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1. INTRODUCTION

The hybrid-damped resolved-acceleration control
scheme for nonredundant manipulator control in
Cartesian space was proposed in our earlier work.1

In the stability analysis, it was shown that qs0 as˙
tª`, where q is the vector of joint velocities. This˙
stability analysis is actually based on Wampler and
Leifer’s work.2 Although this result implies that the
manipulator eventually come to rest, it cannot be
concluded that the steady-state error is necessarily

* To whom all correspondence should be addressed.

zero. In the rigorous sense, such stability analysis is
incomplete for showing that the target point is a
globally asymptotically stable equilibrium.

This paper uses LaSalle’s invariant principle rig-
orously to show that the target point of a step input
is a globally asymptotically stable equilibrium if the
manipulator does not eventually stay at a kinematic
singular point. Even if the manipulator eventually
stays at a kinematic singular point, it is shown that
the error is along a linear combination of degenerate
directions.

Furthermore, LaSalle’s invariance principle is
also used to study the stability problem of the
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so-called damped-acceleration resolved-acceleration
control. This control scheme has the phenomenon of
self-motion, which is also interpreted by LaSalle’s
invariance principle in this paper.

This paper is organized as follows. In the next
section, the hybrid-damped resolved-acceleration
control and LaSalle’s invariance principle are briefly
reviewed, and then the stability of this control and
its proof are presented. The extension of the result
to the damped-acceleration resolved-acceleration
control is studied. Some discussions on the case that
the manipulator will eventually stay at a singular
point for a step input are also given in the next
section. The conclusion is drawn in section 3.

2. ASYMPTOTICAL STABILITY

Consider the dynamic system of a six-joint manipu-
lator

Ž . Ž . Ž .M q qqf q, q st , 1¨ ˙

Ž . Ž .where M q is the inertia matrix, f q, q is the vector˙
comprising Coriolis, centrifugal, and gravity force, t
is the vector of actuator forces, and q is the vector of
joint displacements.

The so-called hybrid-damped resolved-accelera-
tion control scheme1 is the computed-torque scheme

Ž . U Ž . Ž .tsM q q qf q, q 2¨ ˙

cooperating with the hybrid-damped resolved-
acceleration law

y1 y1U UT 2 T 2 T 2Ž . Ž . Ž .q s J Jqr I J a qr r J Jqr I q, 3¨ ˙r

«r r yr¨ ˙ ˙U rd d ˙ Ž .a s qK qK yJq, 4˙D P «a v yv ed d

where J is the Jacobian, I is the identity matrix, r
and r )0 are damping factors, r is the position ofr
the end-effector, v and a are, respectively, the
angular velocity and angular acceleration of the
end-effector, superscript T denotes the transpose,

Žsubscript d denotes the desired value i.e., the input
.value , « and « are, respectively, the position andr e

orientation errors, and K and K are the gainD P
w T T xTmatrices. Note that the error «s « , « , and « sr e r

r yr.d
The orientation error can be defined as « se

Ž .f u u , where u and u are, respectively, the unite e e e
vector of the rotational axis and the rotational angle

from the current orientation to the desired one, and

u , withyp-u Fp ,¡ e e

ue
tan , withyp-u -p ,e2~Ž . Ž .f u ' 5e sin u , withyp-u -p ,e e

ue
sin , withyp-u Fp .¢ e2

Ž . Ž . Ž .The rotation representations f u u with f u in 5e e e
are called, in order, Euler angles, Rodriques param-
eters, parameters of Luh et al., and Euler parame-
ters.3 Note that tan u r2 at u s"p is not welle e
defined, and sin u s0 at u s"p does not reflecte e
the orientation error. For a detailed discussion on a
well-defined orientation error, the reader is referred
to Lin’s work.3

To deal with the stability of the hybrid-damped
resolved-acceleration control scheme, we will use
LaSalle’s invariance principle,4,5 which is cited in
the following lemma.

Ž .Lemma 1 LaSalle’s invariance principle : Consider
w Ž .xthe periodic nonlinear system xsf t, x t ; tG0 with˙

Ž . Ž .the period T , i.e., f tqT , x sf t, x ; tG0 and ;xg
n Ž . n nR , where x t gR and f: R =R ªR is continu-q

ous. Suppose that there exists a C1 function V : R =q
R n ªR having the same period of T such that:

( )i V is a positive definite function and is radially
unbounded;
˙ n( ) Ž .ii V t, x F0 ; tG0 and ;xgR .

Let M be the largest invariant set of the nonlinear system
contained in the set

n ˙� Ž . 4 Ž .Rs xgR : ' tG0 such that V t , x s0 . 6

Ž Ž .Then all solution trajectories denoted by s t, t , x for0 0
.an initial state x and an initial time t globally0 0

asymptotically converge to M as tª`, i.e.,

n w Ž . xx gR , t G0 « d s t , t , x , M ª00 0 0 0

Ž .as tª`, 7

Ž . 5 5where d s, M 'min syy denotes the distancey g M
from the point s to the set M.

This lemma is a global version of the invariance
principle and can be straightforwardly derived from
the local version.4 The dynamic system of the ma-
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Ž .nipulator 1 is autonomous and then periodic with
an arbitrary period, so Lemma 1 applies to it.

Theorem 2: Consider the overall system of the manipu-
lator with the hybrid-damped resolved-acceleration con-

Ž . Ž .trol scheme 1 ] 4 . Suppose that the representation of
Ž .the orientation error is well defined like those in 5 , and

the input is a step input, i.e., r sr s0 and a s¨ ˙d d d
v s0. If K is a positive definite matrix andd D

k I 0pr
K sP 0 k Ip e

with strictly positive k and k , then either of thepr p e
following statements holds.

w T T xT1. The equilibrium of « , q s0 is globally˙
asymptotically stable.

2. The manipulator will eventually stay at a singu-
lar point where K « is along a linear combina-P
tion of degenerate directions.

Ž . Ž .Proof: The system of 1 ] 4 is a second-order differ-
ential system. The state variables can then be « and
q, since q s0 due to r s0. Choose the Lyapunov˙ ˙ ˙d d
function candidate

ue1 TŽ . Ž .V « , q s k « « qk f f df˙ Hpr r r p e2
0

1 T T 2Ž . Ž .q q J Jqr I q. 8˙ ˙2

Ž .It follows from 5 that

¡ 2ue Ž ., for f f sf ,
2

u fe Ž .u y2 ln cos , for f f s tan ,e ~Ž .f f dfs 2 2H
0 Ž .1ycos u , for f f ssin f ,e

u fe Ž .2 1ycos , for f f ssin .¢ ž /2 2

Ž .9

Ž . ŽThus, V «, q is positive definite i.e., V)0 for˙
w T T xT w T T xT .« , q /0 and Vs0 for « , q s0 and radi-˙ ˙

Ž 5w T T xT 5ally unbounded i.e., Vª` as « , q ª`, uni-˙
.formly in « and q . We differentiate V along the˙

Ž . Ž .system trajectories 1 ] 4 to obtain

˙ T TŽ . Ž . Ž . Ž .V « , q sk « r yr qk f u u v yv˙ ˙ ˙pr r d p e e e d

T T 2 T T˙Ž .qq J Jqr I qqq J Jq˙ ¨ ˙ ˙

sk «Tr qk «Tv yr r 2 qTq˙ ˙ ˙pr r d p e e d r

r r¨ ˙d dT T T Tqq J qq J K yJq .˙ ˙ ˙Da vž /d d

Ž .10

˙ T UŽ .Note that u su v yv and qsq . Substituting¨ ¨e e d
the assumptions of r sr s0 and a sv s0 into¨ ˙d d d d
Ž .10 yields

˙ T T 2 TŽ . Ž .V « , q syq J K Jqyr r q q. 11˙ ˙ ˙ ˙ ˙D r

Ž .Because K is positive definite and r )0, 11D r
˙ 6 6 ˙Ž .implies that VF0 ; «, q gR =R and that Vs0˙

Ž .if and only if qs0. The set R defined in 6 is then˙
� Ž . 4 Ž .Rs « , q : qs0 . 12˙ ˙

The next step is to find the largest invariant set
M contained in the set R. For this purpose, we let
w Ž . Ž .x« t , q t be a solution trajectory that lies en-˙s s

Ž .tirely in the set R. We then have q t s0 ; tG0, so˙ s
Ž . Ž . Ž .then q t s0 ; tG0. Examining 3 and 4 , we¨ s

find
y1U T 2 TŽ .q s J Jqr I J K «¨ P

6 si TŽ . Ž .s v u K « 13Ý i i P2 2s qriis1

when r sr s0, a sv s0 and qs0, where s ,¨ ˙ ˙d d d d i
is1, . . . , 6, are the singular values of J, and u andi
v are, respectively, the ith left and the ith righti
singular vectors of J. Recall that applying the com-

Ž .puted-torque scheme 2 to the manipulator system
Ž . U Ž .1 yields qsq . It then follows from 13 that¨ ¨

Ž . Ž .q t s0 ; tG0 if and only if « t s0 ; tG0 or¨ s s
Ž .K « t ; tG0 is a linear combination of u for jsP s j

T Ž .having s s0. Note that when s s0, u K « in 13j j j P
has no contribution to qU and u represents a de-¨ j
generate direction. Finally,

Ž .Ms « , q : qs0 and either «s0 or˙ ˙½
Ž .K «s a u for a gR . 14ÝP j j j 5

� 4j : s s0j

According to Lemma 1, the solution trajectory for a
given initial state and a given step input globally
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asymptotically converges to M as tª`. In fact, the
solution trajectory will eventually come to rest and
stay at one point in M, since qs0 for all points in˙
M.

In the case that the solution trajectory globally
w T T xTasymptotically converges to « , q s0 as tª`,˙

if the origin is also stable, then it is a globally
asymptotically stable equilibrium. The stability of
the origin directly follows from the basic theorem of

ŽLyapunov’s direct method see Theorem 5.3.1 in ref.
. Ž .4 , since V in 8 is also a Lyapunov function in a

small neighborhood of the origin. This completes
the proof. B

Remark 1: In the work of Wampler and Leifer,2 the
damped least-squares resolved-acceleration control

Ž . Ž .scheme is the same as 1 ] 4 with the exception of
Ž .K sk I and replacing 3 withD D

y1U UT 2 TŽ .q s J Jqr I J a¨
y12 T 2Ž . w Ž .x Ž .qr J Jqr I k IqB t , q q, 15˙D

Ž .where B t, q is positive definite and symmetric,
which may provide additional damping to the ma-
nipulator, although it is not necessary for stability.2

Ž .If we set Bs0, then the control scheme 15 is more
Ž . Ž .restrictive than 3 , since r in 3 is not required tor

be k , the gain of the velocity error. For practicalD
applications, r should be closely related to ther
smallest singular value of J.1

Another interesting thing is that a strictly posi-
Ž Ž ..tive r or k in 15 is inevitable for stability. Thisr D

is because qs0 is not a necessary condition for˙
˙ Ž .Vs0 when r s0. The control scheme 3 withr
r s0 is named damped-acceleration resolved-accel-r

Ž . 1 Ž .eration control DARAC , for which 11 turns out
to be

˙ T TŽ .V « , q syq J K Jq˙ ˙ ˙D

T6 6
T T Ž .sy s u v q K s u v q . 16˙ ˙Ý Ýi i i D l l lž / ž /

is1 ls1

Thus, when q is a linear combination of v that are˙ j
˙corresponding to s s0, then Vs0, too. Under suchj

a situation, rs0 and vs0, since Jqs0 at this˙
Ž .moment. The set R in 6 for the DARAC is then

� Ž . 4 Ž .Rs « , q : Jqs0 . 17˙ ˙
w Ž . Ž .xLet « t , q t be a solution trajectory that lies˙s s

Ž .entirely in the set R. We then have r t s0 andṡ
Ž . Ž . Ž .v t s0 ; tG0, so that r t s0 and a t s0 ; t¨s s s

˙Ž . Ž .G0, too. From this it follows that Jq t syJq t¨ ˙s s
; tG0. By the assumption of a step input and r s0,r

Ž . Ž .combining 3 and 4 yields

y1 y1U T 2 T T 2 TŽ . Ž .q s J Jqr I J K « q J Jqr I J Jq¨ ¨s P s s

6 si T ˙ Ž .s v u K « yJq . 18˙Ý ž /i i P s s2 2s qriis1

Assume s s0 for jskq1, . . . , 6, i.e., the rank of Jj
˙Ž . Ž .is k. Equation 18 indicates that if K « yJq is˙P s s

T ˙Ž Ž . .not in the span of u i.e., J K « yJq /0 , then˙j P s s
qU has a component not in the span of v , which will¨ s j

Žgenerate some component of q and then that of¨ s
.q not in the span of v at the next time. The˙ s j

contrapositive tells that the largest invariant set M
is

T ˙Ž . Ž .Ms « , q : J K «yJq s0 . 19˙ ˙½ 5ž /P

˙For the points in the case that Jqs0 if and only if˙
˙Ž .qs0 and then Jqs0 , the same stability result as˙ ˙

that in Theorem 2 can be concluded.
Now, consider a particular point where «s0
˙ ˙and Jqs0 when Jqs0 but q/0. Apparently, this˙ ˙ ˙

Ž . Ž .point is in M. It follows from 3 and 4 with r s0r
that qU s0 and then qs0. This implies that q is¨ ¨ ˙
eternally constant. According to Lemma 1, the solu-
tion trajectory may asymptotically converge to this
point with zero steady-state error but q/0. Such a˙
phenomenon is called self-motion, and was first
demonstrated6 for the PUMA 560 robot. The spheri-
cal wrist of the PUMA 560 robot allows the rota-
tions of joints 4 and 6 with the same angular speed
in opposite directions to hold the orientation of the
end-effector stationary, when joint 5 stays in the
orientation-singular configuration where joints 4 and
6 are collinear. An experiment6 showed that self-
motion of joints 4 and 6 occurs in the orientation-
singular configuration when the DARAC is applied
to the PUMA 560 robot for a special command. The
above analysis is another interpretation of the self-
motion in the DARAC in contrast to that in the
earlier work.1

Remark 2: Consider nonredundant manipulators
with type 1 geometry,7 where the singular points
are all on the boundary of the workspace. It is
known that the step response of the resolved-accel-
eration control is a straight line coupled with a
rotation of the end-effector,3 if the solution trajec-
tory does not pass a neighborhood of a singular
point. The response of the hybrid-damped
resolved-acceleration control resembles that of the
original resolved-acceleration, since the former is
only to remedy the problem in a neighborhood of a
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singular point. If the target of a step input is in the
workspace and the line of the initial point to the
target does not cross the boundary, then the solu-
tion trajectory of the hybrid-damped resolved-accel-
eration never touches a singular point. According to
Theorem 2, the target is a globally asymptotically
stable equilibrium.

If the target is outside the workspace such as
that shown in Figure 1, the line from the initial
point to the target intersects with the boundary at a
singular point C. Assume that the solution trajec-

Žtory passes through the point C actually, it only
passes a neighborhood of C and touches another

.singular point close to C . At the point C, the error
has two components: one is in the degenerate direc-

Ž .tion i.e., u in Fig. 1. ; the other is normal to it. The2
Ž .point C is not in the set M in 14 , so the solution

trajectory will continue going to point BX, where the
component of the error along the direction of u is1
zero. It is apparent that point BX is in the set M and

Žis isolated i.e., there is a neighborhood of this point
such that no other point in M is also in this neigh-

.borhood . It is then concluded from Theorem 2 that
the manipulator will eventually stay at point BX. A
simulation for such a case can be found in Example
2 of our earlier work.1

Now consider another special case that the line
from the initial point to the target is collinear with a
degenerate direction and intersects with the bound-

X Ž .ary at point A see Fig. 2 . The target A is either in
the workspace or outside the workspace. If the tar-

w Ž .x Xget is in the workspace see Fig. 2 a , point A is

Figure 1. Target outside the workspace.

unstable, although it is also in the set M. When the
manipulator stays stationary at point AX, a perturba-
tion makes the component of the error along u no1
more zero and the manipulator moves away from
point AX. On the contrary, if the target is outside the

w Ž .xworkspace see Fig. 2 b , although any perturbation
also makes the component of the error along u1

Figure 2. Collinearity of the line from the initial point to
Ž .the target and a degenerate direction: a target in the

Ž .workspace; b target outside the workspace.
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nonzero, this nonzero component draw the manipu-
lator back to point AX. Then point AX is a stable
equilibrium for the target outside the workspace.

wThe case of the target in the workspace i.e., Fig.
Ž .x2 a is demonstrated by a simulation in the follow-

ing.
In the simulation on the PUMA 560 robot, the

Ž .initial point is y0.1, 0.2, 0.8 and the target is
Ž .0.1, y0.2, 0.8 . It is apparent that the line from the

Figure 3. Simulation responses of the PUMA 560 robot:
Ž . Ž .a damped-acceleration resolved-acceleration control; b
hybrid-damped resolved-acceleration control.

initial point to the target is through the center of the
Ž .infeasible circle, 0, 0, 0.8 , so that the line is collinear

with a degenerate direction. All technical data and
the control parameters are set identical to those in
the simulations of our earlier work.1 The simulation
results for the DARAC and the hybrid-damped re-
solved-acceleration control are shown in Figure 3,
which shows that the target is a globally asymptoti-
cally stable equilibrium for both control schemes. Of
course, the drawback of the DARAC is the fluctua-
tion when the manipulator touches singular points,

Ž .which is also shown in Figure 3 a .

3. CONCLUSION

This paper compensates for the incompleteness of
the stability analysis in our earlier work.1 A rigor-
ous proof is given to show that for the hybrid-
damped resolved-acceleration control with a step
input, either the target is globally asymptotically
stable or the manipulator will eventually stay at a
singular point. The same analysis is also used to
study the stability problem of the damped-accelera-
tion resolved-acceleration control and to interpret
the phenomenon of self-motion.

The authors thank Professor Li-Chen Fu for motivat-
ing them to discuss the stability theme of this paper.
This work was supported in part by the National
Science Council, Taiwan, under Grant NSC87-2212-E-
009-001.
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