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D I L A T I O N  T O  T H E  U N I L A T E R A L  S H I F T S  

Katsutoshi  Takahashi and Pei Yuan Wu 

The classical result of Foias says that  an operator  power dilates to a unilateral  
shift if and only if it is a C.0 contraction. In this paper,  we consider the corresponding ques- 
tion of dilating to a unilateral  shift. We show tht  for contractions with at least one defect 
index finite, dilation and power dilation to some unilateral  shift amount to the same thing. 
The only difference is on the minimum multiplici ty of the unilateral  shift to which the con- 
t ract ion can be (power) dilated. We also obtain a characterization of contractions which are 
finite-rank per turbat ions of a unilateral  shift, generalizing the rank-one per turbat ion  result 
of Nakamura. 

1. I N T R O D U C T I O N  

The purpose of this paper is to address the problem, which bounded linear oper- 

ator on a complex separable Hilbert space can be di lated to a unilateral  shift. Recall that  

an opertor  A on space H is said to dilate (resp. power dilate) to ope ra to r /3  on K if there is 

an isometry V from H to K such that  A = V*BV (resp. A n = V*B~V for all n = 1 ,2 , . .  -) 

or, equivalently, if B is uni tar i ly equivalent to a 2 x 2 operator  mat r ix  

[ 
with A in its upper leR corner (resp. /3~ 

under the same uni tary operator for all 

k (1 _< ]c <_ oo) is the operator Sk(z0, 

H = k .  

is unitari ly equivalent to 

n = 1, 2,--  .). The unilateral sh@ Sk of multiplicity 

Zl, z 2 , ' - ' )  = (0, z0, z l , - "  ") on E~~176 0 G H  with dim 

The classical result of Foias settles the corresponding power dilation problem 

completely: an operator  T power dilates to some unilateral  shift S~ if and only if T is a con- 

t ract ion (H T [1_< 1) of class C.0, that  is, T satisfies T *~ ~ 0 in the strong operator  topology, 

and, moreover, in this case the minimum value of k is dim ran (1 - TT~)�89 (cf. [4, Problem 

152]). In this paper,  we consider the dilation problem for various classes of operators. In 
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Section 2 below, we will show that in all the cases we investigated (contractions with at least 

one defect index finite, Co contractions, strict contractions, normal contractions and com- 

pact contractions) the two classes, one consisting of those which dilate to a unilateral shift 

and the other those which power dilate, coincide. The only difference is on the minimum 

multiplicity of the unilateral shift which can be (power) dilated to. In the dilation case, 

this multiplicity can be as small as 1 if the two defect indices d r = d i m  ran (1 - T*T)~ and 

dr* = dim ran(1 - TT ' ) }  of the contraction T under consideration are equal, and dr* - dT 

if otherwise. This is in contrast to the multiplicity dr. of the unilateral shift to which T 

can be power dilated. Our proof depends on the result of Nakamura [5, Corollary 3] on the 

rank-one perturbation of unilateral shifts and that of Carey [1, Proposition] on the finite- 

rank perturbation of isometries. 

In Section 3, we take up the problem of characterizing contractions which are 

finite-rank perturbations of unilateral shifts. We prove in Theorem 3.1 that the com- 

pletely nonunitary ones among such perturbations are exactly those C.0 contractions T with 

d T <  dr*. This generalizes the rank-one perturbation result of Nakamura [5] although our 

proof is built upon his. 

The monograph [7] by Sz.-Nagy and Foias is our standard reference for the ter- 

minology and results of their contraction theory. We will also refer to some basic Fredholm 

theory from time to time. For this, the reader can consult [2, Chapter XI]. 

2. U N I L A T E R A L  S H I F T  D I L A T I O N  

We say that operator A on H dilates to operator B on t(  by n..dimcnsion 

(0 _< n _< oo) if A = V ' B V  and dim (K e VH)  - for some isometry W : S K 

We start this section with a characterization of operators which dilate to a unilateral shift 

by finite dimension. 

T H E O R E M  2.1. An operator T dilates to $k byn-dimension (1 < k < e%0 <__ 

n < oo) if and only i f T  is a C.o contraction with dT < oo anddr  7 t dr*. In this case, 

k = d~s - d T  and the minimum value for n is dr. 

Note that  if T is a C.o contraction, then dr <_ tiT* always holds (cf. [7, Proposition 

VI.3.5]). 

To prove the necessity part of this theorem, we need the following proposition. 

Its proof we omit since it is analogous to that of [10, Proposition 3.5]. Recall that  a contrac- 

tion T is of class Cll if T~x 74 0 and T*~x 7~ 0 in norm for any nonzero vector x. A Cll 

contraction has equal defect indices (cf. [7, Proposition VI.3.5]). 
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P R O P O S I T I O N  2.2. If  T is a C~1 contraction with finite defect indices or a 

contraction with tiT* < dr, then it has no unilateral shift dilation. 

Now we can prove the 

N E C E S S I T Y  O F  T H E O R E M  2.1. Assume that  

S k =  B C on K = H |  n. 

A simple computat ion yields T~T + B*B = 1. Hence dr  = rank (1 - T ' T )  = rank B*B < 

n < co. If T is not of class C.0, then it has the canonical triangulation. 

0 T2 of type 0 C.0 

with T1 present (cf. [7, Theorem II.4.1]). Since dT; <_ dr1 (for T~ is of class C.1) and 

dT1 <_ dT < co (cf. [7, Proposit ion VII.3.6]), we infer from Proposit ion 2.2 that  T1 has no 

unilateral  shift dilation. Thus the same is true for T, which contradicts our assumption. 

Hence T must be of class C.0. To prove that  dT 55 dr , ,  we appeal to the Fredholm theory. 

Since S~ and T | 0 differ by a finite rank operator,  we have that  T is left Fredholm and ind 

T = ind Sk : - /c .  The ident i ty  dT+ dim ker T ~ = dT,+dim ker T (cf. [3, Lemma 4]) then 

implies that  tiT, -- dT = k and hence dr < tiT*. m 

The sufficiency part  of Theorem 2.1 wili be proved through a series of lemmas. 

The first one appeared in [5, Corollary 3]; the assertion on ran F follows from the proof in 

there. 

L E M M A  2.3. I f  T is a C.o contraction with dT = 1 and dr. r 1, then there 

is a rank-one operator F with ran F C ker T ~ such that T + F is unitariIy equivalent to 

s~,k = d T , - 1 .  

We next transfer this result into one concerning dilations 

L E M M A  2.4. [f  T is a C.o contraction on H with dT = 1 and tiT, r 1, then 

T dilates to the unilateral shift Zk, k = dT. -- 1, by one dimension. 

P R O O F .  Note that  T is a left Fredholm operator with ind T = 1 - dr ,  (cf. [10, 

Lemma 3.3]). Let K = ker T*, J be the inclusion map from K to H,  and 

Since 

T~--[ TO d]o on H@K. 

1 - T ~ T  ' = 1 - J*T J*J 0 0 
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and 

= J * T  * n - ~  0 ' 

it is easily seen that  T'  is also a C.o contraction with dr, = 1. We next show that  tiT,* : tiT*. 

This is done by considering the following two separate cases: 

(1) dT* = ec. In this case, since tiT* <_ dr, + tiT,. = 1 + tiT,* (cf. [7, Proposition 

VII.3.6]), we have dr,* = oc = tiT*. 

(2) t < tiT* < oo, Since I (  ~ ran (1 - TT~) ,  the assertion tiT. < oo implies that  

K is finite-dimensional. Then T ~ and T �9 0 differ by a finite-rank operator.  Since T is a 

Fredholm operator with ind T = 1 - dT*, we conclude that  T'  is also Fredholm and ind T'  = 

ind T = 1 - tiT. = dr, - dT.. The identi ty dT,+dim ker T '~ = dT, ,+dim ker T'  then implies 

that  dT,* = dT*. 

By Lemma 2.3, there is a rank-one operator F'  with ran F '  C_ ker T'* = {0} | K such that  

T'  + F '  is unitari ly equivalent to Sk. If 

F ' =  F1 F2 F3 and T ' =  0 0 0 
0 0 0 0 0 0 

on H| ran F' �9 (KO ran F'), then 

T" - /71 F~ 

is unitari ly equivalent to some Sj (1 _< j < k). But T" and T differ by a finite-rank operator.  

Fredholm theory implies that  ind T" = ind T or j = k. Hence T" is unitari ly equivaIent to 

Sk. Since rank F '  = 1, this shows that  T dilates to Sk by one dimension, completing the 

proof. | 

The next lemma generalizes Lemma 2.4 to C-o contractions T with dT < oo. 

L E M M A  2.5. i f T  is a C.o contractio~n on H with 1 <_ dT < co and dT # tiT*, 

then T dilates by one dimension to another Co contraction T with d~2 = dT -- 1 and 

d~, =dT* - -1 .  

P R O O F .  The c a s e  dr : 1 is by Lemma 2.4. For the remaining part  of the proof, 

we assume that  dT > 1. Since T is of class C.0, its minimal isometric power dilation V is a 

unilateral  shift with multiplicity tiT, (cf. [7, Theorem VI.3.1]). We may assume that  V has 

the form 

,l 0 1 V =  T = 0 S,~-i D~ 
0 0 T 
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o n  H1 @ H2 G H, whree n = dr .  We claim that  ran D I =  ker S~ and r a n  D2 = ker S.;_ 1. 

Indeed, from V*V = 1 we can compute that  S~D1 = 0 and S~_1D2 = 0. Hence ran D1 _C 

ker S{ and ran D2 __ ker S~_1 hold, and, in particular,  rank D1 _< 1. If rank D1 = 0, that  

is, if D1 = 0, then 

[ S~_, D2 ] 0 T 

is an isometric power dilation of T smaller than V, which contradicts our assumption on the 

minimali ty  of V. Hence we must have rank D1 = 1 or ran D1 = ker S~. On the other hand, 

if ran D~ r ker S~'1,  then, expressing V as 

S1 
0 

V =  0 
0 
0 

on H1 | ( / /20  ker S~_l)O(ker S~_lQran 

0 0 0 D1 
A B C  0 
0 0 0 0 
0 0 0 D3 
0 0 0 T 

D2)| D2 �9 H,  the operator  

$1 0 0 D1 
0 A C 0 
0 0 0 Dz 
0 0 0 T 

is an isometric power dilation of T smaller than V, again contradicting the minimali ty of V. 

Therefore, ran D2 = ker S~_ 1 as asserted. If we let 

T,= [ S~-1 D2 ] 
0 T ' 

then T'  is a C.0 contraction. From V*V = 1, we have 

0 D~D1 + = 1, 

and hence dr, = rank (1 - T'*T')= rank D{Da = rank D1 = t.  On the other hand, we also 

have dr,, > 1 since if dr,, = 1 then T ~ is a Go(N) contraction which would imply that  S~-1 is 

also of class Co(N), certainly a contradiction. Hence Lemma 2.4 is applicable,  which yields 

a unilateral  shift dilation ! / '  of T ~ by one dimension. Assume that  

V t = 0 T Txa on H2 @ H �9 C. 

Ts~ T32 Tss 
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Since V ~ and S~-I are both unilateral shifts, we have Tsl = O. Hence the contraction 

Ts2 T33 

is of class C.0. Letting D = [D2 T13], we next check that ran D = ker S *  1. Since V'*V' = l, 

we have S~_ID = 0 and hence ran D C_ ker S*~_1. For the converse inclusion, let y E ker 

S~ 1=ranD2. T h e n ~ t = D 2 z f o r s o m e x i n H a n d h e n c e y = D [  x ] - 0 is in ran D. Now we 

show that @ = dz - i. Since 

V ' =  [ S~-10 TO ] _  

is an isometry, a simple computation yields 1 - T*T = D*D. Thus @ = rank D'D = rank 

D = n -  1 = dT -- 1. Finally, dp, = dT, -- 1 follows from the Fredholm theory and the identity 

de+d im ker T* = d~ .+dim ker T as before. This shows that T is the desired dilation of T . ,  

We are now ready for the proof of the 

S U F F I C I E N C Y  OF T H E O R E M  2.1. The assertion is trivial if dT = 0 and 

is a consequence of Lemma 2.4 if dr  = 1. In general, if dT > 1, then apply Lemma 2.5 

repeatedly to obtain a dilation 2b of T by @-dimension which is unitarily equivalent to 

Sk, k=dT*- -dT .  | 

The next theorem~ the main result of this section, shows that among contractions 

with at least one defect index finite, dilation to a unilateral shift and power dilation to one 

are about the same. The only difference is on the muttipIicity of the unilateral shift to which 

the contraction is (power) dilated. 

T H E O R E M  2.6. Let T be a contraction with at least one defect index finite. 

Then the following conditions are equivalent: 

(a) T dilates to some Sk,1 < k < co; 

(b) T power dilates to some So, 1 < g < co; 

(c) T is of class C.o. 

Moreover, in this case, the minimum value of k in (a) is 1 if dT -= tiT* and dT* -- dT if 

otherwise, and the minimum value of g in (b) is dT.. 

Since a C.0 contraction with equal and finite defect indices must be of class Co(N), 

we now recall the relevant definitions of such operators. Let T be a completely nonunitary 

(c.n.zz.) contraction, that is, T has no nontrivial reducing subspace on which T is unitary. T 

is of class Co if there is a nonzero function f in H ~176 such that f (T )  = 0, where f(T) is formed 

according to the Sz.-Nagy-Foias functional calculus. In this case, there is a (nonconstant) 

inner function r in H ~176 such that tb(T) = 0 and it divides any function f in H ~ with 



Takahashi and Wu 107 

f (T)  = 0. Such a q5 is unique up to a scaIar multiple with modulus one and is called the 

minimal function of T. Note that the defect indices of any C0 contraction are equal. A 

Co contraction is of class C0(N) (N a positive integer) if its defect indices are at most N. 

An example of Co(N) contractions is the operator S(qS), where 4 is any (nonconstant) inner 

function, on H(4)  = H 2 O &H 2 defined by S ( 4 ) f  = P(zf(z)) ,  where P is the (orthogonal) 

projection onto H(~b). The defect indices of S(qS) are equal to 1 and the minimal function is 

4. 

For convenience, we denote the unilateral shift of multiplicity 1 by S. The next 

lemma facilitates the dilation to S. It slightly generalizes [9, Theorem 2.7]. 

L E M M A  2.7. For (nonconstant) inner functions r = 1 ,2 , - . - ,  the direct 

sum E~ |  dilates to S. 

P R O O F .  As proved in [9, Theorem 2.7], for an inner function 41 there is al, 0 < 

al _< 1, such that the unilateral shift S on g2 is unitarily e, uivalent to 

0 

s(+~) i 

0 0 . . .  al 0 
1 0 

i 0 

]_ '.. 

where the unspecified entries are all zero. Hence there are orthonormal vectors t en ,  e12,' '  .} 

in g2 such that the compression P~SIK1 , where K1 = V{e11, e~2," '} and P1 is the (ortho- 

gonal) projection onto/(1,  is unitarily equivalent to S(r Applying this to the operator in 

the lower right corner of the above matrix, we obtain that S is unitarily equivalent to 

0 

s(+2) i 

0 0 " - "  a 2  0 

1 0 

1 0 

1 

0 

S(+l) i 

0 0 .-. al 0 



108 Takahashi and Wu 

Hence there exist orthonormaI vectors {e2~, e22,' '  "} in g2 all orthogonal to {en, e~2,' ' "} such 

that P2SIK2, where ](~ = V{e2~, e22, '- '} and P2 is the (orthogonal) projection onto K2, is 

unitarily equivalent to S(4;2). Repeating this argument indefinitely results in the orthonormal 

vectors {e~j,i,j >_ 1} with the property that on g2 = K �9 K •  = V{eij,i,j >_ 1}, S has 

the representation 

This completes the proof . ,  

L E M M A  2.8. Every Co contraction dilates to the unilateral shift S. Moreover, 

any dilation of a Co contraction to some S~, 1 </~ < oo, must be by infinite dimension. 
P R O O F .  It was shown in [6, Lemma 4] that enery Co contraction T with mini- 

mal function 4; can be extended to the operator S! r  G -~" @ S(~fl). Hence our first assertion 

dT 
follows from Lemma 2.7. 

If the Co contraction T dilates to S~ by finite dimension, then from the fact that  

T is Fredholm with index 0 and that Sk and T Q 0 differ by a finite-rank operator we arrive 

at - k  = ind Sk = ind T=0,  a contradiction. This proves the second assertion. ! 

P R O O F  OF  T H E O R E M  2.6. The equivalence of (b) and (c), together with 

the assertion on the minimum value of ~, is the classical result of Foias (cf. [4, Problem 

152]). The implication (c) ~ ( a )  and the assertion on the minimum value of k, other than 

the fact that if the Co contraction T with dT< dT* dilates to Sk by infinite dimension, 

then dr* - dT _< k, are consequences of Theorem 2.1 and Lemma 2.8. We now proceed 

to prove this claim. Indeed, under the assumption d T <  tiT., Theorem 2.1 implies that T 

also dilates to Sd by n-dimension, where d = dr. - d r  and n = dr. Hence we may assume that 

(*) Sk = [ Sd+ cA] 

for some finite-rank operator F. Since S~Sk = 1, a simple computation yields (1) S~5d + 
S~F+F*Se+F*F+B*B = 1, (2) S~A+F*A+B*C = 0 and (3) A*A+C*C = 1. From (1), we 

have B~B = - S ~ F - F ~ S ~ - E * F  and hence B'B,  together with B, is of finite rank. Assume 

first that d" < oo. Since A = SdS~A + (1 - SdS~)A : -Sd(F*A + B'C) + (1 - SdS~)A by (2), 

A is also of finite rank. Hence S~ and Sd| differ by a finite-rank operator. Therefore, - k  

= i n d S k = i n d S d + i n d C = - d + i n d C o r i n d C = d - k .  Hence i f d > k ,  then C has the 

polar decomposition C = V(C*C)}, where V is a coisometry with dim ker V : d -  k. From 

(3), we obtain C = V(1 -A*A)}.  It is then easy to infer that C and V differ by a finite-rank 

operator, and thus the same is true for Sk and Sd | V. Since V is the direct sum of a unitary 
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operator U and the adjoint of some S,~ (rn = d - k) and S @ S" is a rank-one perturbation 

of the simple bilateral shift W, we infer that  Sk and Sk | U (9 W (9 " "  (9 W differ by a 
v 

7 n  

finite-rank operator. Carey's result [1, Proposition] implies that  these two isometrics have 

unitarily equivalent absolutely continuous unitary parts, which is a contradiction. Thus in 

the case d < 0% we have d < k. On the other hand, if d = e% then we infer from (*) that  

for any positive integer g there is a finite-rank F~ such that  Se + Fe dilates to Sk. Hence 

from what we've proved above, g _< k holds. This implies that  /c is also infinity. Thus 

d = dr.  - dT <_ k is always true. 

To complete the proof, we need show that  (a) ~ (c). The argument is analogous 

to the one in proving the necessity part  of Theorem 2.1. If T is not of class C.o, then it has 

the triangulation 

with T1 present. Since dzf <_ tiT1 <_ dT (because T1 is of class C.1) and drf _< dr* (because 

T2 is of class C.0), we have dTf < co. Proposition 2.2 implies that  T1 has no unilateral shift 

dilation and thus the same is true for T. This proves (a) ~ (c). I 

The following is an easy consequence of Theorem 2.6. 

C O R O L L A R Y  2.9. Let T be a contraction with at least one defect index finite. 

Then T dilates to the unilateral shift S i f  and only if T is of  class C.o and tiT* --dT = 0 or 

1. 

An operator T is algebraic if p(T) = 0 for some polynomial p. Since every alga- 

braic contraction can be written as the direct sum of a unitary operator with finitely many 

points in its spectrum and a Co contraction with minimal function a finite Blaschke prod- 

uct, the next corollary follows easily from Theorem 2.6. It generalizes [9, Theorem 2.7] for 

finite-dimensional operators. 

C O R O L L A R Y  2.10. The following conditions are eguivaIent for  an algebraic 

operator T: 

(a) T dilates to S; 

(b) T dilates to some S}, 1 < k <oo;  

(c) T power dilates to some St, 1 < g < oc; 

(d) T is a Co contraction; 

(e) T is a contraction with spectrum contained in D ( =  {z EC: ]z I < 1}). 

C O R O L L A R Y  2.11. I f T  is a strict contraction (It T II< I) or has numerical 

radius at most 1/2, then T dilates to the unilateral shift S. 

Recall that  the numerical radius of an operator T on H is the quantity sup 
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{ l ( r ~ , ~ ) l  : �9 e H ,  II �9 II = 1 }  

P R O O F .  It was proved in [10, Proposition 2.7] that  for every strict contraction 

T there is an inner function ~, 6@) = z~, such that T dilates to S(4;) | S(r |  Hence T 

dilates to S by Lemma 2.7. On the other hand, it was noted in [10] that  if T has numerical 

radius at most 1/2, then it dilates to S(p)  | S(~) |  where ~(z) = z 2. Hence T dilates 

to S as above . ,  

C O R O L L A R Y  2.12. Every operator dilates to a scalar multiple of the ~tnila- 

feral shift S. 

P R O O F .  Since for any operator some scalar multiple of it is a strict contraction, 

the assertion follows from Corollary 2 .11. .  

To conclude this section, we consider dilating normal operators and compact op- 

erators to a unilateral shift. 

C O R O L L A R Y  2.13. The following conditions are equivalent for  a normal op- 

erator T: 

(a) T dilates to S; 

(b) T dilates to some Sk, 1 < k < oo; 

(c) T power dilates to some S,,  1 < g < cxD; 

(d) T is a Coo contraction, that is, T ~ --~ 0 and T *~ -+ 0 in the strong operator 

topology; 

(e) T is a c.n.u, contraction. 

PROOF. The implications ( a / ~  (b) and (b) ~ (e) are trivial. The equivalences 
(c) ~ (d) and (d) r (e) are proved in [4, Problem 152] and [8, Lemma], respectively. To 

complete the proof, we need only check (e) ~ (a). Indeed, if T is a c.n.u, contraction, then 

by the spectral theorem T = ~ | where the T~s are all strict contractions. A similar 

argument as in the proof of Corollary 2.11 shows that  T dilates to an operator of the form 

2 j  |162 where each 6j is of the form 6j(z) = z ~j, nj >_ 1. (a) then follows from Lemma 

2.7. I 

C O R O L L A R Y  2.14. The following conditions are equivalent for  a compact 

operator T: 

(a) T dilates to some Sk,1 < k < oc; 

(b) T power dilates to some S,, 1 < g < oo; 

(c) T is a Coo contraction; 

(d) T is a contraction with spectrum contained in D. 

P R O O F .  If (a) holds, then obviously T is a c.n.u, contraction. Since T is 

compact,  the intersection or(T) N crD consists of eigenvalues of T. Hence T is c.n.u, implies 

that  or(T) N ~rD= ~, that is, or(T) is contained in D so (a) ~ (d). Since the implications (d) 
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=~ (c) and (c) =~ (b) are proved in [4, Problem 153] and [4, Problem 152], respectively, and 

(b) ~ (a) is trivial,  the proof is comple te . .  

We conclude this section by asking whether contractions which dilate to a uni- 

lateral  shift can always power dilate to one. In the cases we considered here, this is indeed 

true. The general case remains open. Another question worth investigating is whether a 

contraction with equal defect indices always dilates to the unilateral  shift S. In part icular,  

this is unknown for compact  contractions. (Note that  every compact contraction has both 

defect indices equal to infinity.) Since every finite-rank operator  is algebraic, Corollary 2.10 

affirms this for finite-rank contractions. 

3. F I N I T E - R A N K  P E R T U R B A T I O N  

As we have seen in Section 2, the result of Nakamura,  Lemma 2.3, on the rank- 

one per turbat ion  of unilateral  shifts plays a prominent role in our derivation of the dilation 

theorems. In this section, we generalize his result to a characterization of contractions which 

are finite-rank per turbat ions  of unilateral  shifts. Our main result is the following. 

T H E O R E M  3.1 Let T be a contraction and1 < k <_ oo. Then T = Sk + F 

for  some finite-rank operator F i f  and only i f  T is the direct sum of a multicyclic singular 

unitary operator U and a C.o contraction T1 with dr1 < co and dr? - dr1 = k. In this case, 

both #(U),  the multiplicity of  U, and drl are no bigger than rank F,  and furthermore the 

finite-rank operator F can be chosen so that rank F < #(U) + dry. 

Recall that  the multiplicity #(T)  of an operator T on H is the minimum cardinali ty 

o f a s u b s e t  X o f H f o r  w h i c h H = V { T ~ x  : n >_ O,z E X } .  T is multicyclic i f # ( T )  < oo 

and cyclic if #(T) = 1. 

The necessity part  of Theorem 3.1, together with the assertion #(U), dr1 < rank 

F ,  can be proved analogously as in [10, Theorem 4.1]; we omit  the proof. For the sufficiency, 

we need the following. 

L E M M A  3.2. [f T is a C.o contraction with dr < oo and dr r dr, ,  then there is 

an operator F with rank F <_ dr such that T + F is unitariIy equivalent to S~, k = dr~ - dT. 

P R O O F .  We prove this by induction on n = dr. The case n = 0 is trivial  

while n = 1 is the result of Nakamura (cf. Lemma 2.3). Now we assume that  the assertion 

is true for n - 1 and let T be a C.o contraction on H with dT = n _> 1 and dT* r n. By 

Lemma 2.5, T dilates to a C.0 contraction 5 ~ on H |  with @ = dr -- 1 and @,  =dT* -- 1. 

Since de ~; d~,, the induction hypothesis can be applied to yield an operator  C with rank 
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G _ n - 1 such that  T + G is unitarily equivalent to S/~, k = d~, - d~? = dT, -- dr. Let 

Since T + G~ dilates to T + G by one dimension, Theorem 2.1 implies that  7'1 -= T + G1 is of 

class C.0 with dT~ _< 1 and dr** - dT1 =/c = dr* -- dr. Now apply Lemma 2.3 to T1 to yield an 

operator F1 with rank F~ < 1 such that  T1 + F1 = T + G1 + F1 is unitarily equivalent to S~. 

Since rank (G1 + / ' 1 )  _< rank Ga+ rank F1 < n, this completes the proof of the induction, m 

S U F F I C I E N C Y  O F  T H E O R E M  3.1 The sufficiency and the choice of F 

satisfying rank F _< #(U) + tiT1 follows from Lemma 3.2 and Nakamura's  result [5, Proposi- 

tion 2] that  for any cyclic singular unitary operator U and 1 ___ k _< co, there is a rank-one 

operator F such that  Sk + F is unitarily equivalent to U @ Sk. I 

We remark that  in [5] Nakamnra actually proved the following more precise rank- 

one perturbation result: 

Let T be a contraction and 1 < k < ~ .  Then T = S~ + F for some ran/c-one 

operator F if and only if either (t)  T is the direct sum of a cyclic singular unitary operator 

andS~, or (2) T is of class C.o with d T =  l a n d d T . = k +  l. 

(The necessity is by [5, Theorems 2 and 3] and the sufficiency by [5, Proposition 2 and 

Corollary 3].) Our Theorem 3.1 is not strong enough to cover this case. It suggests that  

under the conditions of Theorem 3.1, the inequality r + tiT1 < rank F is probably true. 

This we are unable to prove at the present time. 

A c k n o w l e d g e m e n t s .  Unfortunately, the first author passed away on November 

28, 1996. The second author was supported by the National Science Council of the Republic 

of China, and would like to dedicate this paper to the memory of the first author. He would 

also like to express his gratitude to Prof. Man-Duen Choi for inspiring discussions related 

to the work here while he was visiting University of Toronto in 1994. 
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