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Abstract-To achieve smooth display of MPEG-11 
programs in the residential cable TV networks, we 
present a timestamp-sensitive scheduling algorithm 
for MPEG-XI multiplexers. The deadline-driven 
scheduler maintains, for each program stream, a 
counter and a timestamp to record and determine 
how many Transport Stream (TS) packets should be 
transmitted before the current scheduling cycle ends. 
The decoding timestamp (DTS) of TS packets is used 
to update the counter in order to prevent deadline 
violation. This algorithm is compared numerically 
with the timestamp-insensitive algorithm which runs 
constant-bit-rate (CBR) scheduling. The trace-driven 
simulation shows that the deadline violation of our 
timestamp-sensitive scheduling is much lower than 
CBR’s and well controlled for programs with various 
degrees of burstiness. We also show that the 
algorithm can be further improved by adding a 
scheme to prevent buffer underflow and overflow at 
multiplexers and set-top-boxes, respectively. 
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1. Introduction 
In digital video distribution systems, such as Video- 

On-Demand (VOD) [ 11 systems, the video programs are 
compressed into MPEG-I1 files which are variable-bit- 
rate (VBR) streams [2][3]. When the VBR streams are 
transmitted using the CBR service, either delay jitter or 
bandwidth wastage may occur. Delay jitter causes poor 
quality of program display. In order to prevent jitter, 
VBR streams can be multiplexed to share the fixed 
channel bandwidth, where each stream is dynamically 
allocated demanded bandwidth. This method, called 
statistical multiplexing [4][5][6], enables VBR streams 
to effectively share channel bandwidth because bit rates 
of the VBR streams are likely to compensate each other. 
However, the total bit rate may still exceed the channel 
capacity at some points in time, which may result in 
deadline violation and packet loss. 

Some previous works solve this problem by the 
adaptive technique, called source rate control, to 
feedback control the output rate of VBR encoders 
[5][7][8][9]. An MPEG encoder can control, according 

to the feedback from the network, its output rate by 
setting the quantizer scale in the slice header and the 
optional quantizer scale in the header of each 
macroblock [lo]. A coarser setting would result in a 
lower bit rate at the expense of degraded visual quality. 
Additionally, the encoder can also lower its output rate 
by discarding some of the high-frequency discrete- 
cosine-transform (DCT) coefficients. The schemes to 
reduce the output rate of an encoder discard some 
compressed information and are said to be lossy. This 
may result in visible artifacts in the decoded video. 

The deadline violation and packet loss usually 
happens when many encoders output the intraframe 
compressed frames with high bit rates to the multiplexer 
at the same time and the total output bit rate exceeds the 
channel capacity. There are methods to reduce deadline 
violation and packet loss by transmitting the smaller 
interframe compressed frames in a shorter time, i.e. at a 
higher bit rate, and transmitting the larger intrafranie 
compressed frames in a longer time, i.e. at a lower bit 
rate. This is called smoothing [3]. By smoothing the 
VBR MPEG compressed video, it does not need to 
discard compressed information. Therefore, it is lossless 
smoothing. Lam et a1 proposed an algorithm for lossless 
smoothing of MPEG video in [3]. The algorithm is 
designed to satisfy a delay bound, D, which is a pre- 
specified parameter. The algorithm is characterized by 
two other parameters, K, the number of complete 
pictures buffered in the queue before the multiplexer can 
begin sending the next picture, and H, a lookahead 
interval for lowering the bit rate burstiness. The 
objective of this lossless algorithm is to transmit each 
picture in the same lookahead interval at approximately 
the same rate, while ensuring that the buffering delay 
introduced by the algorithm is bounded by D for every 
picture. 

Although the lossless algorithm can achieve good 
smoothing performance, it only focuses on smoothing 
an individual compressed video stream. It does not 
consider the situation where many VBR streams are 
transmitted in a channel with fixed bandwidth. In this 
paper, we consider the situation that an MPEG-I1 
multiplexer in a cable TV network multiplexes multiple 
VBR MPEG-I1 streams. We design a timestamp-sensitive 
scheduling algorithm to smooth input streams, without 
source rate control which may degrade the video quality, 
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in order to prevent deadline violation and packet loss. 
Our algorithm takes the advantages of statistical 
multiplexing and lossless smoothing. The decoding 
timestamp (DTS) of TS packets are used to determine 
how long packets can be buffered at the multiplexer. 
When the total bit rate exceeds the channel capacity, the 
scheduler in the multiplexer may transmit the TS packets 
whose deadlines are close by, while delaying the others. 
By a trace-driven simulation, it is demonstrated that our 
algorithm can achieve significantly lower delay, i.e. 
deadline violation probability, and delay jitter than the 
timestamp-insensitive CBR scheduling algorithm, 

In [4], two methodologies, look-ahead and feedback, 
used for real-time rate control are presented. The look- 
ahead approach anticipates the bit rate that will be 
required by an encoder for a specific frame, but it needs 
preprocessing to compute the statistics to guide the 
allocation. The feedback approach uses previously 
collected statistics from the encoder to decide how many 
bits should be allocated to the incoming frame. The 
feedback approach does not need a preprocessor like the 
look-ahead approach, but it cannot react as fast as the 
look-ahead approach to changes in scene complexity. 
Our algorithm decides how many bits to be allocated to 
each input stream by checking the timestamp in real time. 
It does not need a preprocessor like the look-ahead 
approach in [4]. However, it still can precisely decide the 
bandwidth actually needed by the individual streams, 
which cannot be achieved by the feedback approach in 

The rest of the paper is organized as follows. Section 
2 gives a background on timestamps and packet formats 
in MPEG-I1 streams. The timestamp-insensitive CBR 
scheduling algorithm and the timestamp-sensitive 
scheduling algorithm are presented in section 3 .  
Numerical results are given in section 4. Finally, section 
5 concludes the paper. 

[41. 

2. MPEG-I1 system layer specification 
The ISO/IEC 138 18 specification [lo][ 1 I ]  is divided 

into two layers. One is the compression layer which 
includes video and audio parts. The other is the system 
layer. The compression layer focuses on how to 
compress the original video and audio data and specifies 
the syntax to represent the compressed data. The system 
layer addresses the combining of one or more elementary 
streams of video and audio, as well as other data. Into 
single or multiple streams which are suitable for storage 
or transmission. It specifies syntactical and semantic 
rules and provides information to enable synchronized 
decoding and presentation of multiplexed audio and 
video data. In this work, we only need the information of 
the system layer to develop our scheduling algorithm. 

The MPEG-I1 system layer specifies two forms of 
system streams. One is Transport Stream (TS), another is 
Program Stream (PS). Our algorithm is designed for TS. 

Both kinds of streams multiplex elementary streams and 
are individually optimized for a different set of 
applications. The elementary stream is a generic form for 
one of the coded video, coded audio or other coded bit 
streams in Packetized Elementary Stream (PES) packets. 
Transport streams are tailored for communicating or 
storing one or more programs of coded data in 
environments in which significant errors may occur, 
while program streams are ailored for communicating or 
storing one program of coded data in environments 
where errors are very unlikely. Both streams provide the 
coding syntax which is necessary and sufficient to 
synchronize the decoding and presentation of the video 
and audio information. The syntax uses three timestamps, 
including Decoding Time Stamp (DTS) and Presentation 
Time Stamp (PTS), which concern the decoding and 
presentation of audio and visual data, and Program Clock 
Reference (PCR) or System Clock Reference (SCR), 
which concerns the delivery of the data stream itself. 

hogram 
SlSEam - 

Packetizer 

Fig. 1.  Simplified overview of MPEG-I1 system stream [l 11 

Fig. 1 illustrates how the MPEG-I1 system stream is 
constructed from the visual and audio data. The visual 
and audio data are individually packetized to elementary 
streams which consist of PES packets of variable sizes. 
The packetizers also stamp DTS and PTS onto PES 
packets. The PES packets of an elementary stream are 
further divided into smaller Transport Stream (TS) 
packets of fixed 188 bytes with a specific PID ( Program 
ID) value which appears in the TS header. Note that all 
TS packets of the same elementary stream have the same 
PID value. TS packets of different elementary streams 
have different PID values. The TS or PS multiplexer then 
multiplexes the audio and video elementary streams 
according to the data rates they need. 

However, the multiplexer in the VOD system, as 
shown in Fig. 2,  may be more complicated. It may 
contain two phases of multiplexers. The first phase 
multiplexer, as mentioned above, is responsible of 
multiplexing several elementary streams of a MPEG-I1 
program into a single-program transport stream. The 
second phase multiplexer is responsible of multiplexing 
several MPEG-I1 programs and private data service into 



338 

a transport stream. The input streams of the second phase 
multiplexer can be either produced in real time by the 
first phase multiplexer preceded by a real-time MPEG-I1 
encoder, or produced off-line beforehand and transmitted 
on-demand to the second phase multiplexer when 
subscribed. Our scheduling algorithm is to be applied to 
the second phase multiplexer. 

Packetized single program 
Elementary transpofi Streams 
Stream with some meta data 

Packetized 
Elementaly 
Stream 

\ 
multiple MPEG-II programs 

b 

/ 

Fig. 2. Two-phase multiplexer [12] 

3, Scheduling algorithms 
We now present two types of scheduling algorithms : 

timestamp-insensitive and timestamp-sensitive. The 
former does not look into the timestamps in TS packets, 
while the latter does. 

A. Timestamp-insensitive CBR scheduling 
algorithm 

Stream 1 

+ ~ , ! I 1  '4 
\ 
\ Stream 2 

Stream 
+ 

Fig. 3. The  architecture of the CBR scheduling algorithm 

algorithm. Two variables MwcRate[i] and TokenCount[i] 
are maintained for each input stream i. The scheduling 
algorithm consists of two parts which are Initialization 
and Scheduler. 

Initialization 
Before a transport stream i enters the multiplexer, the 

second phase multiplexer needs to initialize MuxRate[i], 
i = 1 ..N, where N is the number of streams. The MwcRate 
is the meta data from the first phase multiplexer. The 
counter TokenCount[i] is then initialized as MuxRate[i], i 
= 1..N. Note that MuxRate[i] is a constant bit rate 
allocated to stream i, i = 1 ..N. 

Scheduler 

Initialization : 

Set I = { 1,2, . ,N } , 
For each new input stream r E I 
{ 

Set MuxRate[r] to the value from the first phase multiplexer , 
TokenCount[i] = MuxRate[r] ; 

1 

Scheduler : 

Find J = { J } such that TokenCountb] = Max 
2EI 

(TokenCount[r]) , 
FOrJ E J 
{ 

TokenCountb] = TokenCountb] - 1 , 
Transmit one TS packet for stream] , 
If ( TokenCount[z] < 1) for all I E I 

TokenCount[r] = TokenCount[z] + MuxRate[r] , 
1 
Go back to the beginning of step 2 , 

Fig. 4. Timestamp-insensitive CBR scheduling algorithm 

Fig. 4 is the timestamp-insensitive CBR scheduling 
algorithm. After initializing MwcRate[i] and 
TokenCount[i], i = I..N, in each iteration, we find G} 
such that TokenCount[i] is the maximum among all 
TokenCount[i], i = l..N. Note that there might be 
multiple counters with the same values. For each stream], 
TokenCountb] is deducted by one and the multiplexer 
transmits one TS packet. If now all the counters have 
values smaller than one, the counters are wrapped back 
by adding their MuxRate respectively. 

In the VOD systems, the timestamp-insensitive CBR 
scheduling algorithm may be adopted to multiplex 
MPEG-I1 variable-bit-rate (VBR) video programs to 
simplify bandwidth allocation for each input stream. Fig. 
3 shows the architecture of the CBR scheduling I I I I I 
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1.5 3 4 
1.5 I 3 3 

the size of each frame. As a result, the output transport 
stream, which is also the input streams of our algorithm, 
of the first phase multiplexer is also variable-bit-rate 
with a constant frame rate and each frame consists of 
variable TS packets. 

1.5 
1.5 
0.5 

2 2 
1 1 
1 1 

I 0.5 0 0 

Fig. 5. An example run of the CBR scheduling algorithm [ 121 

Second cycle 

An example run is given in Fig. 5 to illustrate how the 
multiplexing method works. We assume that the output 
capacity of the second phase multiplexer is 10.5 Mbps 
and the number of transport streams is 3. If the output 
capacity is larger than 10.5, the residual capacity will be 
used to transmit dummy TS packets in each iteration. 

*- 
2 3 6 Stream I 
2 3 5 
2 3 4 

+ J ri I 11r:i 

B. Timestamp-sensitive scheduling 
algorithm 

This scheduling algorithm dynamically allocates 
bandwidth to each input stream according to the statistics 
collected in real time such that all the input streams can 
share the whole capacity of the output link. Bandwidth 
sharing can be explained by the StatMux of Imedia [13] 
in Fig. 6. 

2 
2 

explosion ~ rapid pan of high detail 
L 

3 3 
2 2 

Ch. 1 v 

... ... 

1 Mbitlsec ............... 

... 

C h . 2 m .  
Ch. 3 
C? 4 

Ch. 24 

Fig. 6 .  An example of bandwidth sharing [ Source : StatMux of 
IMedia 3 [ 131 

Because the MPEG-I1 encoder compresses a video 
program at a constant frame rate, e.g. 25 frameshec, and 
outputs a coded stream with a highly variable 
instantaneous bit rate. The coded VBR stream then is 
multiplexed by the first phase multiplexer. The 
processing time of the first phase multiplexer is nearly 
constant for each input frame and the amount of header 
inserted into each input coded frame is proportional to 

Stream N L 

Fig. 7. The model of multiplexer with timestamp-sensitive 
scheduling algorithm 

Fig. 7 shows the model of the multiplexer with our 
timestamp-sensitive scheduling algorithm listed in Fig. 8. 
The algorithm has two variables, ScheduleTime[i] and 
TsCount[i] : 

ScheduleTime[i] stores the end time of current 
scheduling cycle and is initialized to be the initial time of 
input stream i plus a cycle time and increased by a cycle 
time at the beginning of each scheduling cycle. Note that 
the cycle time equals the frame period which is 0.04 sec, 
i.e. 1/25 sec, in our study. It is compared with the DTS of 
each input TS packet to decide whether the TS packet 
should be transmitted in current scheduling cycle to 
avoid deadline violation. 

TsCount[i] stores the number of TS packets that 
should be transmitted in current scheduling cycle. The 
variable is increased by one when an incoming TS 
packet needs to be transmitted in current scheduling 
cycle, and it is decreased by one when the scheduler 
transmits a TS packet from stream i. 

The scheduling algorithm consists of three parts, i.e. 
Initialization(), DTScheck(), and Scheduler(). 
Initialization() runs before a new input stream is served 
by the multiplexer. Scheduler() runs at the beginning of 
each scheduling cycle. DTS-checkO is invoked every 
time a TS packet arrives to the multiplexer. 

DTS-checkO is used to update TsCount[i]. For stream 
i, when a TS packet arrives, DTS-checkO checks the 
DTS of the TS packet. If the DTS is smaller than or 
equal to ScheduleTime[i], TsCount[i] is increased by one. 
Otherwise, TsCount[i] remains unchanged. 

Scheduler() is responsible of allocating bandwidth to 
each stream. At the beginning of each scheduling cycle, 
it calculates the total urgent bandwidth demand, 
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N 

r=l 
TsCount[i]. Then for each stream i, TsCount[i] is 

copied to a temporary working variable Count[i], and 
then reset to zero; meanwhile, ScheduleTzme[i] is 
increased by a cycle time. If the total urgent bandwidth 
demand exceeds the channel capacity, W T S ,  deadline 
violation will occur and Scheduler() runs iteratively to 
schedule and transmit TS packets. In each iteration, it 
first finds the set S = { i }  where stream i has non-zero 
Count[i] and calculates the average residual bandwidth, 
AvgTs, which equals to the total residual bandwidth, i.e. 
ResTs, divided by the size, n, of 5'. Then for each stream I ,  

if Count[i] is more than AvgB, the multiplexer transmits 
AvgTs TS packets and Count[i] is deducted by AvgTs; 
otherwise, the multiplexer transmits only Count[i] TS 
packets and Count[i] is deducted to zero. In the latter 
case, the residual bandwidth from stream I ,  AvgTs - 
Count[i], is added back to ResB for scheduling in the 
next iteration. This process runs until ResTs equals to 
zero. The residual value in Count[i] for each stream i is 
then added back to TsCount[i]. However, if the total 
urgent bandwidth demand is less than or equal to the 
channel capacity, the number of TS packets each stream 
can transmit is not only Count[i] but also extra Bonus, 
which equals the total residual bandwidth, ResTs, divided 
by the number of streams, N. In that case, TsCount[i], for 
stream i, is updated accordingly to reflect the extra 
packets being sent ahead of their schedules in this cycle. 

[nitialization() 
I 

For each new input stream i 
{ 

ScheduleTime[r] = Initial timestamp of stream I t 
cycle time ; 

TsCount[r] = 0 ; 
} 

I 

DTS-check() 
{ 

Upon arrival of a TS packet of stream I, I = 1, ,N 
{ 

Check DTS of the incoming TS packet, 
If ( DTS <= Schedu/eT"[r] ) then 

TsCount[z] f+ , 
If ( DTS > Schedu/eTime[i] ) then 

TsCount[i] remains unchanged , 
I 

1 

Scheduler() 
{ 

CycleTime = frame period , 

MAXTS = 

Count[z] = TsCount[r], 1 = 1, ,N , 
TsCount[i] = 0, I = 1, ,N , 

N * average bit rate of the input progiain * CycleTiine 

8*lSS 

ScheduleTime[i] = ScheduleTime[i] + CycleTime, I = l,,,,N 

If ( 
N 

r = l  
~ount[ i ]  > MAXTS ) 

( 
1. n = N ;  

S e t T =  S =  { 1,2, .. , N } ; 
ResTs = MAXTS , 

ResTs 
2. AvgTs=-; 

n 
)r each stream I, I = 1, ,N 

Transmit Min( Count[i], AvgTs ) TS 

If( Count[i] < AvgTs ) 
packets for stream 1 , 

{ 
s = s  - { I ]  , 
n = n - 1 ,  

1 

ResTs = 1 (AvgTs - Count[r]) , 

For each stream I, I = 1, .,N 
I E T-S 

Count[i] = Count[z] - Min( Count[z], 
AvgTs ) I 

3. If ( ResTs # 0 ) 
Goto step 2 , 

else 
For each stream z, z = 1, ,N 

TsCount[z] = TsCount[z] + Count[z] , 
1 

{ 
Else 

1 ResTs = MAXTS , 
2. Transmit Count[z] TS packets for stream z , 

ResTs = ResTs - 1 Count[z] ; 
N 

r=l  

Bonus=- , 

Transmit Bonus TS packets or dummy packet 

TsCount[z] = TsCount[i] - Min(Bonus, 

ResTs 

N 

for stream I, I = 1, ,N , 

TsCount[i]), I = l,..,N ; 
1 

Fig. 8. The timestamp-sensitive scheduling algorithm 

Fig. 9 gives an example run of Scheduler(), where the 
total urgent demand exceeds the channel capacity. We 
assume that the number of streams is 4, and TsCounts of 
these four streams are 40, 80, 75, 55, respectively. The 
channel capacity, in units of TS packets per cycle, is 240. 
Note that in this scheduling cycle, program 2 has 10 TS 
packets which suffer deadline violation. 



Fig. 9. An example run of Scheduler(), where the total urgent 
demand exceeds the channel capacity 

1 2 Stream 
Number 

4. Numerical Results 

3 4 5 

A trace-driven simulation experiment was conducted 
to study the performance of the second phase multiplexer 
using our timestamp-sensitive scheduling algorithm. The 
input streams to the second phase multiplexer are 
randomly captured from the Disney carton “The Lion 
King”, with length of forty-eight seconds long for each 
stream. We assume that the packet-per-frame sequence 
of the original program is a stationary stochastic process. 
As a result, the randomly captured streams are 
independent and can be treated as streams of different 
programs. 

Three measures are calculated as the simulation 
results. These three measures are standard deviation of 
the number of output data bits per frame period which is 
0.04 sec, in each stream, the deadline violation 
probability, and the standard deviation of the number of 
delayed frames which represents the degree of jitter. 
Besides, the performance of another scheduling 
algorithm, i.e. the timestamp-insensitive CBR scheduling 
algorithm, is also measured and compared with our 
algorithm. The CBR scheduling algorithm transmits 
every input stream at a constant bit rate. The input 
streams to these two algorithms are the same. 

In VOD systems over cable TV networks, an analog 
channel, capable of carrying 30 Mbps digital data, can 
carry 9 programs with an average bit rate of 3.26 Mbps. 
In our simulation model, we assume the capacity of the 
output link to be 9*3.26 Mbps. 

A. Smoothing performance on 9 input 
streams using our timestamp-sensitive 
scheduling algorithm 

The standard deviations of the numbers of input and 
output data bits per frame period in the original and 
smoothed streams, respectively, are shown in Table 1. 
Fig. 10 shows, for a stream selected from 9 streams, the 
number of TS packets per frame period for its input and 
output streams. The smoothing performance of the other 
8 streams are similar. The original length of the input 
stream is about 1200 frames but only the first 120 frames 

are shown in Fig. 10. The result behind 
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20th frame are 
not shown because the output sequence keeps nearly 
constant at 86 TS packets per frame period fiom the 88th 
period to the last. 

Original 
Stream 

Smoothed 
Stream 

Stream 
Number 
Original 
Stream 

Smoothed 
Stream 

Table I .  Standard deviation of the number of data bits in the 
original and smoothed streams (unit : TS packet) 

- -  - 

Smoothed sequence - Original sequence 1 - 
1 A,, 

Fig. 10. The original sequence and the smoothed sequence for 
one of the 9 input streams 

As shown in Table 1, the average standard deviation 
of the bursty input streams is greatly reduced from 46.79 
to 7.77 by our timestamp-sensitive scheduling algorithm. 
The standard deviation from the 1st to the 88th frame 
periods is also reduced from 27.41 to 15.93. 

B. Comparison of delay performance 
between CBR scheduling algorithm and 
timestamp-sensitive scheduling algorithm 

Stream 
Index 

Timestamp- 
insensitive 

Schedule 



342 

Deviation 
of bit rate 

Timestamp- 

41.27 53.73 43.33 55.37 38.92 

0.1427 

Stream 
Index 

Timestamp- 
insensitive 

0.021 1 

I -  

50.61 46.79 

Schedule I 
Timestamp- I 

Deviation 
of bit rate 

sensitive 0.0008 0.0008 
Schedule 3 Standard 

47.84 45.21 44.87 

0.0073 0.1675 t 0.0008 0.0010 
I 

Table 2 .  Deadline violation probabilities of two scheduling 
algorithms 

1 2 3 4 5 6 7 8 9  
Stream index 

Fig. 11. Comparison of standard deviation of the number of 
delayed frames 

Table 2 and Fig. 11 compare the deadline violation 
probability and the standard deviation of the number of 
delayed frames in the CEiR and timestamp-sensitive 
scheduling algorithms. The deadline violation probability 
is calculated by dividing the number of delayed frames 
by the number of all frames. Our timestamp-sensitive 
algorithm achieves much reduction of deadline violation 
probability and standard deviation. 

C. Improvement on tlhe timestamp-sensitive 
scheduling algorithm 

I- Deadline-driven schedule -. -- -- - - CBR schedule 1 
30 I 1 

5 '  1 
Time ( frame period ) 

Fig. 12. The number of frames which are ahead of schedule in 
timestamp-sensitive and CBR scheduling algorithms 

In our timestamp-sensitive scheduling algorithm, if 
the total bandwidth demand is smaller than or equal to 
the capacity of the output link, the scheduler will over- 
allocate the remaining bandwidth, which is called Bonus, 
to input streams. No limitation on Bonus results in 
unlimited over-allocation to each input stream. Fig. 12 
shows the number of frames which are ahead of schedule, 
i.e. the decoding timestamp of a frame is larger than the 
time at which the last TS packet of the frame arrives at 
the decoder. The multiplexer or the set-top box (STB) 
might be overflowed. As a result, we limit the amount of 
Bonus to reduce the buffer requirement in the 
multiplexer and the STB. 

Once the Bonus is limited, the effect of smoothing 
bursty programs decreases. This also results in the 
increase in jitter and deadline violation probability. 
However, we explore the relation between the value of 
Bonus and the degree of jitter and deadline violation 
probability. Then we find an optimal Bonus value to 
minimize the degree of jitter and deadline violation 
probability while avoiding buffer overflow. 

As shown in Fig. 13 and Fig. 14, the average standard 
deviation and average deadline violation probability of 
the 9 output streams fall down rapidly in the case where 
the Bonus is limited to 1 and remain stable at 0.03 for the 
standard deviation and 0.001 for the deadline violation 
probability in the cases where the Bonus is equal to or 
more than 2. 

0 1 2 3 4 5 6 7 8 9  
Liinit on Bonus (Unit : frame) 
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Stream 
Index 7 

Fig. 13. The average standard deviation of the number of 
delayed frames of 9 output streams as a function of Bonus 

limitation 

8 9 Average 

- .c 0.25 4 
g 0.2 
D 

C 
.9 
I 0.15 .-.. 
.- , 

= 2  
Bonus 

Unlimited 

.- 2 0.1 
B 

B z o  
-% 0.05 
8 

0 0.0008 0.0008 0.0008 0.0010 

0 1 2 3 4 5 6 7 8 9  
Limit on Bonus (Unit : frame) 

Fig. 14. The average deadline violation probability of 9 output 
streams as a function of Bonus limitation 

deviation 
of bit rate 

D. Comparison of delay performance 
between three scheduling algorithms 

47.84 45.21 44.87 50.61 46.79 

Stream 
Index 

Bonus I limitation I 0.0008 1 0.0008 1 0.0016 1 0.0016 I 0.0016 1 
- 2  

CBR 
Bonus I 

I 0.2636 I 0.1427 I 0.0211 I 0.0073 I 0.1675 
I limitation I 0 I O.OOO~ I 0.0008 I 0.0008 I 0.0010 I 

I Standard I 

Fig. 15. Comparison of standard deviation of the number of 
delayed frames for three scheduling algorithms 

Table 3 compares the deadline violation probability of 
three scheduling algorithms, i.e. the timestamp- 
insensitive CBR scheduling algorithm, the timestamp- 
sensitive scheduling algorithm with Bonus limited to 2, 
and the timestamp-sensitive scheduling algorithm 
without limitation on Bonus. Fig. 15 compares the 
standard deviation of the number of delayed frames for 
these three algorithms. From Table 3 and Fig. 15, it is 
demonstrated that the performance of timestamp- 
sensitive scheduling algorithm with Bonus limited to 2 is 
much better than the CBR scheduling algorithm. The 
timestamp-sensitive scheduling algorithms with Bonus 
limited to 2 and without Bonus limitation have the same 
performance in jitter and deadline violation probability. 
However, the former can prevent buffer overflow. 

The multiplexer can keep 2 frames for each stream 
beforehand and then starts to schedule the input streams, 
while each STB can allocate a buffer of 2 frames for its 
input stream. This will prevent the multiplexer queues 
from underflow and the STB from overflow. 

5. Conclusion 
This paper presents a timestamp-sensitive scheduling 

algorithm for MPEG-I1 multiplexers. The algorithm 
combines the virtues of statistical multiplexing and 
smoothing. It takes into account the decoding timestamp 
of transport stream packets in scheduling variable-bit- 
rate streams and avoids deadline violation at the set-top- 
boxes. 

Results of a trace-driven simulation demonstrate that 
the deadline violation probability and delay standard 
deviation obtained using our timestamp-sensitive 
scheduling algorithm are much smaller than those 
obtained using the timestamp-insensitive CBR 
scheduling algorithm. Besides, a limitation on the 
number of over-scheduled frames is imposed to prevent 
from overflowing the buffers in STBs and underflowing 
the buffers in multiplexers. A trace-driven simulation 
finds that the enhanced version of the timestamp- 
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sensitive scheduling can achieve the same delay 
performance as our original scheduling algorithm, but no 
buffer overflow, with only two kames stored beforehand 
in the buffer of the multiplexer and a buffer size of two 
frames at the STB. 
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