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DILATION TO THE UNILATERAL SHIEFTS

Katsutoshi Takahashi and Pei Yuan Wu

The classical result of Folas says that an operator power dilates to a unilateral
shift if and only if it is a C'p contraction. In this paper, we consider the corresponding ques-
tion of dilating to a unilateral shift. We show tht for contractions with at least one defect
index finite, dilation and power dilation to some unilateral shift amount to the same thing.
The only difference is on the minimum multiplicity of the unilateral shift to which the con-
traction can be (power) dilated. We also obtain a characterization of contractions which are
finite-rank perturbations of a unilateral shift, generalizing the rank-one perturbation result
of Nakamura.

1. INTRODUCTION

The purpose of this paper is to address the problem, which bounded linear oper-
ator on a complex separable Hilbert space can be dilated to a unilateral shift. Recall that
an opertor A on space H is said to dilate (resp. power dilate) to operator B on K if there is
an isometry V from H to K such that A= V*BV (resp. A* =V*B"V for alln =1,2,--+)

or, equivalently, if B is unitarily equivalent to a 2 x 2 operator matrix

|

with A in its upper left corner (resp. B™ is unitarily equivalent to

T

* x|,
under the same unitary operator for all n = 1,2,---). The unilateral shift Sy of multiplicity
k(1 < k < o0) is the operator Sp(wo,z1,22,--+) = (0,20,21,--) on 2, ®H with dim
H=k.

The classical result of Folas settles the corresponding power dilation problem
completely: an operator T power dilates to some unilateral shift S; if and only if T is a con-
traction (|| T' ||< 1) of class Cly, that is, T' satisfies 7** — 0 in the strong operator topology,
and, moreover, in this case the minimum value of k is dim ran (1 — T7*) (cf. [4, Problem

152]). In this paper, we consider the dilation problem for various classes of operators. In
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Section 2 below, we will show that in all the cases we investigated {contractions with at least
one defect index finite, Cp contractions, strict contractions, normal contractions and com-
pact contractions) the two classes, one consisting of those which dilate to a unilateral shift
and the other those which power dilate, coincide. The only difference is on the minimum
multiplicity of the unilateral shift which can be (power) dilated to. In the dilation case,
this multiplicity can be as small as 1 if the two defect indices dp=dim ran (1 — T*T )% and
dr+ = dim ran(l — TT*)% of the contraction 7" under consideration are equal, and dp« — dr
if otherwise. This is in contrast to the multiplicity dr+ of the unilateral shift to which T
can be power dilated. Our proof depends on the result of Nakamura [5, Corollary 3] on the
rank-one perturbation of unilateral shifts and that of Carey [1, Proposition] on the finite-
rank perturbation of isometries.

In Section 3, we take up the problem of characterizing contractions which are
finite-rank perturbations of unilateral shifts. We prove in Theorem 3.1 that the com-
pletely nonunitary ones among such perturbations are exactly those Cg contractions T' with
dr < dp«. This generalizes the rank-one perturbation result of Nakamura (3] although our
proof is built upon his.

The monograph [7] by Sz.-Nagy and Foias is our standard reference for the ter-
minology and results of their contraction theory. We will also refer to some basic Fredholm

theory from time to time. For this, the reader can consult {2, Chapter XI].
2. UNILATERAL SHIFT DILATION

We say that operator A on H dilates to operator B on K by n-dimension
(0 < n <oo)if A= V"BV and dim (K © VH) = n for some isometry V : H — K.
We start this section with a characterization of operators which dilate to a unilateral shift
by finite dimension.

THEOREM 2.1. An operator T dilates to Sy by n-dimension (1 < k < 00,0 <
n < oo) if and only if T is a C.o contraction with dr < co and dr # dr.. In this case,
k = dp+ — dp and the minimum value for n is dr.

Note that if T is a C.q contraction, then dr < dy- always holds (cf. [7, Proposition
VI1.3.5]). ‘

To prove the necessity part of this theorem, we need the following proposition.
Its proof we omit since it is analogous to that of [10, Proposition 3.5]. Recall that a contrac-
tion T is of class Cyy if T"z 4 0 and T""z /4 0 in norm for any nonzero vector z. A Cp;

contraction has equal defect indices (cf. {7, Proposition VI.3.5]).
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PROPOSITION 2.2. If T isa Cyy contraction with finite defect indices or a
contraction with dr« < dr, then it has no unilateral shift dilation.

Now we can prove the

NECESSITY OF THEOREM 2.1. Assume that

T . n
S’k:{B é} on K =HaC

A simple computation yields T*T + B*B = 1. Hence dr = rank (1 — T~T) = rank B*"B <

n < co. If T is not of class Cg, then it has the canonical triangulation
T ox ) Ci *
T‘[ 0 TJ of type [ 0 c.o}
with T} present (cf. [7, Theorem I1.4.1]). Since dry < dr, (for Ty is of class C4) and
dr, < dr < oo (cf. [7, Proposition VIL.3.6]), we infer from Proposition 2.2 that Ty has no
unilateral shift dilation. Thus the same is true for 7', which contradicts our assumption.
Hence T must be of class C'y. To prove that dr # dr-, we appeal to the Fredholm theory.
Since Sj, and T & 0 differ by a finite-rank operator, we have that T is left Fredholm and ind

T = ind 5, = —k. The identity dr4 dim ker 7™ = dr++dim ker T (cf. [3, Lemma 4]) then
implies that d7» — dr = k& and hence dr < dr«. n

The sufficiency part of Theorem 2.1 will be proved through a series of lemmas.
The first one appeared in [5, Corollary 3[; the assertion on ran F follows from the proof in

there.

LEMMA 2.3. If T is a Cq contraction with dr = 1 and dp« 5 1, then there
is a rank-one operator F with ran F C ker T™ such that T + F is unitarily equivalent to
Sk, k =dprs — 1.

We next transfer this result into one concerning dilations

LEMMA 2.4. IfT is a Cq contraction on H with dr = 1 and dr+ # 1, then
T dilates to the unilateral shift Si, k = dr- — 1, by one dimension.

PROOF. Note that T is a left Fredholm operator with ind T = 1 — dp+ (cf. [10,
Lemma 3.3]). Let K = ker 1™, J be the inclusion map from K to H, and

T’:[gg} on HoK.

Since

e [TT T [1-TT 0
I_TT““[J*T J*JJ_[ 0 oJ
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and

o " 0
" = [ J*T==1 } )

it is easily seen that 7" is also a C4 contraction with dpr = 1. We next show that drw = dp«.
This is done by considering the following two separate cases:

(1) dr~ = oc. In this case, since dr- < dpr 4 dpi» == 1 4 dp» (cf. [7, Proposition
VI1.3.6)), we have dr = oo = dy-.

{2} 1 < dr+ < co0. Since K C ran (1 — TT™), the assertion dp« < oo implies that
K is finite-dimensional. Then 77 and T & 0 differ by a finite-rank operator. Since T is a
Fredholm operator with ind T = 1 — d7+, we conclude that 7" is also Fredholm and ind 7" =
ind T' =1 — dy» = dgv — dr-. The identity dy.+dim ker 7" = dr~+dim ker 77 then implies
that dpw = dps.
By Lemma 2.3, there is a rank-one operator " with ran F’ C ker 7" = {0} & K such that
T’ 4 F' is unitarily equivalent to Si. If

0 0 0 T 5L J;
F' = Fl F2 F3 and T’ = 0 0 0
0 0 0 0 0 0

on H® ran F' @ (K6S ran ), then

T"E[T Jl}

P

is unitarily equivalent to some S; (1 < j < k). But 7" and T differ by a finite-rank operator.
Fredholm theory implies that ind 7”7 = ind T or j = k. Hence 7" is unitarily equivalent to
Si. Since rank F' = 1, this shows that T dilates to Sy by one dimension, completing the

proof. B

The next lemma generalizes Lemma 2.4 to C, contractions T' with dr < oco.

LEMMA 2.5. IfT is a Cq contraction on H with 1 < dr < oo and dr # dr~,
then T dilates by one dimension to another Cgo contraction T with di = dy —1 and
dpe = dpr — 1.

PROOF. The case d7 = 1is by Lemma 2.4. For the remaining part of the proof,
we assume that dr > 1. Since T is of class Clg, its minimal isometric power dilation V is a
unilateral shift with multiplicity dr+ (cf. {7, Theorem V1.3.1]). We may assume that V has

the form

0 S'n.—l DQ

Sy 0 Dy
g g T
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on Hy ® Hy ® H, whree n = dy. We claim that ran Dy= ker S} and ran D; = ker S7_,.
Indeed, from V*V = 1 we can compute that S;Dy = 0 and S;_, D, = 0. Hence ran Dy C
ker 57 and ran D, C ker S;_; hold, and, in particular, rank Dy < 1. If rank D, = 0, that
is, if Dy = 0, then

Sn—l D2
0 T

is an isometric power dilation of T" smaller than V, which contradicts our assumption on the
minimality of V. Hence we must have rank D; =1 or ran Dy = ker S;. On the other hand,

if ran Dy # ker S;_,, then, expressing V as

S 0 0 0 D
0 A B C O
V=10 00 0 0
0 0 0 0 Ds
6 00 0 T

on Hy @ (H;6 ker S;_ )& (ker S;_;6ran D;)ran D, & H, the operator

Sl g 0 D1
0 A C O
0 0 0 Ds
0 00 T

is an isometric power dilation of T smaller than V, again contradicting the minimality of V.
Therefore, ran Dy = ker S _, as asserted. If we let

. Sn-—l DZ
=% 7]

then 7" is a Cp contraction. From V*V =1, we have

0 0 —
[0 D{D1}+T =1

and hence dy» = rank (1 — 7*T")= rank D;D; = rank D; = 1. On the other hand, we also

have dy~ > 1 since if dp» = 1 then 7" is a C5(V) contraction which would imply that S,_; is

also of class Co(INV), certainly a contradiction. Hence Lemma 2.4 is applicable, which yields

a unilateral shift dilation V’ of T’ by one dimension. Assume that

Sn-1 Dy Tiz

0 T T23 :} on Hz & H D C
T31 T32 T33

V=
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Since V' and S,_; are both unilateral shifts, we have T5; = 0. Hence the contraction

ol T Tzs}

T32 T33

is of class Cg. Letting D = [Dy T3], we next check that ran D = ker S;_,. Since V"V’ =1,

we have S;_;D = 0 and hence ran D C ker S;;_;. For the converse inclusion, let y € ker

S

show that d7 = dr — 1. Since

n—1

0

=ran D;. Then y = Dyz for some z in H and hence y = D { < } is in ran D. Now we

;[ Seer 0
V‘{ 0 TJ

is an isometry, a simple computation yields 1 — 77 = D*D. Thus dj = rank DD = rank
D =n—1=dr—1. Finally, ds. = dy+—1 follows from the Fredholm theory and the identity
dz+dim ker T = dg.+dim ker T as before. This shows that 7' is the desired dilation of 7. 8

We are now ready for the proof of the

SUFFICIENCY OF THEOREM 2.1. The assertion is trivial if d7 = 0 and
is a consequence of Lemma 2.4 if dr = 1. In general, if d¢ > 1, then apply Lemma 2.5
repeatedly to obtain a dilation T of T by dr-dimension which is unitarily equivalent to

S}CJC = dT* — dT. ]

The next theorem, the main result of this section, shows that among contractions
with at least one defect index finite, dilation to a unilateral shift and power dilation to one
are about the same. The only difference is on the multiplicity of the unilateral shift to which
the contraction is (power) dilated.

THEOREM 2.6. Let T be a coniraction with at least one defect indez finite.
Then the following conditions are equivalent:

(a) T dilates to some S, 1 < k < co;

(b} T power dilates to some S, 1 < £ < oo;

(c) T is of class Cl.

Moreover, in this case, the minimum value of k in (a) is 1 if dp = dp+ and dp. — dr of
otherwise, and the minimum value of £ in (b) is dr-.

Since a C'g contraction with equal and finite defect indices must be of class Co(V),
we now recall the relevant definitions of such operators. Let T be a completely nonunitary
(c.n.u.) contraction, that is, T’ has no nontrivial reducing subspace on which T is unitary. T
is of class Cp if there is a nonzero function f in H* such that f(T") = 0, where f(T') is formed
according to the Sz.-Nagy-Folas functional calculus. In this case, there is a (nonconstant)

inner function ¢ in H* such that ¢(T) = 0 and it divides any function f in H™ with



Takahashi and Wu 107

f(T) = 0. Such a ¢ is unique up to a scalar multiple with modulus one and is called the
minimal function of T. Note that the defect indices of any Cy contraction are equal. A
Co contraction is of class Co(N) (N a positive integer) if its defect indices are at most N.
An example of Cy(V) contractions is the operator S(¢), where ¢ is any (nonconstant) inner
function, on H(¢) = H* & ¢H* defined by S(¢)f = P(z2f(z)), where P is the (orthogonal)
projection onto H(#). The defect indices of S(¢)} are equal to 1 and the minimal function is
@.

For convenience, we denote the unilateral shift of multiplicity 1 by S. The next
lemma facilitates the dilation to S. It slightly generalizes {9, Theorem 2.7].

LEMMA 2.7. For (nonconstant) inner functions ¢n,n = 1,2,---, the direct
sum ¥, &S(Pn) dilates to S.

PROOF. Asproved in [9, Theorem 2.7, for an inner function ¢; thereis a;,0 <
a; < 1, such that the unilateral shift S on £2 is unitarily equivalent to

B, 0 i

5(41)

= O

where the unspecified entries are all zero. Hence there are orthonormal vectors {e11, €12, - -}
in £2 such that the compression P;S|K;, where K; = V{ey, ers, - -} and P, is the (ortho-
gonal) projection onto Kj, is unitarily equivalent to S{¢;). Applying this to the operator in
the lower right corner of the above matrix, we obtain that S is unitarily equivalent to

0
5(¢1)
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Hence there exist orthonormal vectors {es, €22, - -} in £* all orthogonal to {e;;, 12, - -} such
that P,S|K,, where Kp = V{es1, e, -} and P, is the (orthogonal) projection onto Kj, is
unitarily equivalent to S(¢,). Repeating this argument indefinitely results in the orthonormal
vectors {e;;,1,7 > 1} with the property that on £* = K @ K, K = V{e;;,1,5 > 1}, S has
the representation

[ T ®S(8n) }

* *

This completes the proof. &
LEMMA 2.8. Every Cq contraction dilates to the unilateral shift S. Moreover,

any dilation of a Cy contraction to some Si,1 < k < co, must be by infinite dimension.
PROOF. It was shown in [6, Lemma 4] that enery Cy contraction T with mini-
mal function ¢ can be extended to the operator S(¢) & --- @ S(4). Hence our first assertion
Nt i s’

dr
follows from Lemma 2.7.

If the Cy contraction T dilates to Si by finite dimension, then from the fact that
T is Fredholm with index 0 and that S and T & 0 differ by a finite-rank operator we arrive

at —k = ind Sg = ind T=0, a contradiction. This proves the second assertion.

PROOF OF THEOREM 2.6. The equivalence of (b) and (c), together with
the assertion on the minimum value of £, is the classical result of Foias (cf. [4, Problem
152]). The implication (¢) =>(a) and the assertion on the minimum value of k, other than
the fact that if the Co contraction T with dr < drs dilates to Si by infinite dimension,
then dp« — dr < k, are consequences of Theorem 2.1 and Lemma 2.8. We now proceed
to prove this claim. Indeed, under the assumption dr < dp+, Theorem 2.1 implies that T

also dilates to S; by n-dimension, where d = dy+«—dg and n = dr. Hence we may assume that

) so=| A7 2]

for some finite-rank operator . Since S;Sy = 1, a simple computation yields (1) S;5; +
S3F+F*Sy+F*F+B*B =1, (2) S;A+F*A+B*C = 0and (3) A"A4+C*C = 1. From (1), we
have BB = —S5F — F"S;— F*F and hence B*B, together with B, is of finite rank. Assume
first that d < co. Since A = SyS5A+ (1~ 5455)A = —Sy(F*A+ B*C)+ (1 — 5455)A by (2),
A is also of finite rank. Hence Si and S;®C differ by a finite-rank operator. Therefore, —£
=ind S =ind Sy +ind C = —d+ind C orind C = d—k. Henceif d > k, then C has the
polar decomposition C' = V(C*C)%, where V is a coisometry with dim ker V = d — k. From
(3), we obtain ' = V(1 — A*A)%. It is then easy to infer that C and V differ by a finite-rank

operator, and thus the same is true for 53 and S3@ V. Since V is the direct sum of a unitary
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operator U and the adjoint of some S, {m =d — k) and S & 5~ is a rank-one perturbation
of the simple bilateral shift W, we infer that Sy and S, U @ W @ --- & W differ by a
e et

finite-rank operator. Carey’s result [1, Proposition] implies that these tnvlvo 1sometries have
unitarily equivalent absolutely continuous unitary parts, which is a contradiction. Thus in
the case d < oo, we have d < k. On the other hand, if d = co, then we infer from () that
for any positive integer £ there is a finite-rank F; such that S; + F, dilates to S;. Hence
from what we've proved above, £ < k holds. This implies that & is also infinity. Thus
d = dp» — dp < k is always true.

To complete the proof, we need show that (a) = (c). The argument is analogous
to the one in proving the necessity part of Theorem 2.1. If 7" is not of class Cl, then it has

the triangulation
_ Tl * C-l *
T—[O T2} of type {0 C’.o}
with T present. Since dr; < dr, < dr (because 71 is of class C'y) and dry < dr- (because

T, is of class C.p), we have dT; < 0. Proposition 2.2 implies that 77 has no unilateral shift
dilation and thus the same is true for T. This proves (a) = (c). n

The following is an easy consequence of Theorem 2.6.

COROLLARY 2.9. Let T be a contraction with at least one defect indez finite.
Then T dilates to the unilateral shift S if and only if T' is of class Cy and dp« — dr =0 or
1.

An operator T is algebraic if p(T) = 0 for some polynomial p. Since every alge-
braic contraction can be written as the direct sum of a unitary operator with finitely many
points in its spectrum and a Cp contraction with minimal function a finite Blaschke prod-
uct, the next corollary follows easily from Theorem 2.6. It generalizes [9, Theorem 2.7] for
finite-dimensional operators.

COROLLARY 2.10. The following conditions are equivalent for an algebraic
operator T

(a) T dilates to S,

(b) T dilates to some Sg, 1 <k < oo;

(¢) T power dilates to some Sp,1 < £ < co;

(d) T is a Cy contraction;

(e) T is a contraction with spectrum contained in D(= {z €C: |z] < 1}).

COROLLARY 2.11. IfT is a strict contraction {|| T ||< 1) or has numerical
radius at most 1/2, then T dilates to the unilateral shift S.

Recall that the numerical radius of an operator T on H is the quantity sup
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{

(Tz,z){:z€H, |lz|=1} .

PROOF. It was proved in [10, Proposition 2.7] that for every strict contraction
T there is an inner function @, ¢(z) = 2", such that T' dilates to S(¢) B S(¢) B ---. Hence T
dilates to S by Lemma 2.7. On the other hand, it was noted in [10] that if 7' has numerical
radius at most 1/2, then it dilates to S() ® S(¢) @ - - -, where p(z) = 22, Hence T dilates

to S as above. &

COROLLARY 2.12. Every operator dilates to a scalar multiple of the unila-
teral shift S.
PROOF. Since for any operator some scalar multiple of it is a strict contraction,

the assertion follows from Corollary 2.11. n

To conclude this section, we consider dilating normal operators and compact op-
erators to a unilateral shift.

COROLLARY 2.13. The following conditions are equivalent for a normal op-
erator T

(a) T dilates to S;

(b) T dilates to some Si,1 < k < oo;

(c) T power dilates to some Sp,1 < £ < oo;

(d) T is a Coo contraction, that is, T™ — 0 and T*" — 0 in the sirong operator

topology;

(e) T is a c.n.u. contraction.

PROOF. Theimplications (a) = (b) and (b) = (e) are trivial. The equivalences
(¢) ¢ (d) and (d) < (e) are proved in [4, Problem 152] and [8, Lemma], respectively. To
complete the proof, we need only check (¢) = (a). Indeed, if T is a c.n.u. contraction, then
by the spectral theorem T' = 3, &T,, where the T} s are all strict contractions. A similar
argument as in the proof of Corollary 2.11 shows that 7 dilates to an operator of the form
3 ®S(4;), where each ¢; is of the form ¢;(2) = 2™,n; > 1. (a) then follows from Lemma
2.7.n

COROLLARY 2.14. The following conditions are equivalent for o compact
operator 1
(a)
(b)

(c) T is a Coo contraction;

T dilates to some Si,1 < k < oo;
T power dilates to some Sp,1 < £ < o0

(d) T is a contraction with spectrum contained in D.
PROOF. If (a) holds, then obviously T is a c.n.u. contraction. Since T' is
compact, the intersection o(T) N oD consists of eigenvalues of T. Hence T is c.n.u. implies

that o(T) N oD= 4, that is, o(T") is contained in D so (a) = (d). Since the implications (d)
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= (c) and (c) = (b) are proved in [4, Problem 153] and [4, Problem 152], respectively, and
(b} = (a) is trivial, the proof is complete. n

We conclude this section by asking whether contractions which dilate to a uni-
lateral shift can always power dilate to one. In the cases we considered here, this is indeed
true. The general case remains open. Another question worth investigating is whether a
contraction with equal defect indices always dilates to the unilateral shift S. In particular,
this is unknown for compact contractions. (Note that every compact contraction has both
defect indices equal to infinity.) Since every finite-rank operator is algebraic, Corollary 2.10

affirms this for finite-rank contractions.
3. FINITE-RANK PERTURBATION

As we have seen in Section 2, the result of Nakamura, Lemma 2.3, on the rank-
one perturbation of unilateral shifts plays a prominent role in our derivation of the dilation
theorems. In this section, we generalize his result to a characterization of contractions which
are finite-rank perturbations of unilateral shifts. Our main result is the following.

THEOREM 3.1 Let T be a contraction and 1 < k < oo. ThenT = S, + F
for some finite-rank operator F if and only if T is the direct sum of a multicyclic singular
unitary operator U and a Co contraction Ty with dy, < 0o and dry — dr, = k. In this case,
both u(U), the multiplicity of U, and dr, are no bigger than rank F, and furthermore the
finite-rank operator F' can be chosen so that rank F' < u(U) + dr,.

Recall that the multiplicity 4(T) of an operator T on H is the minimum cardinality
of a subset X of H for which H = V{T"z :n > 0,z € X}. T is multicyclic if p(T) < oo
and eyelic if p(T) =1.

The necessity part of Theorem 3.1, together with the assertion p(U),dr, < rank
F, can be proved analogously as in [10, Theorem 4.1]; we omit the proof. For the sufficiency,
we need the following.

LEMMA 3.2. IfT is a Cy contraction with dr < co and dy # dr+, then there is
an operator ' with rank F < dr such that T + F is uniterily equivalent to Sy, k = dp« — dr.

PROOF. We prove this by induction on n = dy. The case n = 0 is trivial
while n = 1 is the result of Nakamura (cf. Lemma 2.3). Now we assume that the assertion
is true for n — 1 and let T be a C; contraction on A with dr = n > 1 and dr+ # n. By
Lemma 2.5, T dilates to a Cq contraction T on H@C with di =dr—1 and ds. = dps — L.
Since df # dj., the induction hypothesis can be applied to yield an operator G with rank
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G < n —1 such that T+ @ is unitarily equivalent to Sy, k = ds. —dp = dr+ — dr. Let

G= {G*l :l on H&C.
Since T + (G, dilates to T+G by one dimension, Theorem 2.1 implies that Ty = T + Gy is of
class Co with dr, <1 and dT; ~dr, = k = dr» —dp. Now apply Lemma 2.3 to Ty to yield an
operator Fy with rank Fy <1 such that Ty + Fy = T+ Gy + F} is unitarily equivalent to Sj.
Since rank (Gy + F1) < rank Gi+ rank Fy < n, this completes the proof of the induction. a

SUFFICIENCY OF THEOREM 3.1 The sufficiency and the choice of F
satisfying rank F < p(U) 4 dr, follows from Lemma 3.2 and Nakamura’s result [5, Proposi-
tion 2] that for any cyclic singular unitary operator U/ and 1 < &k < co, there is a rank-one
operator F such that Sp + F' is unitarily equivalent to U @ S. 8

We remark that in [5] Nakamura actually proved the following more precise rank-
one perturbation result:

Let T be a contraction and 1 < k < oc. Then T' = Sy + F for some rank-one
operator F if and only if either (1) T is the direct sum of a cyclic singular unitary operator
and Sy, or (2) T is of class Co with dr =1 and dr- = k4 1.

(The necessity is by [5, Theorems 2 and 3] and the sufficiency by [3, Proposition 2 and
Corollary 3].) Our Theorem 3.1 is not strong encugh to cover this case. It suggests that
under the conditions of Theorem 3.1, the inequality p(U) + dr, < rank F' is probably true.

This we are unable to prove at the present time.
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