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Abstract—This paper presents a spatial domain method for lossless still image compression using a new
scheme: base switching (BS). The given image is partitioned into non-overlapping fixed-size subimages.
Different subimages then get different compression ratios according to the base values of the subimages. In
order to increase the compression ratio, a hierarchical technique is also used. It is found that the
compression ratio of the proposed algorithm can compete with that of the VBSS and the international
standard algorithms known as JBIG and Lossless JPEG. In addition, when the BS method is compared
with the S#P method, which is an excellent frequency domain method that used EZW, although S#P
method gains about 9% increase in the compression ratio, its encoding time (excluding I/O) is about three
times longer than ours. The math theory needed to build up the proposed compression scheme is also
provided. ( 1998 Published by Elsevier Science Ltd on behalf of the Pattern Recognition Society. All
rights reserved

Still image Lossless compression Base-switching Hierarchical technique JBIG Lossless
JPEG VBSS EZW S#P

1. INTRODUCTION

There are many algorithms for lossy compression of
still images compression and they usually achieve very
high compression ratio.(1) These algorithms usually
assume that the reconstructed images will let human
eyes feel no difference. However, in certain situations,
lossy compression is inappropriate due to the need of
exact fidelity or legality. For example, if we get many
unidentified images which cannot be analyzed im-
mediately due to the lack of suitable analyzer on the
scene, then we cannot use lossy compression algo-
rithms to compress images. (This kind of application
did occur in, say, satellite or medical image process-
ing.) The reason lossy compression is not suitable in
this case is that they might ignore some important
information imperceptibly, and the lost information
cannot be recovered. Note that the need of lossless
compression might also arise in the application where
some kinds of lossy compression has already been
done and further loss is not desired.(2)

Since many lossless compression algorithms have
been developed to compress black-and-white (binary)
images (the international standards for binary images
include the compression algorithms MH,(3) MR,(3)
MMR,(4) JBIG,(5~7) and so on), we only discuss in
this paper the gray-value images, and present a new
and efficiently calculated lossless method to compress
gray-value images (or a color component of color

images) in spatial domain. In Section 2 we review the
international standard algorithms JBIG and Lossless
JPEG(8~11) for gray-value images. Some recent com-
pression methods such as VBSS (variable block size
segmentation) (12,13) and EZW (embedded zerotree
wavelet)-based algorithms(13~15) are also introduced
there. We then present our new algorithm in Section
3. The experimental results and time complexity anal-
ysis are provided in Section 4. The comparisons with
some other lossless compression methods are also
included there. Concluding remarks are in Section 5.

2. A SHORT REVIEW OF SOME LOSSLESS COMPRESSION
METHODS FOR GRAY-VALUE IMAGES

Two lossless still image compression algorithms,
JBIG and Lossless JPEG, have recently become inter-
national standards. The algorithms are the special
cases of the parameterizable JBIG(5~7) and
JPEG(8~11) standards, respectively.

JBIG (Joint Bi-level Image expert Group coding)
was defined in CCITT Recommendation T.82, which
for gray-level coding breaks images down into the
‘‘bit-planes’’ of the images, and then compresses these
bit-planes with its binary algorithm (the algorithm
defined in CCITT T.82 for binary compression uses
an adaptive 2D coding model, followed by an adap-
tive arithmetic coder(16)). In order to maximize com-
pression, people [see reference (16)] usually set up the
parameters D, P, etc., as follows: First, set D to 0. Here,
D denotes the number of different spatial resolution
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Fig. 1. The flowchart of the proposed base-switching (BS) method.

layers, and D"0 means no progressive spatial resolu-
tion buildup. Second, use version ‘‘3L’’ which means
three lines each time, third, use gray coding of the
bit-planes, fourth, set P to 8 to mean 8 bits for each
pixel, and fifth, the model’s adaptivity is not used.

JPEG (Joint Photographic image Expert Group)
was defined in CCITT Recommendation T.81. For
lossless coding [this differs from the lossy mode of
JPEG well-known to most of the people; the JPEG
that we mention here is in its lossless mode and hence
does not require the use of the discrete cosine trans-
form (DCT) coding(17)], JPEG utilizes a customizable
from of differential pulse code modulation (DPCM)
coding(18) and a variable-length representation of the
DPCM errors.(19) There are two choices—custom
Huffman or adaptive arithmetic coder—to follow this
model. The word ’’custom‘‘ denotes the use of image-
specific tables or parameter settings. There are some
parameters in this lossless mode, namely, a choice of
seven DPCM predictors ‘‘¹ ’’, plus 16 upper ‘‘º’’ and
lower ‘‘¸’’ thresholds on the coding of DPCM errors.
In order to maximize compression, people [see refer-
ence (16)] usually assign these parameters as ‘‘¹"2’’
(i.e. use DPCM prediction from the pixel value im-
mediately above); ‘‘º"1’’ and ‘‘¸"0’’ (i.e. use the
default settings for the error thresholds); and ‘‘A’’ (i.e.
use an adaptive arithmetic coder).

Another well-known lossless compression algo-
rithm proposed by Ranganathan et al. is variable
block base segmentation(12,13) (VBBS) which is based

on both image characteristics that give rise to local
and global redundancy in image representation.
VBSS segments the original image into variable size
blocks and encodes them depending on the character-
istics exhibited by the pixels within the block.

Different from the methods operating in the spatial
domain, Shapiro’s frequency domain work(1,20) that
uses embedded zerotree wavelet (EZW) encoding is
becoming a landmark. The EZW algorithm is based
on four key concepts: (1) a discrete wavelet trans-
form(21~25) (DWT) or hierarchical subband de-
composition,(26) (2) prediction of the absence of
significant information across scales using zerotrees of
wavelet coefficients, (3) entropy-coded successive-ap-
proximation quantization, and (4) adaptive arithmetic
coding. Because the wavelet transform is invertible
(the interested readers can see references (21)—(25) for
the details), some authors applied the concept of EZW
to lossless image compression.(13~15)

3. THE PROPOSED ALGORITHM

3.1. System overview

As shown in Fig. 1, we first divide the original
image (gray-level data) into subimages of size n]n.
The subimages are then processed one by one. For
each subimage, we have to determine whether the
proposed base-switching (BS) algorithm is worthy to
apply to the subimage or not. In other words, if the
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Fig. 3. Subimage A@. Each g@
i
is g

i
!m; i"0, 1,2 , 8.

Fig. 2. An arbitrary given subimage A.

proposed BS will cause data explosion, i.e., will cause
the b.p.p. (bits per pixel) be not less than 8 for this
gray-level subimage, then we skip this subimage be-
cause the whole subimage will be transmitted in the
traditional pixel-by-pixel manner (n]n pixels, and
each pixel has 8 bits). On the other hand, if the data
explosion does not occur, then the proposed BS is
used to transmit this subimage. Of course, an extra bit
is needed to indicate whether the subimage is encoded
(by the proposed BS) or not. (Therefore, the total
number of bits needed to transmit a non-BS subimage
is one more bit than that of the traditional pixel-by-
pixel manner.) Throughout this paper, the subimage
size used is 3]3 for the efficiency of compression
ratio.

3.2. Encoding a subimage by BS

Given a 3]3 subimage A, whose nine gray values
are g

0
, g

1
,2, g

8
(see Fig. 2), define the ‘‘minimum’’ m,

‘‘base’’ b, and the ‘‘value-reduced subimage’’ A@ (see
Fig. 3) of the subimage A by

m" min
04i48

g
i
, (1)

b" max
04i48

g
i
! min

04i48

g
i
#1, (2)

A@
3]3

"A
3]3

!m]I
3]3

, (3)

respectively. Here, each of the nine elements of I
3]3

is
1. Note that equation (3) means that

g@
i
"g

i
!m for all i"0, 1, 2,2 , 8. (4)

Also denote that

min
04i48

g@
i
"0 and max

04i48

g@
i
"b!1. (5)

Therefore, the nine-dimensional vector A@"(g@
0
,g@

1
,2,

g@
8
) can be treated as a nine-digit number (g@

0
, g@

1
,2, g@

8
)
b

in the base-b number system. For convenience, let
»

3]3
be the collection of all 3]3 subimage A @, and

the base-set B"M1, 2, 3,2 , 256N. Then we define an
integer-value function f : »

3]3
]BPMnon-negative

integersN by

f (A@, b)"the decimal integer equivalent to the base-b

number (g@
0
g@
1
,2, g@

8
)
b

"

8
+

i/0

g@
i
]bi (6)

"(2((g@
0
]b#g@

1
)]b#g@

2
)]b#2)

]b#g@
8
. (7)

It is easy to prove the following two properties.

Property 1. The inequality f (A@, b)(bN always holds.
Here, N"n2 is the number of the pixels in the subim-
age A@.

Proof. By equations (6) and (5), we have

f (A@, b)"
N~1
+

i/0

g@
i
]bi4

N~1
+

i/0

(b!1)]bi

"(b!1)
N~1
+

i/0

b@"(b!1)]
bN!1

b!1

"bN!1(bN. K

Property 2. For each base b, and for each given integer
j satisfying b!14j4+8

i/0
(b!1)]bi"bN!1, we

can find a unique 3]3 A@ such that f (A@, b)"j.

Proof. Just convert the base-10 number (j)
10

to
a base-b number (g@

0
g@
1
,2 , g@

8
)
b
. Note that j5b!1

is required because equation (5) has confined the out-
look of A@.

By Property 1, the number of bits needed to store
the integer f (A@, b) using a binary number is therefore
at most

Z
b
"vlog

2
b9w . (8)

When we want to reconstruct A @"(g@
0
g@
1
,2, g@

8
), all

we have to do is to switch that binary (base-2) number
to a base-b number (g@

0
g@
1
,2 , g@

8
)
b
.

3.2.1. Several possible ways to represent the subim-
age A @ according to the value of base b. As stated in
equation (5), for each subimage A @"(g@

0
g@
1
,2 , g@

8
),

we always have

minMg@
0
g@
1
,2, g@

8
N"0, (9)

maxMg@
0
g@
1
,2 , g@

8
N"b!1. (10)
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Fig. 4. If the position of i
.*/

and i
.!9

are known, then only
seven gray values needed to be encoded. Here, i

.*/
"3 and

i
.!9

"8 are known in this example.

1 bit 7 bits 8 bits 7 bits zJ
b
"vlog

2
b7w bits

c b m P (min, max) binary equivalent of
(g@

i
D04i48, iOi

.*/
, iOi

.!9
)
b

Therefore, at least one of the pixels of A@ has gray
value 0, and at least one of the pixels of A @ has gray
value b!1. There are at least two ways to store A@.
The first way is as stated at the end of Section 3.1,
namely, to store

b and a binary-equivalent of (g@
0
g@
1
,2 , g@

8
)
b
. (11)

The second way is to store

Mb; i
.*/

; i
.!9

N and Mg
i
D iOi

.*/
, iOi

.!9
N. (12)

(Here, i
.*/

3M0, 1,2 , 8N is such that g@
i.*/

"0, and
i
.!9

3M0, 1,2, 8N is such that g@
i.!9

"b!1. If more
than one i in M0, 1,2 , 8N have there g@

i
value 0, say,

g@
2
"g@

3
"g@

5
"0, then use the smallest i as i

.*/
(hence,

i
.*/

"2 in this case). An analogous statement making
i
.!9

unique can be stated likewise.) We analyze below
which of the two ways [(11) vs (12)] would save more
storage space. First, we reduce (12) to a simpler form
by Lemma 1 below.

Lemma 1. In the storage system (12), we can use 7 bits
to indicate the positions of the pair (i

.*/
, i

.!9
).

Proof. Because the size of the block A@ is 3]3, we
have 04i

.*/
48 and 04i

.!9
48. As a result, there

are 9]8"72 possible combinations of the pair
(i
.*/

, i
.!9

). Since 26(72(27, we can use 7 bits to
indicate the combination (and hence, the location
among the nine pixels) of (i

.*/
, i

.!9
) pair. K

By Lemma 1, we know that equation (12) can be
rewritten as

Mb; a 7-bit key to get (i
.*/

, i
.!9

)N,

and a binary-equivalent of the seven-digit base-b

number (g
i
D iOi

.*/
, iOi

.!9
)
b
. (13)

To know when the storage system (13) can save more
memory space than equation (11) does, we notice that
first, both equations (13) and (11) needs to store b;
second, equation (11) needs vlog

2
b9w bits to repres-

ent a nine-digit number g@
0
g@
1
,2g@

8
in the base-b num-

ber system, whereas equation (13) needs 7 bits to
indicate the location of the (i

.*/
, i

.!9
) pair, and

vlog
2
b7w bits to encode a seven-digit number

g@
0
g@
1
,2g@

8
(with g@

i.*/
and g@

i.!9
taken away) in the

base-b number system. [g@
i.*/

and g@
i.!9

needs no storage
if we know the position of i

.*/
and i

.!9
(see Fig. 4), this

is because g@
i.*/

"0 and g@
i.!9

"b!1 always hold by

equations (9) and (10).] The next lemma and property
are used to compare the storage system (11) and (13).

¸emma 2. (i). If b(23.5+11.314, then 7#log
2
b7'

log
2
b9.

(ii) If b'23.5+11.314, then 7#log
2
b7(log

2
b9.

Proof. We first prove statement (i). Since b(23.5, we
have log

2
b(3.5, i.e. 2 log

2
b(7; i.e. 9 log

2
b!

7 log
2
b(7, i.e. 9 log

2
b(7#7 log

2
b, i.e. log

2
b9(

7#7 log
2
b. The second statement can be proved like-

wise. K

Property 3. Using the storage system (13) is more
worthy than using the storage system (11) if and only
if b'11.314.

The next concern is to find the condition such that
using the storage system (11) or (13) is more worthy
than using the ‘‘raw’’ storage system in which
9]8"72 bits are used to store the nine (original)
gray values (each is 8-bit) and g

0
, g

1
, g

2
,2 , and g

8
of

the subimage A. After careful checking, we obtain the
following rules to encode a 3]3 subimage.

3.2.2. Format. There are three formats to be used
in our proposed algorithm as follows:
Rule 1: If b3M1, 2,2 , 11N, then the coding format is

1 bit 7 bits 8 bits z
b
"vlog

2
b9w bits

c b m binary equivalent of
(g@

0
g@
1
,2 , g@

8
)
b

(This format uses at most 1#7#8#vlog
2
119w"48

bits since b411.)

Rule 2: If b3M12, 13,2 , 128N, then the coding for-
mat is
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(This format uses at least 1#7#8#7#
vlog

2
127w"49 bits and at most 1#7#8#7#

vlog
2
1287w"72 bits.)

Rule 3: If b3M129, 130,2 , 256N, then the coding for-
mat is

1 bit 72 bits

c the original nine gray values: g
0
, g

1
,2 , g

8

(This format always uses 73 bits.)

Note that c stands for the category-bit: if c is zero
then we encode block A by Rule 1 or Rule 2 (accord-
ing to the value of b); if c is one, however, Rule 3 is
need. Also note that P(min, max) denotes which of the
9]8"72 possible position-pair is the actual position
of the pair (i

.*/
, i

.!9
). As for (g@

i
D04i48, iOi

.*/
,

iOi
.!9

)
b
, it is a seven-digit base-b number because the

two gray values g@
i.*/

and g@
i.!9

are taken away. Finally,
m"min

i
g
i
and b"max

i
g
i
!min

i
g
i
#1 are as de-

fined in equations (1) and (2), respectively. Below we
explain why we use Rule 3 instead of Rule 1 or Rule
2 when b'128. If b5129, then using the format
provided in Rule 1 is not worthy because 1#7#8#7#
vlog

2
b7w51#7#8#vlog

2
1299w is longer than

the fixed 73 bits needed in the format given in Rule 3.
Similarly, if b5129, then 1#7#8#7#
vlog

2
b7w51#7#8#7#vlog

2
1297w"73 implies

that the format in Rule 2 cannot be better than that of
Rule 3. Moreover, if b is large, say, b"200, then
1#7#8#7#vlog

2
2007w"77 is even worse than

the 73 required in the format of Rule 3.
We also give here another remark about Rules 1

and 2. Some readers might suggest that one more (sub-
category) bit is used to distinguish Rule 1 from Rule 2;
then, 4 bits (instead of 7 bits) are used to represent b
for Rule 1 (whereas 7 bits are still used to represent b
for Rule 2). However, according to our experiments,
this modified approach was found not better than the
old one which uses 7 bits to represent b for both Rules
1 and 2, especially if the hierarchical structure intro-
duced in Section 3.4 was used. The only case that this
modified approach [the one using one more (sub-
category) bit to distinguish Rule 1 from Rule 2] could
perform better occurred only when the hierarchical
structure was not used and the image had many large
smooth regions. However, since the hierarchical struc-
ture can improve the compression ratio, and we wish
to handle images of any kind without judging in
advance whether the image has large smooth regions
or not, we do not intend to use this modified approach.

3.3. Decoding

Without the loss of generality, we show below how
to reconstruct (decode) the first subimage of an image
which has been encoded using Rules 1—3 presented
above in Section 3.2. (The remaining subimages can
be reconstructed similarly.)

We first check the first bit c. If c"1, then we use the
next 8]9("72) bits to reconstruct the nine gray
values, each is 8-bit, of the subimage. However, if
c "0, we use the next 7 bits to obtain the base value
b. According to the value of b, there are two subcases
to proceed.

Subcase 1: If b411, then we take the next 8 bits to
obtain the value m; and after that, we take another
vlog

2
b9w bits of the received code to know the binary

equivalent of (g@
0
g@
12

g@
8
)
b
. We can therefore obtain

the nine gray values Mg@
i
N8
i/0

of the subimage A@. Then,
with the help of equation (4), we can obtain the nine
gray values Mg

i
N8
i/0

of the subimage A.
Subcase 2: If 124b4128, then get the next 8 bits,

7 bits, and vlog
2
b7w bits, to obtain the values of m,

P(min, max), and (g @
i
D04i48, iOi

.*/
, iOi

.!9
)
b
, re-

spectively. With the help of a predefined position
codebook, we can use the value of P(min, max), which
is a codeword, to recover the positions of the two
pixels where the (reduced) gray values g @

i
are minimum

and maximum, respectively. By equation (4), the posi-
tions where g@

i
become minimum or maximum are also

the positions where g
i

become minimum or max-
imum. Therefore, on the two pixels just recovered by
the value of P(min, max), the ‘‘original’’ gray values g

i
should then be m and m#b!1, respectively, by
equations (1) and (2). As for the remaining 9!2"7
pixels, we can use the next vlog

2
b7w bits to obtain

a binary number. Convert this vlog
2
b7w-digit num-

ber in the base-2 system to obtain a seven-digit num-
ber in the base-b system. After adding the value m to
each of these seven digits, we obtain the seven gray
values needed.

3.4. Hierarchical use of the techniques introduced
in Sections 3.2 and 3.3

The encoded result of Section 3.2 can be com-
pressed further in a hierarchical manner. Consider
3]3"9 adjacent subimages, each subimage is of size
3]3. Then, since each subimage has its own base b,
we have nine bases. (If some of these nine subimages
were encoded using Rule 3, for convenience, just ‘‘as-
sign’’ a fixed number to the corresponding bases.) In
this paper, we set this fixed number as 128, and modify
the base-value range of using Rule 2 as 12&127, so
that we may completely discard the category bit ‘‘c’’
(see Section 3.2.2) for all subimages (because whether
Rule 1 (or 2, or 3) is used to encode a specified
subimage can be completely determined by the value
of base). We then can imagine that there is a so-called
‘‘base-image’’, whose gray values are b

0
, b

2
, b

2
,2, b

8
;

then, since it is a kind of image (except that each value
is a base value of a subimage rather than a gray value
of a pixel), we can use the technique introduced in
Section 3.2 to compress these nine base values. The
details are omitted.

Besides b, the minimal value m of each block can
also be grouped and compressed similarly. In other
words, for every 3]3"9 adjacent subimages, we
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Fig. 5. A two-pass BS system. (a) 9]9 image S consists of
nine subimages s

i
(i"0, 1,2, 8), and each s

i
is 3]3. (b) The

base-subimage of S where b
Si

means the base value of the
subimage s

i
. (c) The minimum-subimage of S where m

simeans the minimum-value of the subimage s
i
.

compress their Mm
0
, m

1
,2, m

8
N by treating m

0
&m

8
as the nine gray values of an imaginary 3]3 ‘‘super’’
image. (If some of the 3]3"9 subimages that form
the super image were encoded using Rule 3, the miss-
ing m

i
can be arbitrarily assigned, because the decod-

ing of those subimages using Rule 3 will not use m
i

at all.)
The compression layer described in the above two

paragraphs are called Pass 2, and we can repeat the
same procedure to encode in Pass 3 the result of
Pass 2. Of course, the higher a layer is, the less the
data to be processed.

For decoding, we first decode the highest pass, Pass
k, using the method presented in Section 3.3, and then
decode Pass k!1, and then decode Pass k!2, and
so on.

Without the loss of generality, we only illustrate
here the two-pass BS system (although three-pass
will be used later in the experiments). Look at the
9]9 image S sketched in Fig. 5a. For Pass 1 encod-
ing, nine 3]3 subimages s

0
&s

8
are encoded by

slightly modifying the non-hierarchical formats of
Rules 1&3 given in Section 3.2.2. Note that there is
no category bit ‘‘c’’; Rule 1 is still with 14b411; but
Rule 2 is with 124b4127; and Rule 3 (which
handles the case 1284b4256) now uses the artificial
format

7 bits 8 bits 72 bits

b"128 m"an arbitrary
number

The original nine gray
values: g

0
, g

1
,2 , g

8

After that, each subimage drops the first 7#8"15
bits from its storage format by sending these 15 bits [a
base-value b (7 bits) and a minimum-value m (8 bits)]
to Pass 2 encoder. The base values of each nine
adjacent subimages constitute a ‘‘super’’ image (see
Fig. 5b), and the minimum values of each nine adjac-
ent subimages also constitute a super image (see
Fig. 5c). For Pass 2 encoding, these super images are
encoded, respectively, using the original Rules 1&3
stated in Section 3.2.2.

For decoding, we first decode Pass 2, and recover
the base subimage (Fig. 5b) and the minimum subim-
age (Fig. 5c). We then decode Pass 1 according to
these base values and minimum values. For example,
3]3 the subimage S

0
in Fig. 5a is reconstructed with

the help of the b
s0

m
s0

and just obtained. The original
image S (Fig. 5a) is thus recovered.

4. EXPERIMENTAL RESULTS AND COMPLEXITY
ANALYSIS

Although the techniques introduced in Section
3 are explained in terms of gray-level images, we can
of course use these techniques to handle color images
by applying the techniques three times to each of the
three color components.

In this section, we use six color images (shown in
Fig. 6) to test the proposed base switching (BS) algo-
rithm. In order to compare our results with the results
of JBIG and Lossless JPEG reported in reference (16),
we used the same color components that was used in
reference (16), i.e. we used the ‘‘YUV’’ components of
the color images. All compression ratios presented
below express the averages of the corresponding re-
sults of the six images, and each of them is again the
average compression ratio of the three color compo-
nents (therefore, we took the average of 6]3"18
data sets to obtain a compression ratio). In the experi-
ment, we used 3-pass BS algorithm (see Section 3.4) to
compress each color image component, and the
subimage sizes for each pass were 3]3. Table 1 shows
the color image compression ratios for the LZ(27)

(COMPRESS utility on UNIX), LZ77(27) (GZIP util-
ity on UNIX), VBSS, JBIG, Lossless JPEG, and the
proposed BS algorithms.

It was found that our BS algorithm could compete
with VBSS and the two international standard algo-
rithms JBIG and Lossless JPEG (their compression
ratios are very close), and our method was superior to
LZ and LZ77. In fact, we can see from Table 1 that the
average compression ratio of the BS algorithm is
a little better than that of the JBIG and a little inferior
to that of the Lossless JPEG. Also note that, although
the average compression ratio of the proposed three-
pass BS method is a little [(2.04!2.00)/2.00"2%]
inferior to that of the Lossless JPEG, the three-pass
BS is about (5!4.43)/4.43+13% faster than the
Lossless JPEG. [The single-pass BS is about (5!3.94)/
3.94+27% faster than the Lossless JPEG.] In the
encoding, for example, the single-pass BS algorithm
requires about 3.33&4.55 clock cycles (the average is
3.94 clock cycles) for each pixel (we will analyze the
detail in next paragraph), whereas the Lossless JPEG
requires 4&6 clock cycles (the average is 5 clock
cycles) for each pixel. On the average, the single-pass
BS algorithm is therefore 27% faster than the Lossless
JPEG. (The three-pass BS algorithm is 13% faster
than the Lossless JPEG by a similar argument.) The
reason that the Lossless JPEG requires 4&6 clock
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Fig. 6. The test image set (actual size at 720]576 pixels/image).

cycles for each pixel is explained as follows: first, for
each pixel, the Lossless JPEG requires 3&5 clock
cycles for the predictor part [used for some arithmetic
operations such as addition, subtraction, arithmetic-
right-shift, and one’s complement operation; the detail
is given in Section 2.10.3 of reference (28) and H.1.2.1
of Appendix A of reference (11)]; then one complete

clock cycle for the adaptive arithmetic coder part is
needed [see Section 13.7 of reference (11)].

We discuss below in detail the time complexity of
the BS algorithm. Without loss of generality, we only
analyze the single-pass system (or the first pass of the
hierarchical system). To encode a 3]3 subimage, we
need 8&15 comparisons (eight comparisons for the
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Table 2. A comparison of the encoding time* for VBSS method, S#P method, and BS method

Average
encoding
time (s)

Methods

Images ½-component º-component »-component
(720]576) (320]576) (320]576)

VBSS 46.86 21.28 21.69
S#P 12.15 5.82 6.27
BS 3.56 1.84 1.84

*The encoding time does not include the I/O time because I/O are identical for all three methods.

Table 1. The average compression ratio of the six test
images.

Methods LZ* LZ77s VBSSt JBIG° JPEG± BS

Average
compression 1.43 1.49 1.96 1.99 2.04 2.00
ratio

*The Lempel-Ziv (Unix Compress) scheme.
sThe LZ77 (Unix GZIP) scheme.
tThe program was provided by Ranganathan et al.(12).
°JBIG (D0, P8, 3L, G).
±Lossless JPEG (T2, U1, L0, A).

best case and 15 comparisons for the worst case) to
obtain min

04i48
g
i
and max

04i48
g
i
; 1 subtraction

and 1 addition to compute the value of min
04i48

!

max
04i48

g
i
#1 ["b, see equations (1) and (2)], and

eight subtractions to obtain A@
3]3

[because we had
known the location of min

04i48
g
i
in the process of

finding min
04i48

g
i
and max

04i48
g
i
, we could save

1 subtraction, see equation (4)]. After that, if Rule
1 (Rule 2) is applied, then we need eight (6) additions
and eight (6) multiplications to compute equation (7).
Since an arithmetic operation such as addition, sub-
traction, comparison, shift, one’s complement, and
multiplication could be accomplished during one
complete cycle under the modern technology of VLSI
[see Section 2.2 of reference (29)], the BS algorithm
requires 30&41 clock cycles to encode a 3]3 subim-
age. In other words, it takes 3.44&4.55 clock cycles
to encode a pixel (the average is 3.94 clock cycles). On
the other hand, because the encoded length of the
JBIG, the Lossless JPEG, and our proposed algo-
rithm are all variable instead of being fixed, we do not
consider the computations of the transformation from
decimal values to binary values, because this kind of
computations are common for all three methods. Fi-
nally, the job of decoding is similar to that of encod-
ing, except that the computation of equations (1) and
(2) now disappear. As for the computation loads
needed in Passes 2 and 3, they are relatively negligible,
because the whole image size of Pass 2 is only
1/(3]3)"1

9
of the whole image size of Pass 1; not to

mention the even smaller image in Pass 3. [If we
consider the work needed in Passes 2 and 3, the 3.94
clock cycles mentioned above will become 4.43 clock

cycles, which is about (5!4.43)/4.43+13% faster
than the Lossless JPEG.]

We may also compare our BS method, which is
a spatial domain method, with some other frequency
domain methods developed recently. In the frequency
domain approach, the performance of some recent
lossless image compression methods based on
EZW(1,20) algorithm are good. Said and Pearlmans’
work(15) called S#P-transform is a new and excellent
technique that extended EZW. The average compres-
sion ratio of S#P-transform (for the six test color
images shown in Fig. 6) is about 2.18 and about 9%
["(2.18!2.00)/2.00] better than that of the pro-
posed method. However, to encode images, the pro-
posed method is about three times faster than the
S#P-transform in the encoding time (excluding the
I/O time, which are identical for both methods). Table
2 illustrates the average encoding time of the VBSS,
the S#P-transform, and the proposed BS algorithm
for the ½, º, and » components of the six test color
images. [The codec program of the S#P-transform
provided by the authors of Said and Pearlman(15) can
be obtained via anonymous ftp to the host ipl.rpi.edu,
directory pub/EW—Code.]

5. CONCLUDING REMARKS

A new fast lossless compression algorithm in the
spatial domain has been proposed along with the
experimental results and time-complexity analysis.
The compression ratios using the proposed BS algo-
rithm were found to be superior to the UNIX-pro-
vided methods LZ and LZ77, and competitive to
VBSS and the international standard algorithms
JBIG and Lossless JPEG. In addition, the encoding of
the proposed method is three times faster than the
EZW-based algorithm called S#P-transform, al-
though S#P algorithm gains 9% more in compres-
sion ratio. Also note that the encoding time of VBSS is
about 11&13 times longer than ours. The math the-
ory needed to derive the proposed encoding format is
also provided.

In our experiments, we also tested some other
subimage sizes such as 4]4, 6]6, and 8]8, and
found that the subimages of size 3]3 can usually
achieve higher compression ratios. The reason is that:
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as the subimage size increases, the base value b (which
indicates how wide the gray value variation of
a subimage is) also increases, and the compression
ratio is down because the frequency that Rule 3 occurs
will increase. A future work might therefore be that: to
segment the regions of an image into two classes,
smooth vs. non-smooth, and then process the smooth
(non-smooth) class using larger (smaller) subimage
size. Of course, the success of this future work will
depend on the careful consideration of the problems
such as how to segment an image reasonably, how to
record the segmentation result economically, and how
to decide the subimage size automatically. Since this is
a topic related to the so-called variable-size compres-
sion, we do not discuss it here.
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