
336 IEEE TRANSACTIONS ON BROADCASTING, VOL 44, NO 3, SEPTEMBER 1998

A Timestampsensitive Scheduling Algorithm for MPEG-11 Multiplexers in
CATV Networks

Ying-Dar Lin and Chun-Mo Liu
Department of Computer and Information Science

National Chiao Tung University
Hsinchu, Taiwan

ydl iii@cis.nctu.edu.tw

Abstract-To achieve smooth display of MPEG-11
programs in the residential cable TV networks, we
present a timestamp-sensitive scheduling algorithm
for MPEG-XI multiplexers. The deadline-driven
scheduler maintains, for each program stream, a
counter and a timestamp to record and determine
how many Transport Stream (TS) packets should be
transmitted before the current scheduling cycle ends.
The decoding timestamp (DTS) of TS packets is used
to update the counter in order to prevent deadline
violation. This algorithm is compared numerically
with the timestamp-insensitive algorithm which runs
constant-bit-rate (CBR) scheduling. The trace-driven
simulation shows that the deadline violation of our
timestamp-sensitive scheduling is much lower than
CBR’s and well controlled for programs with various
degrees of burstiness. We also show that the
algorithm can be further improved by adding a
scheme to prevent buffer underflow and overflow at
multiplexers and set-top-boxes, respectively.

Keywords-timestamp-sensitive, deadline, scheduling,
MPEG-11, multiplexer, CATV

1. Introduction
In digital video distribution systems, such as Video-

On-Demand (VOD) [11 systems, the video programs are
compressed into MPEG-I1 files which are variable-bit-
rate (VBR) streams [2][3]. When the VBR streams are
transmitted using the CBR service, either delay jitter or
bandwidth wastage may occur. Delay jitter causes poor
quality of program display. In order to prevent jitter,
VBR streams can be multiplexed to share the fixed
channel bandwidth, where each stream is dynamically
allocated demanded bandwidth. This method, called
statistical multiplexing [4][5][6], enables VBR streams
to effectively share channel bandwidth because bit rates
of the VBR streams are likely to compensate each other.
However, the total bit rate may still exceed the channel
capacity at some points in time, which may result in
deadline violation and packet loss.

Some previous works solve this problem by the
adaptive technique, called source rate control, to
feedback control the output rate of VBR encoders
[5][7][8][9]. An MPEG encoder can control, according

to the feedback from the network, its output rate by
setting the quantizer scale in the slice header and the
optional quantizer scale in the header of each
macroblock [lo]. A coarser setting would result in a
lower bit rate at the expense of degraded visual quality.
Additionally, the encoder can also lower its output rate
by discarding some of the high-frequency discrete-
cosine-transform (DCT) coefficients. The schemes to
reduce the output rate of an encoder discard some
compressed information and are said to be lossy. This
may result in visible artifacts in the decoded video.

The deadline violation and packet loss usually
happens when many encoders output the intraframe
compressed frames with high bit rates to the multiplexer
at the same time and the total output bit rate exceeds the
channel capacity. There are methods to reduce deadline
violation and packet loss by transmitting the smaller
interframe compressed frames in a shorter time, i.e. at a
higher bit rate, and transmitting the larger intrafranie
compressed frames in a longer time, i.e. at a lower bit
rate. This is called smoothing [3]. By smoothing the
VBR MPEG compressed video, it does not need to
discard compressed information. Therefore, it is lossless
smoothing. Lam et a1 proposed an algorithm for lossless
smoothing of MPEG video in [3]. The algorithm is
designed to satisfy a delay bound, D, which is a pre-
specified parameter. The algorithm is characterized by
two other parameters, K, the number of complete
pictures buffered in the queue before the multiplexer can
begin sending the next picture, and H, a lookahead
interval for lowering the bit rate burstiness. The
objective of this lossless algorithm is to transmit each
picture in the same lookahead interval at approximately
the same rate, while ensuring that the buffering delay
introduced by the algorithm is bounded by D for every
picture.

Although the lossless algorithm can achieve good
smoothing performance, it only focuses on smoothing
an individual compressed video stream. It does not
consider the situation where many VBR streams are
transmitted in a channel with fixed bandwidth. In this
paper, we consider the situation that an MPEG-I1
multiplexer in a cable TV network multiplexes multiple
VBR MPEG-I1 streams. We design a timestamp-sensitive
scheduling algorithm to smooth input streams, without
source rate control which may degrade the video quality,

Publisher Item Identifier S 0018-9316(98)08206-7
0018-9316/98$10.00 0 1998 IEEE

331

in order to prevent deadline violation and packet loss.
Our algorithm takes the advantages of statistical
multiplexing and lossless smoothing. The decoding
timestamp (DTS) of TS packets are used to determine
how long packets can be buffered at the multiplexer.
When the total bit rate exceeds the channel capacity, the
scheduler in the multiplexer may transmit the TS packets
whose deadlines are close by, while delaying the others.
By a trace-driven simulation, it is demonstrated that our
algorithm can achieve significantly lower delay, i.e.
deadline violation probability, and delay jitter than the
timestamp-insensitive CBR scheduling algorithm,

In [4], two methodologies, look-ahead and feedback,
used for real-time rate control are presented. The look-
ahead approach anticipates the bit rate that will be
required by an encoder for a specific frame, but it needs
preprocessing to compute the statistics to guide the
allocation. The feedback approach uses previously
collected statistics from the encoder to decide how many
bits should be allocated to the incoming frame. The
feedback approach does not need a preprocessor like the
look-ahead approach, but it cannot react as fast as the
look-ahead approach to changes in scene complexity.
Our algorithm decides how many bits to be allocated to
each input stream by checking the timestamp in real time.
It does not need a preprocessor like the look-ahead
approach in [4]. However, it still can precisely decide the
bandwidth actually needed by the individual streams,
which cannot be achieved by the feedback approach in

The rest of the paper is organized as follows. Section
2 gives a background on timestamps and packet formats
in MPEG-I1 streams. The timestamp-insensitive CBR
scheduling algorithm and the timestamp-sensitive
scheduling algorithm are presented in section 3 .
Numerical results are given in section 4. Finally, section
5 concludes the paper.

[41.

2. MPEG-I1 system layer specification
The ISO/IEC 138 18 specification [lo][1 I] is divided

into two layers. One is the compression layer which
includes video and audio parts. The other is the system
layer. The compression layer focuses on how to
compress the original video and audio data and specifies
the syntax to represent the compressed data. The system
layer addresses the combining of one or more elementary
streams of video and audio, as well as other data. Into
single or multiple streams which are suitable for storage
or transmission. It specifies syntactical and semantic
rules and provides information to enable synchronized
decoding and presentation of multiplexed audio and
video data. In this work, we only need the information of
the system layer to develop our scheduling algorithm.

The MPEG-I1 system layer specifies two forms of
system streams. One is Transport Stream (TS), another is
Program Stream (PS). Our algorithm is designed for TS.

Both kinds of streams multiplex elementary streams and
are individually optimized for a different set of
applications. The elementary stream is a generic form for
one of the coded video, coded audio or other coded bit
streams in Packetized Elementary Stream (PES) packets.
Transport streams are tailored for communicating or
storing one or more programs of coded data in
environments in which significant errors may occur,
while program streams are ailored for communicating or
storing one program of coded data in environments
where errors are very unlikely. Both streams provide the
coding syntax which is necessary and sufficient to
synchronize the decoding and presentation of the video
and audio information. The syntax uses three timestamps,
including Decoding Time Stamp (DTS) and Presentation
Time Stamp (PTS), which concern the decoding and
presentation of audio and visual data, and Program Clock
Reference (PCR) or System Clock Reference (SCR),
which concerns the delivery of the data stream itself.

hogram
SlSEam -

Packetizer

Fig. 1. Simplified overview of MPEG-I1 system stream [l 11

Fig. 1 illustrates how the MPEG-I1 system stream is
constructed from the visual and audio data. The visual
and audio data are individually packetized to elementary
streams which consist of PES packets of variable sizes.
The packetizers also stamp DTS and PTS onto PES
packets. The PES packets of an elementary stream are
further divided into smaller Transport Stream (TS)
packets of fixed 188 bytes with a specific PID (Program
ID) value which appears in the TS header. Note that all
TS packets of the same elementary stream have the same
PID value. TS packets of different elementary streams
have different PID values. The TS or PS multiplexer then
multiplexes the audio and video elementary streams
according to the data rates they need.

However, the multiplexer in the VOD system, as
shown in Fig. 2, may be more complicated. It may
contain two phases of multiplexers. The first phase
multiplexer, as mentioned above, is responsible of
multiplexing several elementary streams of a MPEG-I1
program into a single-program transport stream. The
second phase multiplexer is responsible of multiplexing
several MPEG-I1 programs and private data service into

338

a transport stream. The input streams of the second phase
multiplexer can be either produced in real time by the
first phase multiplexer preceded by a real-time MPEG-I1
encoder, or produced off-line beforehand and transmitted
on-demand to the second phase multiplexer when
subscribed. Our scheduling algorithm is to be applied to
the second phase multiplexer.

Packetized single program
Elementary transpofi Streams
Stream with some meta data

Packetized
Elementaly
Stream

\
multiple MPEG-II programs

b

/

Fig. 2. Two-phase multiplexer [12]

3, Scheduling algorithms
We now present two types of scheduling algorithms :

timestamp-insensitive and timestamp-sensitive. The
former does not look into the timestamps in TS packets,
while the latter does.

A. Timestamp-insensitive CBR scheduling
algorithm

Stream 1

+ ~ , ! I 1 '4
\
\ Stream 2

Stream
+

Fig. 3. The architecture of the CBR scheduling algorithm

algorithm. Two variables MwcRate[i] and TokenCount[i]
are maintained for each input stream i. The scheduling
algorithm consists of two parts which are Initialization
and Scheduler.

Initialization
Before a transport stream i enters the multiplexer, the

second phase multiplexer needs to initialize MuxRate[i],
i = 1 ..N, where N is the number of streams. The MwcRate
is the meta data from the first phase multiplexer. The
counter TokenCount[i] is then initialized as MuxRate[i], i
= 1..N. Note that MuxRate[i] is a constant bit rate
allocated to stream i, i = 1 ..N.

Scheduler

Initialization :

Set I = { 1,2, . ,N } ,
For each new input stream r E I
{

Set MuxRate[r] to the value from the first phase multiplexer ,
TokenCount[i] = MuxRate[r] ;

1

Scheduler :

Find J = { J } such that TokenCountb] = Max
2EI

(TokenCount[r]) ,
FOrJ E J
{

TokenCountb] = TokenCountb] - 1 ,
Transmit one TS packet for stream] ,
If (TokenCount[z] < 1) for all I E I

TokenCount[r] = TokenCount[z] + MuxRate[r] ,
1
Go back to the beginning of step 2 ,

Fig. 4. Timestamp-insensitive CBR scheduling algorithm

Fig. 4 is the timestamp-insensitive CBR scheduling
algorithm. After initializing MwcRate[i] and
TokenCount[i], i = I..N, in each iteration, we find G}
such that TokenCount[i] is the maximum among all
TokenCount[i], i = l..N. Note that there might be
multiple counters with the same values. For each stream],
TokenCountb] is deducted by one and the multiplexer
transmits one TS packet. If now all the counters have
values smaller than one, the counters are wrapped back
by adding their MuxRate respectively.

In the VOD systems, the timestamp-insensitive CBR
scheduling algorithm may be adopted to multiplex
MPEG-I1 variable-bit-rate (VBR) video programs to
simplify bandwidth allocation for each input stream. Fig.
3 shows the architecture of the CBR scheduling I I I I I

339

1.5 3 4
1.5 I 3 3

the size of each frame. As a result, the output transport
stream, which is also the input streams of our algorithm,
of the first phase multiplexer is also variable-bit-rate
with a constant frame rate and each frame consists of
variable TS packets.

1.5
1.5
0.5

2 2
1 1
1 1

I 0.5 0 0

Fig. 5. An example run of the CBR scheduling algorithm [121

Second cycle

An example run is given in Fig. 5 to illustrate how the
multiplexing method works. We assume that the output
capacity of the second phase multiplexer is 10.5 Mbps
and the number of transport streams is 3. If the output
capacity is larger than 10.5, the residual capacity will be
used to transmit dummy TS packets in each iteration.

*-
2 3 6 Stream I
2 3 5
2 3 4

+ J ri I 11r:i

B. Timestamp-sensitive scheduling
algorithm

This scheduling algorithm dynamically allocates
bandwidth to each input stream according to the statistics
collected in real time such that all the input streams can
share the whole capacity of the output link. Bandwidth
sharing can be explained by the StatMux of Imedia [13]
in Fig. 6.

2
2

explosion ~ rapid pan of high detail
L

3 3
2 2

Ch. 1 v

... ...

1 Mbitlsec

...

C h . 2 m .
Ch. 3
C? 4

Ch. 24

Fig. 6 . An example of bandwidth sharing [Source : StatMux of
IMedia 3 [131

Because the MPEG-I1 encoder compresses a video
program at a constant frame rate, e.g. 25 frameshec, and
outputs a coded stream with a highly variable
instantaneous bit rate. The coded VBR stream then is
multiplexed by the first phase multiplexer. The
processing time of the first phase multiplexer is nearly
constant for each input frame and the amount of header
inserted into each input coded frame is proportional to

Stream N L

Fig. 7. The model of multiplexer with timestamp-sensitive
scheduling algorithm

Fig. 7 shows the model of the multiplexer with our
timestamp-sensitive scheduling algorithm listed in Fig. 8.
The algorithm has two variables, ScheduleTime[i] and
TsCount[i] :

ScheduleTime[i] stores the end time of current
scheduling cycle and is initialized to be the initial time of
input stream i plus a cycle time and increased by a cycle
time at the beginning of each scheduling cycle. Note that
the cycle time equals the frame period which is 0.04 sec,
i.e. 1/25 sec, in our study. It is compared with the DTS of
each input TS packet to decide whether the TS packet
should be transmitted in current scheduling cycle to
avoid deadline violation.

TsCount[i] stores the number of TS packets that
should be transmitted in current scheduling cycle. The
variable is increased by one when an incoming TS
packet needs to be transmitted in current scheduling
cycle, and it is decreased by one when the scheduler
transmits a TS packet from stream i.

The scheduling algorithm consists of three parts, i.e.
Initialization(), DTScheck(), and Scheduler().
Initialization() runs before a new input stream is served
by the multiplexer. Scheduler() runs at the beginning of
each scheduling cycle. DTS-checkO is invoked every
time a TS packet arrives to the multiplexer.

DTS-checkO is used to update TsCount[i]. For stream
i, when a TS packet arrives, DTS-checkO checks the
DTS of the TS packet. If the DTS is smaller than or
equal to ScheduleTime[i], TsCount[i] is increased by one.
Otherwise, TsCount[i] remains unchanged.

Scheduler() is responsible of allocating bandwidth to
each stream. At the beginning of each scheduling cycle,
it calculates the total urgent bandwidth demand,

340

N

r=l
TsCount[i]. Then for each stream i, TsCount[i] is

copied to a temporary working variable Count[i], and
then reset to zero; meanwhile, ScheduleTzme[i] is
increased by a cycle time. If the total urgent bandwidth
demand exceeds the channel capacity, W T S , deadline
violation will occur and Scheduler() runs iteratively to
schedule and transmit TS packets. In each iteration, it
first finds the set S = { i } where stream i has non-zero
Count[i] and calculates the average residual bandwidth,
AvgTs, which equals to the total residual bandwidth, i.e.
ResTs, divided by the size, n, of 5'. Then for each stream I ,

if Count[i] is more than AvgB, the multiplexer transmits
AvgTs TS packets and Count[i] is deducted by AvgTs;
otherwise, the multiplexer transmits only Count[i] TS
packets and Count[i] is deducted to zero. In the latter
case, the residual bandwidth from stream I , AvgTs -
Count[i], is added back to ResB for scheduling in the
next iteration. This process runs until ResTs equals to
zero. The residual value in Count[i] for each stream i is
then added back to TsCount[i]. However, if the total
urgent bandwidth demand is less than or equal to the
channel capacity, the number of TS packets each stream
can transmit is not only Count[i] but also extra Bonus,
which equals the total residual bandwidth, ResTs, divided
by the number of streams, N. In that case, TsCount[i], for
stream i, is updated accordingly to reflect the extra
packets being sent ahead of their schedules in this cycle.

[nitialization()
I

For each new input stream i
{

ScheduleTime[r] = Initial timestamp of stream I t
cycle time ;

TsCount[r] = 0 ;
}

I

DTS-check()
{

Upon arrival of a TS packet of stream I, I = 1, ,N
{

Check DTS of the incoming TS packet,
If (DTS <= Schedu/eT"[r]) then

TsCount[z] f+ ,
If (DTS > Schedu/eTime[i]) then

TsCount[i] remains unchanged ,
I

1

Scheduler()
{

CycleTime = frame period ,

MAXTS =

Count[z] = TsCount[r], 1 = 1, ,N ,
TsCount[i] = 0, I = 1, ,N ,

N * average bit rate of the input progiain * CycleTiine

8*lSS

ScheduleTime[i] = ScheduleTime[i] + CycleTime, I = l,,,,N

If (
N

r = l
~ount[i] > MAXTS)

(
1. n = N ;

S e t T = S = { 1,2, .. , N } ;
ResTs = MAXTS ,

ResTs
2. AvgTs=-;

n
)r each stream I, I = 1, ,N

Transmit Min(Count[i], AvgTs) TS

If(Count[i] < AvgTs)
packets for stream 1 ,

{
s = s - { I] ,
n = n - 1 ,

1

ResTs = 1 (AvgTs - Count[r]) ,

For each stream I, I = 1, .,N
I E T-S

Count[i] = Count[z] - Min(Count[z],
AvgTs) I

3. If (ResTs # 0)
Goto step 2 ,

else
For each stream z, z = 1, ,N

TsCount[z] = TsCount[z] + Count[z] ,
1

{
Else

1 ResTs = MAXTS ,
2. Transmit Count[z] TS packets for stream z ,

ResTs = ResTs - 1 Count[z] ;
N

r=l

Bonus=- ,

Transmit Bonus TS packets or dummy packet

TsCount[z] = TsCount[i] - Min(Bonus,

ResTs

N

for stream I, I = 1, ,N ,

TsCount[i]), I = l,..,N ;
1

Fig. 8. The timestamp-sensitive scheduling algorithm

Fig. 9 gives an example run of Scheduler(), where the
total urgent demand exceeds the channel capacity. We
assume that the number of streams is 4, and TsCounts of
these four streams are 40, 80, 75, 55, respectively. The
channel capacity, in units of TS packets per cycle, is 240.
Note that in this scheduling cycle, program 2 has 10 TS
packets which suffer deadline violation.

Fig. 9. An example run of Scheduler(), where the total urgent
demand exceeds the channel capacity

1 2 Stream
Number

4. Numerical Results

3 4 5

A trace-driven simulation experiment was conducted
to study the performance of the second phase multiplexer
using our timestamp-sensitive scheduling algorithm. The
input streams to the second phase multiplexer are
randomly captured from the Disney carton “The Lion
King”, with length of forty-eight seconds long for each
stream. We assume that the packet-per-frame sequence
of the original program is a stationary stochastic process.
As a result, the randomly captured streams are
independent and can be treated as streams of different
programs.

Three measures are calculated as the simulation
results. These three measures are standard deviation of
the number of output data bits per frame period which is
0.04 sec, in each stream, the deadline violation
probability, and the standard deviation of the number of
delayed frames which represents the degree of jitter.
Besides, the performance of another scheduling
algorithm, i.e. the timestamp-insensitive CBR scheduling
algorithm, is also measured and compared with our
algorithm. The CBR scheduling algorithm transmits
every input stream at a constant bit rate. The input
streams to these two algorithms are the same.

In VOD systems over cable TV networks, an analog
channel, capable of carrying 30 Mbps digital data, can
carry 9 programs with an average bit rate of 3.26 Mbps.
In our simulation model, we assume the capacity of the
output link to be 9*3.26 Mbps.

A. Smoothing performance on 9 input
streams using our timestamp-sensitive
scheduling algorithm

The standard deviations of the numbers of input and
output data bits per frame period in the original and
smoothed streams, respectively, are shown in Table 1.
Fig. 10 shows, for a stream selected from 9 streams, the
number of TS packets per frame period for its input and
output streams. The smoothing performance of the other
8 streams are similar. The original length of the input
stream is about 1200 frames but only the first 120 frames

are shown in Fig. 10. The result behind

34 1

20th frame are
not shown because the output sequence keeps nearly
constant at 86 TS packets per frame period fiom the 88th
period to the last.

Original
Stream

Smoothed
Stream

Stream
Number
Original
Stream

Smoothed
Stream

Table I . Standard deviation of the number of data bits in the
original and smoothed streams (unit : TS packet)

- - -

Smoothed sequence - Original sequence 1 -
1 A,,

Fig. 10. The original sequence and the smoothed sequence for
one of the 9 input streams

As shown in Table 1, the average standard deviation
of the bursty input streams is greatly reduced from 46.79
to 7.77 by our timestamp-sensitive scheduling algorithm.
The standard deviation from the 1st to the 88th frame
periods is also reduced from 27.41 to 15.93.

B. Comparison of delay performance
between CBR scheduling algorithm and
timestamp-sensitive scheduling algorithm

Stream
Index

Timestamp-
insensitive

Schedule

342

Deviation
of bit rate

Timestamp-

41.27 53.73 43.33 55.37 38.92

0.1427

Stream
Index

Timestamp-
insensitive

0.021 1

I -

50.61 46.79

Schedule I
Timestamp- I

Deviation
of bit rate

sensitive 0.0008 0.0008
Schedule 3 Standard

47.84 45.21 44.87

0.0073 0.1675 t 0.0008 0.0010
I

Table 2 . Deadline violation probabilities of two scheduling
algorithms

1 2 3 4 5 6 7 8 9
Stream index

Fig. 11. Comparison of standard deviation of the number of
delayed frames

Table 2 and Fig. 11 compare the deadline violation
probability and the standard deviation of the number of
delayed frames in the CEiR and timestamp-sensitive
scheduling algorithms. The deadline violation probability
is calculated by dividing the number of delayed frames
by the number of all frames. Our timestamp-sensitive
algorithm achieves much reduction of deadline violation
probability and standard deviation.

C. Improvement on tlhe timestamp-sensitive
scheduling algorithm

I- Deadline-driven schedule -. -- -- - - CBR schedule 1
30 I 1

5 ' 1
Time (frame period)

Fig. 12. The number of frames which are ahead of schedule in
timestamp-sensitive and CBR scheduling algorithms

In our timestamp-sensitive scheduling algorithm, if
the total bandwidth demand is smaller than or equal to
the capacity of the output link, the scheduler will over-
allocate the remaining bandwidth, which is called Bonus,
to input streams. No limitation on Bonus results in
unlimited over-allocation to each input stream. Fig. 12
shows the number of frames which are ahead of schedule,
i.e. the decoding timestamp of a frame is larger than the
time at which the last TS packet of the frame arrives at
the decoder. The multiplexer or the set-top box (STB)
might be overflowed. As a result, we limit the amount of
Bonus to reduce the buffer requirement in the
multiplexer and the STB.

Once the Bonus is limited, the effect of smoothing
bursty programs decreases. This also results in the
increase in jitter and deadline violation probability.
However, we explore the relation between the value of
Bonus and the degree of jitter and deadline violation
probability. Then we find an optimal Bonus value to
minimize the degree of jitter and deadline violation
probability while avoiding buffer overflow.

As shown in Fig. 13 and Fig. 14, the average standard
deviation and average deadline violation probability of
the 9 output streams fall down rapidly in the case where
the Bonus is limited to 1 and remain stable at 0.03 for the
standard deviation and 0.001 for the deadline violation
probability in the cases where the Bonus is equal to or
more than 2.

0 1 2 3 4 5 6 7 8 9
Liinit on Bonus (Unit : frame)

343

Stream
Index 7

Fig. 13. The average standard deviation of the number of
delayed frames of 9 output streams as a function of Bonus

limitation

8 9 Average

- .c 0.25 4
g 0.2
D

C
.9
I 0.15 .-..
.- ,

= 2
Bonus

Unlimited

.- 2 0.1
B

B z o
-% 0.05
8

0 0.0008 0.0008 0.0008 0.0010

0 1 2 3 4 5 6 7 8 9
Limit on Bonus (Unit : frame)

Fig. 14. The average deadline violation probability of 9 output
streams as a function of Bonus limitation

deviation
of bit rate

D. Comparison of delay performance
between three scheduling algorithms

47.84 45.21 44.87 50.61 46.79

Stream
Index

Bonus I limitation I 0.0008 1 0.0008 1 0.0016 1 0.0016 I 0.0016 1
- 2

CBR
Bonus I

I 0.2636 I 0.1427 I 0.0211 I 0.0073 I 0.1675
I limitation I 0 I O.OOO~ I 0.0008 I 0.0008 I 0.0010 I

I Standard I

Fig. 15. Comparison of standard deviation of the number of
delayed frames for three scheduling algorithms

Table 3 compares the deadline violation probability of
three scheduling algorithms, i.e. the timestamp-
insensitive CBR scheduling algorithm, the timestamp-
sensitive scheduling algorithm with Bonus limited to 2,
and the timestamp-sensitive scheduling algorithm
without limitation on Bonus. Fig. 15 compares the
standard deviation of the number of delayed frames for
these three algorithms. From Table 3 and Fig. 15, it is
demonstrated that the performance of timestamp-
sensitive scheduling algorithm with Bonus limited to 2 is
much better than the CBR scheduling algorithm. The
timestamp-sensitive scheduling algorithms with Bonus
limited to 2 and without Bonus limitation have the same
performance in jitter and deadline violation probability.
However, the former can prevent buffer overflow.

The multiplexer can keep 2 frames for each stream
beforehand and then starts to schedule the input streams,
while each STB can allocate a buffer of 2 frames for its
input stream. This will prevent the multiplexer queues
from underflow and the STB from overflow.

5. Conclusion
This paper presents a timestamp-sensitive scheduling

algorithm for MPEG-I1 multiplexers. The algorithm
combines the virtues of statistical multiplexing and
smoothing. It takes into account the decoding timestamp
of transport stream packets in scheduling variable-bit-
rate streams and avoids deadline violation at the set-top-
boxes.

Results of a trace-driven simulation demonstrate that
the deadline violation probability and delay standard
deviation obtained using our timestamp-sensitive
scheduling algorithm are much smaller than those
obtained using the timestamp-insensitive CBR
scheduling algorithm. Besides, a limitation on the
number of over-scheduled frames is imposed to prevent
from overflowing the buffers in STBs and underflowing
the buffers in multiplexers. A trace-driven simulation
finds that the enhanced version of the timestamp-

344

sensitive scheduling can achieve the same delay
performance as our original scheduling algorithm, but no
buffer overflow, with only two kames stored beforehand
in the buffer of the multiplexer and a buffer size of two
frames at the STB.

Acknowledgement
The authors would like to thank Mentor Data System

Corp. at Science-based Industrial Park, Hsinchu, Taiwan,
for providing MPEG-I1 trace programs and technical
advice on MPEG-I1 multiplexers.

Reference

Yu-Lin Chang, “Protocol Design and
Implementation of Video-On-Demand Service
over CATV”, Section 2.1, Master Thesis,
Department of Computer and Information
Science, National Chiao Tung University,
Hsinchu, Taiwan, June 1997.

M. Riyaz Ismalil, I. E. Lambadaris, M.
Devetsikiotis and A. R. Kaye, “Modelling
prioritized MPEG video using TES and a frame
spreading strategy for transmissiion in ATM
networks”, Proceedings. IEEE INFOCOM ’95,
Vol. 2, p.762-70.

Simon S. Lam, Simon Chow, and David K. Y.
Yau, “An algorithm for lossless smoothing of
MPEG video”, SIGCOMM ‘94.

Mike Perkins and David Arnstein, “Statistical
Multiplexing of Multiple MPEG-2 Video
Programs in a Single Channel”, Technical Paper,
SMPTE Joumal, September 1995.

Ajanta Guha and Daniel J. Reininger,
“Multichannel joint rate control of VBR MPEG
encoded video for DBS applications”, IEEE
Transactions on Consumer Electronics, Vol. 40,
Vol. 3, p.616-23, August 1994.

C. Blondia and 0. Casals, “Performance analysis
of statistical multiplexing of VBR sources”,
INFOCOM ‘92, p.828-38.

P. Pancha and M. El Zarki., “Bandwidth
requirements of variable bit rate MPEG sources
in ATM networks”, In Proceedings of
INFOCOM ‘93, pages 902-909, March 1993.

L. Delgrossi, C. Halstrick, D. Hehmann, R. G.

Herrtwich, 0. Krone, J. Sandvoss, and C. Vogt.,
“Media scaling for audiovisual communication
with the Heidelberg transport system”, In
Proceedings of ACM Multimedia ’93, pages 99-
104, August 1993.

[9] H. Kanakia, P. Mishra, and A. Reibman. “An
adaptive congestion control scheme for real-time
packet video transport”, In Proceedings of ACM
SIGCOMM ’93, pages 20-31, September 1993.

[101 Draft International Standard ISOAEC DIS
138 18-2, “Information Technology - Generic
Coding of Moving Pictures and Associated
Audio - Part 2 : Video”, May 1994.

[l l] ITU-T Rec. H.222.0iISOIIEC 13818-1
“Information Intemational Standard,

Technology - Generic Coding of Moving
Pictures and Associated Audio : Systems”,
ISOAEC JTCl/SC29/WGll NOSOlrev., Nov.
1994.

[121 Jau-Ming Jan,“Design and Implementation of
MPEG-I1 MUXDEMUX and Transport Protocol
over CATV Networks”, Master Thesis,
Department of Computer and Information
Science, National Chiao Tung University,
Hsinchu, Taiwan, June 1996.

[131 Iinedia corporation, “24 Digital TV Channels in
the Space of a Single Analog Channel”,
http://www. ~ imedia.coin ~ ~~

Biography
Ying-Dar Lin received the Bachelor’s degree in

Computer Science and Information Engineering from
National Taiwan University in 1988, and the M.S. and
Ph.D. degrees in Computer Science from the University
of California, Los Angeles in 1990 and 1993,
respectively. He joined the faculty of the Department of
Computer and Information Science at National Chiao
Tung University in August 1993 and is now Associate
Professor. His research interests include design and
analysis of high-speed LANs/MANs/WANs, traffic
characterization, service and network management, and
network-centric computing. Dr. Lin is a membel: of ACM
and IEEE. He can be reached at ydlin@,cis.nctu.edu.tw.

Chun-Mo Liu received his B.S. and M.S. degrees in
Computer and Information Science at National Chiao
Tung University, Hsinchu, Taiwan, in 1996 and 1998,
respectively. His thesis work focuses on multiplexing
MPEG-I1 program streams for statistical gain and

http://www

345

Internet access over cable networks. He is now on his
two-year duty in the air force of Taiwan.

