONS

Generally, the COMI and COMID methods yield better results than the others.
Different target mode sets and different definitions of index P produce different results.
When the number of target modes is small, the index P defined as the minimum of Q values
is recommended. On the other hand, if the number of target modes is large, taking the
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Figure 7. Comparison of different methods for target modes 1, 2, 4, 5. (damping ratios). Legend as for Fig. 6.

summation of Q values as an index is more appropriate. A compromise between the two
indices is to define (mean Q* min Q) as an index.

When the index P is defined as the summation of the Q values, if the Q value of a certain
mode in the target set is extremely large compared with the others, then the COMI and
COMID methods will degenerate into identifying that mode only. In contrast, when the
index P is defined as the minimum of the Q values, then these two placement methods
will ignore the large Q value and identify the smallest one. Thus, the former index ensures
that the parameters of at least one target mode will be obtained, and the latter index works
well if the smallest target mode Q value is not too small. When the index P is defined as
(mean Q* min Q), the COMI and COMID methods sometimes behave as when P is
defined as the summation of the Q values, and sometimes behave as when P is defined
as the minimum of Q values. It is difficult to decide which definition is better. One can
select an appropriate index P by considering the test time, instruments, and accuracy
required.

Performing a modal survey in an iterative way ensures quality of the estimated
parameters. Simulation results indicate that the COMI and COMID methods work very
well. All of the methods considered here require a priori information (mode shapes and
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natural frequencies, and sometimes the mass matrix), which can be obtained from FEA.
These a priori data are used as initial values for the iterative identification methods.

Some modes cannot be clearly observed simultaneously because they are closely coupled
or because of other structural characteristics, and thus these modes are hard to identify

Figure 8. Flow chart for modal survey.
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Figure 9. Amplitude vs frequency plot of FRFs: (a) (1,1), (b) (2,2), (c) (3,3), (d) (4,4), (e) (5,5), (f) (6,6), (g)
(7,7). NSR=1%.
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T 2

Estimates of the first and second iterations

Natural Natural Damping Damping
frequency frequency ratio ratio

(first (second Difference (first (second Difference
No. estimate) (Hz) estimate) (Hz) (%) estimate) estimate) (%)

1 12.5418 12.5403 0.012 0.0159 0.0163 2.5157
2 19.9757 19.861 0.0574 0.0731 0.0645 11.7647
3 26.1262 26.1135 0.0486 0.0354 0.0344 2.8249
4 29.301 29.3164 0.0526 0.0427 0.0455 6.5574
5 40.2453 40.2802 0.0867 0.0206 0.0205 0.4854
6 43.0104 43.0255 0.0351 0.0295 0.0286 3.0508
7 48.579 48.579 0 0.0626 0.0626 0

NSR=1%

simultaneously. For example, it is difficult to estimate modes 5 and 6 together, and there
are some modes which cannot be sufficiently excited, such as mode 7 in this simulation.
The error of the best damping ratio estimated from FRF(7,7) can be as large as 16%.

Although our simulations did not show this, it is necessary to modify the object function
for different types of sensors. Furthermore, it is possible to extend this study to determine
the positions of multiple sensors and actuators. Usually, fewer actuators than sensors are
needed. One way to solve the placement problem is to choose actuator and sensor locations
according to their total degrees of controllability and observability. Another way is similar
to the COMI method: to determine the best dofs for actuators and sensors, one first finds
the Q and P values and then sorts each column of the P matrix, summing the values
according to the number of sensors required.

Finally, it should be noted that this paper is not trying to perform a modal reduction,
so there is no need to perform any rank test. Usually, if a modal reduction is required,
the rank tests of the controllability and observability matrices are necessary. The larger
condition number of the reduced system indicates that more information is preserved. But
here, the aim is to get the precise structural parameters of one or a few specific modes
through limited number of sensors and actuators. The proposed measure provides us a
convenient tool in the advance determination of sensor–actuator location for modal
identification.

T 3

Final estimates compared with the true values

Natural Natural Damping Damping
frequency frequency ratio ratio

No. (theoretical) (Hz) (estimated) (Hz) Error (%) (theoretical) (estimated) Error (%)

1 12.5428 12.5411 0.0136 0.0162 0.0162 0
2 19.9756 19.9757 0.0005 0.0739 0.0731 1.0825
3 26.1116 26.1199 0.0318 0.0349 0.0349 0
4 29.2773 29.3087 0.1073 0.0433 0.0441 1.8476
5 40.276 40.2628 0.0328 0.0207 0.0206 0.4831
6 43.0522 43.0255 0.062 0.0283 0.0286 1.0601
7 48.8616 48.579 0.5784 0.0745 0.0626 15.8732

NSR=1%
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