
Journal of Visual Languages and Computing (1998) 9, 375—397
Article No. vl980089

t

1

Video Data Indexing by 2D C-Trees

FANG-JUNG HSU,*s SUH-YIN LEE* AND BAO-SHUH LINt

* Department of Computer Science and Information Engineering , National Chiao Tung University,
1001 Ta Hsueh Road, HsinChu, Taiwan 30050, Republic of China, email: fjhsu@info4.csie.nctu.edu.tw.
Computer & Communication Research Laboratories, Industrial Technology Research Institute, HsinChu,

Taiwan

Accepted 5 May 1998

Video data contains a large amount of spatial and temporal information. The changes of
video frames are quite useful for motion analysis and cannot be provided by other
media easily. Chang et al. had proposed an effective 2D string approach for spatial
indexing of image data. In this paper, we extend this iconic approach and apply it to
video data indexing. We propose 2D C-trees to represent the spatial content within
individual frames. A video sequence can then be represented and indexed by a temporal
set or an ordering set of 2D C-trees. The similarity retrieval of video matching problem
becomes the problem of video sequence matching by computing the similarity, or the
minimum cost of matched frames. We present three schemes, full-sequence matching,
segment matching and subsequence matching, for video information retrieval. The
matching schemes can be modified and extended to approximate sequence matching by
computing the partial distance for providing a comprehensive retrieval of video data.
A prototype video information system is also developed to validate the effectiveness of
video data indexing by 2D C-trees.
(1998 Academic Press
Notation

A b the begin-bound of object A
A e the end-bound of object A
R the root of a 2D C-tree
si the ith immediate descendant of node S
e empty-node
J a rooted tree
e1 2 ek the editing operations
D the cost function of editing operation
d(J1, J2) the tree distance between tree J1 and tree J2

g (J) the number of symbols in tree J
Dw D the size of a frame w
d(r, q) the frame distance between reference frame r and query frame q
V the reference sequence
sCorresponding author.

045-926X/98/040375#23 $30.00/0 (1998 Academic Press

376 F.-J. HSU ET AL.
vi the i th frame of reference sequence V
U the query sequence
uj the j th frame of query sequence U
D [i, j] the minimum cost of transforming from v1 v22vi to u1 u22uj

W(V, U) the full-sequence matching distance between sequences V and U
q a matching threshold
d [i, j] the partial cost of transforming from v1 v22vi to u1 u22uj

t (V, U) the subsequence matching distance between sequences V and U
c (r, q) the partial distance between reference frame r and query frame q

1. Introduction

WHEN MANAGING a large amount of data of any kind, indexing is useful for rapid
retrieval. As we move towards on-line digital libraries and global access to digital data,
indexing is becoming more important in database management systems [1]. Video is
a medium with high complexity that contains a large amount of spatial and temporal
information. It can provide more information than text, graphic and even image.
The information related to the position, distance, temporal and spatial relationship is
included in the video data implicitly. In current video database systems, fundamental
techniques such as keyword-based searching [2] and hierarchical video icon browsing
[3], are provided for user query. Most of the previous researches in video data are
focused on motion and scene analysis [4]. Very little work has been done on the
design of index structures that characterize spatial and temporal attributes for video
databases.

Video frame sequences, as compared with a single video frame, contain information
about the dynamic aspects of a recorded scene. Especially, the changes of video objects
in equally divided temporal intervals are quite useful for motion analysis and cannot be
provided easily by other media. For example, we can ask a query like: retrieve all the video
sequences in which there is a running athlete holding a basketball, crossing over the field, jumping up,
hanging over the basket and then slamming. Much spatial and temporal information of video
sequence needs to be extracted to serve this query. These spatial and temporal relations
play the indexing role in content-based video information retrieval [5—7]. Unfortunately,
the spatio-temporal information of video data cannot be extracted automatically without
human interaction with the current techniques in image/video understanding and
recognition. Even if the spatial and temporal relationships among objects or semantic
units can be inferred from an objects location and duration, state-of-the-art software for
manipulating video does not ‘know’ about such objects [8], for example, what a basket-
ball is. Nevertheless, an iconic approach with human involvement can compensate the
difficulty and deficiency.

The iconic approach by 2D strings for spatial indexing was initially proposed by
Chang et al. [9] to represent symbolic pictures. First, the objects in original pictures are
identified after preprocessing by either image processing and pattern recognition
techniques or human involvement. Then the orthogonal relation objects with respect to
other objects are generated and iconized. After all the iconic objects have been
processed, the symbolic picture that preserves the spatial relationships among objects in
the original picture is encoded as a 2D string. The problem of pictorial information

VIDEO DATA INDEXING BY 2D C-TREES 377
retrieval then becomes the problem of 2D subsequence matching [10]. This approach
thus allows a natural way to construct iconic spatial indexing for pictures.

To represent the spatio-temporal information, the approach of iconic image indexing
is extended to video data indexing. We investigate a new knowledge model to represent
the spatial content within individual frames and construct a temporal set for a video
sequence. We attempt to solve this video information retrieval problem in three
areas [3]:

(1) Developing a video indexing structure that characterizes the spatio-temporal
information of video content.

(2) Applying knowledge representation techniques to the development of index
construction and retrieval tools.

(3) Developing a video information retrieval environment for interacting with video
objects.

In the paper, the spatial indexing for pictures by 2D strings are briefly introduced in
Section 2. Then we propose a new knowledge representation, 2D C-tree [11], to be the
spatial indexing for pictures in Section 3. The 2D C-tree is employed for single frame
matching on similarity retrieval. Section 4 describes how 2D C-trees are extended to
video sequences matching in video information retrieval. We propose three matching
schemes: full-sequence matching, segment matching and subsequent matching. The
algorithms of the matching schemes are developed in Section 5. The video sequence
matching algorithms are modified and extended to approximate sequence matching for
providing a comprehensive video information retrieval methodology discussed in
Section 6. In Section 7, we also present a prototype system in our video information
retrieval project. Finally, conclusions and future works are summarized.

2. Spatial Indexing

The 2D string approach for spatial indexing was initially proposed by Chang et al. [9] to
represent symbolic images. Three spatial relation operators ‘\’, ‘\’, and ‘ : ’ are
employed in 2D strings. The operator ‘\’ denotes the ‘left—right’ or ‘below—above’
spatial relation. The operator ‘\’ denotes the ‘at the same spatial location as’ relation.
The operator ‘ : ’ denotes the ‘in the same set as’ relation. The symbolic picture f1 in
Figure 1(a) can be represented as the 2D string (A\D :E\B\C, A\B\C\D : E)
or as (A\DE\B\C, A\B\C\DE) where the symbol ‘ : ’ can be omitted and is
omitted.

The 2D string representation is also suitable for formulating picture queries. In fact,
we can imagine that the query can be specified graphically, by drawing an iconic image
on the screen of a computer. The graphic representation, called icon sketch, can be
translated into the 2D string representation. For example, we may want to retrieve
images satisfying a certain icon sketch q1 as in Figure 1(b). Then q1 can be translated into
the 2D string (A\E\C, A\C\E). This query string is a sub-string of the 2D string
representation of the example image f1. The problem of image retrieval then becomes
the problem of 2D string subsequence matching.

However, the spatial operators of 2D strings are not sufficient to give a complete
description of spatial knowledge for images of arbitrary complexity. Many extended

Figure 1. A symbolic image and a query sketch

Table 1. The definition of characteristic spatial operators

Notation Condition Meaning

A\B A e\Bb A disjoins B
A DB A e\B b A is edge to edge with B
A\B Ab\Bb, and A e\B e A is the same as B
A [B Ab\Bb, and A e[B e A contains B and they have the same begin-bound
A] B Ab\Bb, and A e\B e A contains B and they have the same end-bound
A%B Ab\Bb, and A e\B e A contains B and they do not have the same bound
A/B Ab\Bb\A e\B e A is partly overlapping with B

Note : The notations Ab and Ae (Bb and Be) denote the values of begin- and end-bound of object A(B),
respectively.

378 F.-J. HSU ET AL.
representations were proposed to handle more types of relations between pictorial
objects, but they are not economic for complex images in terms of storage space
efficiency and navigation complexity. Lee and Hsu [12] proposed 2D C-string repres-
entation with a set of spatial operators and a more efficient cutting mechanism. They
employed a characteristic set of spatial operators illustrated in Table 1 to give a complete
description for images of arbitrary complexity.

Basically, the 2D C-string approach performs a cut to handle the cases of objects with
partly overlapping. The global operators ‘\’ and ‘ D ’, which are employed in the original
2D string approach, handle the cases of non-overlapping. The extended operators ‘\’,
‘[’, ‘%’, and ‘]’, called the local operators, and a pair of separators ‘()’ handle the cases of
overlapping. The picture f2 in Figure 2(a) is similar to f1 in Figure 1(a) except that the
objects in f2 are non-zero-sized objects as opposed to point objects in f1. The 2D
C-string representation of the picture f2 is (A] D [E DB DC, A DB%C DD]E). It is noted
that all the objects in f2 keep intact without cutting because the case of partly overlapping
does not happen.

The 2D C-string is efficient in representing and manipulating images, but it is not
suitable for solving the problem of 2D string subsequence matching. For example, we

Figure 2. A symbolic image with non-zero sized objects and a query sketch

VIDEO DATA INDEXING BY 2D C-TREES 379
use a query sketch q2 as in Figure 2(b). The 2D C-string representation of the query
image is (A%E\C, A\C\E). Then this query string of q2 is quite different from the
example string of f2 due to the spatial operators. The former string is not the substring of
the latter string any longer. Unfortunately, these operators are needed to handle the
global and local relations among symbolic objects in a 2D C-string and cannot be
omitted.

Though the inference of the spatial relations between objects from a given 2D
C-string in spatial reasoning can be solved by using the ranking mechanism [13], the
computation of object ranks in a 2D C-string is somewhat complicated. Moreover, all
the spatial relationships of objects pairs, which is O(n2) for n objects in an image, are
required to be reasoned first by adopting the 2D longest common subsequence
algorithm. The algorithm for similarity retrieval actually finds a maximum clique [13] and
becomes an NP-complete problem, though there are some polynomial-time algorithms
for the average case. Therefore, we explore a more effective representation for spatial
indexing of images.

3. 2D C-tree

We first introduce the basic structure of a 2D C-tree [11], which is an ordered labeled
tree. The 2D C-tree representation still employs the sparse cutting mechanism to handle
the case of symbolic images with partly overlapping objects. The cutting mechanism
performs the required cuts to get rid of the ambiguity incurred due to partly overlapping.
After cutting, an image is partitioned to some portions between two neighboring cuts.
All the portions are sequentially linked to a root, R, which is initialized to represent the
margin or boundary of the area covered by a given image.

The 2D C-tree representation was developed originally with spatial operators asso-
ciated with the links of the tree. Each node with a label, or symbol name, represents an
object in the image. The links connecting two nodes are signed with the relation
operators. For the ordered subtree rooted at node S with n immediate descendants in the
ordering s1, s2,2 , sn , S being the parent actually contains the local body consisting of all

Figure 3. The general 2D C-trees of image f2 . (a) f2x on x-coordinate axis; (b) f2y on y-coordinate axis

380 F.-J. HSU ET AL.
its immediate child-nodes s1, s2,2 , sn . For simplifying the tree representation, empty-node
and set-node are employed in order to remove the relation operators from the tree
according to the basic definition of the operators. An empty-node is a pseudo-node which
is labeled ‘e’ and is used to represent empty areas of any size. The relation operator of
a link can be removed by inserting some suitable empty-nodes. Each empty-node is
considered as an object of its own. The set-node is introduced for treating a set of lineage
that each node has single-child-node. A set-node is a multi-label node consisting of objects
that have the same begin-bound and end-bound. The detailed transformation rules are
investigated by Hsu et al. [11]. The sample symbolic image f2 in Figure 2(a) is represented
in general 2D C-trees as shown in Figure 3.

Ordered labeled trees are trees whose nodes are labeled and in which the left to right
ordering among siblings is significant. The distance and/or similarity of such trees have
many applications in computer vision, pattern recognition, programming compilation
and natural language processing [14]. The distance between two ordered trees is
considered to be the weighted number of editing operations (insert, delete and relabel)
to transform one tree to another. Each operation is associated with a cost function,
denoted as D. Let E be a sequence e1, e2,2 , ek of editing operations. An E-derivation
from tree J1 to tree J2 is a sequence of trees A

0
, A1,2, Ak such that A\A0, B\Ak ,

and Ai[1]Ai, via e i for 14i4k. Then the cost of E-derivation is measured by the
total weight of editing operations in E, i.e.

D(E)\
@E@
+
i\1

D(ei) (1)

Formally the editing distance between trees J1 and J2 is defined as

d(J1,J2)\minMD(E) DE is an editing sequence from J1 to J2N (2)

In Hsu et al. [15], we proposed a 2D C-tree matching algorithm by modifying the tree
matching algorithm developed by Zhang [16] to compute the editing distance between
2D C-trees for solving the image retrieval problem. Consider two pictures P1 and P2.
Two 2D C-tree representations of P1 (P2), J1x(J2x) and J1y(J2y) along the x- and
y-coordinate respectively, are constructed. We define the distance between P1 and P2,

Figure 4. The 2D C-trees of query sketch q2 . (a) q2x on the x-coordinate axis; (b) q2y on the y-co-
ordinate axis

VIDEO DATA INDEXING BY 2D C-TREES 381
d(P1, P2), to be equal to d (J1x ,J2x) * d (J1y , J2y). If one of the distances d(J1x, J2x) and
d(J1y , J2y) is zero, d(P1,P2) is defined to be equal to the other. The example picture f2 in
Figure 2(a) and query sketch q2 in Figure 2(b) are used to illustrate the computation of
picture distance. The 2D C-trees of f2 and q2 along the x-coordinate axis are in
Figures 3(a) and 4(a), respectively. The editing distance along the x-coordinate axis
between these two trees is the cost of editing operations needed to transform from f2x to
q2x . At least two editing operations are needed. That is, in f2x symbol D is deleted and
symbol B is replaced by an empty node e. The tree distance of d (f2x , q2x) is 2. Along the
y-coordinate four delete operations are needed for symbols B, D and e from f2y to q2y .
That is, the cost of d(f2y , q2y) is 3. Finally, the distance of d(f2, q2) is 6.

The proposed 2D C-tree matching algorithm takes O(n2
1n2

2) time complexity for
computing the editing distance between two trees consisting of n1 and n2 nodes,
respectively. While all the three distances between the query and the sample images in
the database have been computed, the most similar image can be obtained. Suppose
that there are N images in databases, P1,P2 ,2, PN , and a query image Q. The most
similar image(s) to Q is

MPi D d(Pi , Q) is the minimum of d(Pk , Q), 14k4NN .

4. Video Information Retrieval

The structural matching of 2D C-trees plays an effective role for spatial query between
images. Sometimes an image is viewed as a frame in video data ignoring sound. Then we
can directly extend the approach of iconic image indexing and apply to video data
indexing for video information retrieval.

A video sequence consists of a number of frames. Each frame can be constructed into
two 2D C-trees along the x- and y-direction. The 2D C-trees preserve the spatial
relationships among objects in an individual frame. A video sequence is then represent-
ed and indexed by an ordering set of 2D C-trees. The essence of video is that it captures
the movements of objects, and it is therefore necessary to allow searching for a changing
object relationship within a video sequence. The capability to find frames within a video
sequence that contain objects in a specified relationship is useful [1]. Recall an example
query in Section 1: retrieve all the video sequences in which there is a running athlete holding
a basketball, crossing over the field, jumping up, hanging over the basket and then slamming. This
query sequence can be expressed by five frames (Figure 5).

Figure 5. An example query sequence of five frames

382 F.-J. HSU ET AL.
For human beings, similarity retrieval is closer to conceptual thinking. Therefore, the
query or ‘match’ need not be an ‘exact match’. We match each query frame against each
frame of every reference sequence in video databases. The matching process measures
the similarity of frames, which computes the distance between the query frame and the
reference frame. Note that if a reference frame r is matched by a query frame q, we need
to count the distance between them, i.e. d(r, q). Otherwise, we count the size of the
frames r and q as the distance.

Definition 1 (Size of a frame). The size of a frame w is defined as the product of the sizes
of its 2D C-tree representations along the x- and y-axis direction, wx and wy , respectively.
The size of a 2D C-tree wx(wy) is the number of symbols in wx (wy), termed as g(wx)
(g(wy)), except the root node. Thus, the size of a frame w, referred to as Dw D, is
(g(wx)[1) * (g(wy)[1).

For video sequence matching, we accumulate the total differences or distances
between the frames of the query sequence and the frames of the reference sequence as
the similarity of these sequences. The smaller the distance is, the more similar the two
sequences are.

For the retrieval of similar video sequences, we propose three matching schemes in
video information retrieval. For the illustration of these schemes, suppose there are
m frames in the reference sequence V in the ordering of v1, v2,2 , vm and n frames in the query
sequence U in the ordering of u1, u2,2, un .

The full-sequence matching scheme is finding the minimum cost of full-sequence
comparison between V and U. Every frame in the reference sequence and in the query
sequence should be considered (see Figure 6).

The full-sequence comparison is defined by computing the editing distance
required to change the reference sequence into the query sequence. Three types of
changes between sequences are allowed: (1) delete—delete a frame from the reference
sequence, (2) insert—insert a frame into the query sequence, and (3) replace—replace a frame
of reference sequence with a frame of query sequence. For a change from v1, v2,2 , vi to
u1, u2,2 , uj , we compute the minimum cost of full-sequence comparison between
V and U.

The second matching scheme is considered for query segment, called segment
matching. Usually, a reference sequence contains lots of frames and users may not be
able to specify an entire query sequence practically. Therefore, users specify an essential
segment for video matching. For example, we may ask ‘please retrieve video sequences
that contain this query segment’. Consider the sequences V and U, and assume mAn.

Figure 6. Full-sequence matching scheme

Figure 7. Segment matching scheme

Figure 8. Subsequence matching scheme

VIDEO DATA INDEXING BY 2D C-TREES 383
We only compare the continuous n frames of the reference sequence V with the query segment
U. A segment of V, v1vi]12vi](n[1), where 14i4m[n]1, matches the query
segment U, u1u22un , correspondingly (see Figure 7).

Sometimes users may specify a query via some key frames. These key frames may
intermittently match a subsequence of the reference sequence. The third matching

384 F.-J. HSU ET AL.
scheme is used for matching the query subsequence, called subsequence matching. Only
the distance of matched frames is considered. The unmatched frames being nonsignifi-
cant or redundant in reference sequence are ignored and their cost is not included.
Figure 8 illustrates a subsequence matching between the reference sequence V and the query
subsequence U. The frame of V, vi @, matches the query frame ui , 14i4n. If vi @ and
vj { matches ui and uj correspondingly for i\j, then i @\j @ must hold.

Therefore, we can retrieve similar video sequences from the video databases via
a certain query by using the above matching schemes.

5. Matching Algorithms

In this section we develop the matching algorithms for the video sequence matching
schemes. For explaining the algorithm, the reference sequence V\v1v22vm and the query
U\u1u22un are used to illustrate the matching.

5.1. Full-Sequence Matching Scheme

The full-sequence matching between V and U is to compute the editing distance
required to transform from V to U. Three types of editing operations between
sequences are considered: delete, insert and replace. The cost of deleting a reference
frame vi or inserting a query frame uj is weighted the size of the concerned frame, i.e. D vi D
or Duj D , respectively. The cost of the replacing operation is the distance between two
transformed frames. For example, the ith frame of reference V, vi , is replaced by the j th
frame of query U, uj . The replace cost is d (vi , uj). For a transformation from v1, v22vi to
u1u22uj , the minimum cost, denoted by D [i, j] is defined as the minimum value of the
following three cases.

(1) D [i[1, j]]D vi D (delete a frame vi),
(2) D [i, j[1]]Duj D (insert a frame uj),
(3) D [i[1, j[1]]d(vi, uj) (replace frame vi by frame uj).

That is,

D [i, j]\minMD[i[1, j]]D vi D, D [i, j[1]]Duj D , D [i[1, j[1]]d(vi, uj)N. (3)

The well-known Symbolic String Sequence Comparison algorithm using the dynamic
programming technique [17] can be extended to solve the frame sequence matching
problem. Suppose that all the frames of the video sequence V(U) are constructed into
respective 2D C-tree representations, and the video sequence is represented and indexed
by an ordering set of 2D C-trees. First, we must compute all the frame sizes and frame
distances between those frames of V and U. Then the minimum change from V to U,
denoted by W (V,U), is D [m, n] computed by the above recurrence relation between
v1v22vm and u1u22un , i.e. W (V,U)]D [m, n].

This Full-Sequence Matching algorithm is developed as follows.

Algorithm 1: Full-Sequence Matching Algorithm.
Input: The frame-to-frame distance table d (vi, uj) for replacing vi with uj , and the frame

size arrays V [m], U [n].

VIDEO DATA INDEXING BY 2D C-TREES 385
Output: The minimum distance between V and U, W(V, U).
Begin

D [0, 0] \ 0;
for i : \1 to m do D [i, 0]\D[i[1, 0]]V [i];
for j :\1 to n do D[0, j]\D[0, j[1]]U[j];
for i : \1 to m

for j :\1 to n
D [i, j]\min(D[i[1, j]]V [i], D[i, j[1]]U [j],

D[i[1, j[1]]d(vi , uj));
return D [m, n];

End;

It is clear from the above algorithm that the running time is O(mn). An example is
demonstrated below. Sequence V has six frames and sequence U has five frames.
Suppose that the sizes of these 11 frames are all 25. The frame distances among them
computed as described in Section 3 are made and listed in Table 2.

The computation of D[6, 5] between sequences V and U is shown in Table 3. The
minimum cost of editing distance between sequences V and U, W(V, U) , is 36. From
Tables 2 and 3 we can trace back the correspondence of matching frames. The
correspondences (v1, u1, 2), (v2, u2, 2), (v3, null, 25), (v4, u3, 6), (v5, u4, 0), and (v6, u5, 1)
constitute an optimal matching [18]. Each triple (vi, uj , cost) denotes a mapping from
vi to uj associated with its cost between vi and uj . The notations we used in our sequence
matching algorithm are: a delete operation when uj is null and an insert operation if vi is
null. In this case, v3 is deleted in the transformation from V to U.
Table 2. The frame distances between sequences V and U

d(vi , uj) v1 v2 v3 v4 v5 v6

u1 2 4 6 9 12 16
u2 0 2 4 6 6 8
u3 16 12 8 6 4 2
u4 6 4 2 1 0 1
u5 12 9 6 4 2 1

Table 3. The computation of D [6, 5] between sequences V and U

V

D 0 1 2 3 4 5 6

0 0 25 50 75 100 125 150
1 25 2 27 52 77 102 127

U 2 50 25 4 29 54 79 104
3 75 50 29 12 35 58 81
4 100 75 54 31 13 35 59
5 125 100 79 56 35 15 36

386 F.-J. HSU ET AL.
This minimum cost computation between two sequences is useful for retrieving
similar sequences. Like the image query, we can retrieve similar sequences from
databases via a query sequence based on editing distance. Suppose that there are
N sequences in database, S1, S2,2 , SN , and a query sequence T. The most similar
sequence(s) to T is Si, such that W(Si , T) is the minimum one of all N sequences:

MSi DW(Si, T) is the minimum of W(Sk , T), 14k4NN.

5.2. Segment Matching

Consider sequences V and U. We want to find a segment of V, vivi]12 vi](n[1),
where 14i4m[n]1, which matches the query segment U correspondingly. Usually,
the user cannot precisely specify the query segment frame by frame. We use a threshold
q to allow a certain difference between the corresponding frames. If the distance
between two corresponding frames vi and uj is smaller than q, these two frames match
and constitute a matched pair (vi , uj). The problem becomes a string matching problem,
which can be solved by the famous KMP algorithm [19] easily, if q\0. Unfortunately,
the tolerance q somewhat affects the matching and the computation of the slide position
for backtracking in the KMP algorithm. The slide operation must be rechecked and
cannot be allowed when the distance is over the threshold. For such a reason, we must
propose a segment matching algorithm:

Algorithm 2: Segment Matching Algorithm
Input: The frame-to-frame distance table d(vi , uj) for replacing vi by uj, and a threshold q.
Output: The start positions of matched subsequences in the sample video sequence.

Begin
for i :\1 to m[n]1

k\i ; j\1;
while j4n then
if d (vk , uj)\q then

k\k]1; j\j]1;
else

break;
if j[n then print matched position i ;

End;

We use an example data extended from Table 2 to illustrate the segment matching
process. Suppose that there are 12 frames in reference sequence V, and a query
segment U consists of five frames. Their frame-to-frame distances are shown in
Table 4.

Obviously, there does not exist any segment of five frames in sequence V matching
the query segment U exactly. In other words, U is not an exact segment of sequence
V. If we allow a threshold of q\10, meaning that two frames match when their
distance is smaller than 10, then we can obtain four segments of V matching the
query, u1u2u3u4u5, according to the above algorithm. That is v5v6v7v8v9, v6v7v8v9v10,
v7v8v9v10v11 and v8v9v10v11v12. The costs of these matched segments are 15, 15, 17 and 20,
respectively.

Table 4. The frame distances between reference sequence V and a segment U

d(vi , uj) v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

u1 4 2 0 1 2 4 6 9 12 16 16 20
u2 9 4 2 1 0 2 4 6 6 8 12 16
u3 20 20 20 16 16 12 8 6 4 2 1 0
u4 20 16 12 8 6 4 2 1 0 1 2 4
u5 20 20 16 16 12 9 6 4 2 1 0 1

VIDEO DATA INDEXING BY 2D C-TREES 387
It is interesting to find out that the cost of an unmatched segment v4v5v6v7v8 is 19,
which is in fact smaller than that of a matched subsequence v8v9v10v11v12, which is 20.
Thus, for different applications users may change the selecting criteria to be the total
cost of two subsequences. We can make a little modification from the segment matching
algorithm for this purpose.

Algorithm 3: Modified Segment Matching Algorithm
Input: The frame-to-frame distance table d (vi, uj) for replacing vi with uj, and a threshold

of total cost, - .
Output: The start positions of matched subsequences in the sample video sequence.

Begin
for i :\1 to m[n]1

k\i ; j\1; tc\0;
while j4n then

if (tc]d(vk, uj))\- then
k\k]1; j\j]1; tc\tc]d(vk, uj);

else
break;

if j[n then print matched position i ;
End;

Note that these two segment matching algorithms also take O(mn) time to match the
segments.

5.3. Subsequence matching

The subsequence matching only considers the subsequence consisting of key frames
specified in the query segment. The subsequence matching algorithm can employ
the dynamic programming technique like the full-sequence matching algorithm
(Algorithm 1) except ignoring the cost of unmatching frames in the reference sequence.
In other words, the cost of deleting an unmatched frame in the reference sequence is
weighted zero. On the contrary, every frame in a query segment needs to be matched. If
a frame of a query segment is matched, the cost of matching is the distance between the
corresponding frames. Otherwise, the cost of an unmatched frame in a query segment is
measured in frame size as defined before. As stated above, the subsequence matching
algorithm is developed as the following.

388 F.-J. HSU ET AL.
Algorithm 4: Subsequence Matching Algorithm
Input: The frame-to-frame distance table d (vi, uj) for replacing vi with uj , and the query

frame size U[n].
Output: The minimum subsequence distance between V and U, W(V, U).

Begin
for i :\0 to m do d [i, 0]\0;
for j :\ 1 to n do d [0, j]\d [0, j[1]]U[j] ;
for i :\1 to m

for j :\1 to n
d [i, j]\min(d [i[1, j], d [i, j[1]]U [j], d [i[1, j[1]]d(vi, uj));

return d [m, n];
End;

Obviously, the subsequence matching algorithm employing the dynamic program-
ming technique also takes O(mn) time complexity for computing the minimum subsequ-
ence distance.

We still use the example data in Table 4 to illustrate the subsequence matching. The
computation of d [m, n] between a sequence V and a query segment U is shown in
Table 5.

It is assumed that the sizes of all the frames in query V are 25. From the computation
of d[i, j], we can easily trace back the optimal correspondence of subsequence matching.
In this example, there are two corresponding mappings, referred to as the set of triples
(vi , uj , cost), producing an optimal match in distance 5.

(1) (v3, u1, 0), (v5, u2, 0), (v9, u3, 4), (v10, u4, 1), and (v11, u5, 0).
(2) (v3, u1, 0), (v5, u2, 0), (v10, u3, 2), (v11, u4, 2), and (v12, u5, 1).

This means that the optimal subsequence matching between V and U is obtained at
W(V, U)\5. Similarly, the subsequence matching approach provides a valuable solu-
tion for video sequence matching. Like the full-sequence, we can retrieve similar
sequences from the sequences S1, S2,2, SN via a certain query segment T specifying
some key frames (see Figure 9). We only replace the full-sequence distance function
W(Si, T) with the subsequence distance t(Si, T) . The most similar sequence(s) to T is

MSi Dt(Si , T) is the maximum of t(Sk ,T), 14k4NN.
Table 5. The computation of d [12, 5] between sequence V and a segment U

V

d 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 25 4 2 0 0 0 0 0 0 0 0 0 0

U 2 50 29 8 4 1 0 0 0 0 0 0 0 0
3 75 54 33 28 20 17 12 8 6 4 2 1 0
4 100 79 58 45 36 26 21 14 9 6 5 4 4
5 125 104 83 70 61 48 35 27 18 11 7 5 5

Figure 9. Choose the most similar sequence form S1,2, SN matching T

VIDEO DATA INDEXING BY 2D C-TREES 389
6. Approximate Sequence Matching

In general, similarity retrieval [20] is required since users usually cannot express queries
in a precise way. For a frame of abundant contents, users often cannot specify a precise
description in a query. The objects existing in a reference frame may not be expressed in
a rough query. This strategy provides a more convenient and user-friendly manner in an
interactive environment. The users can specify a query sequence consisting of some key
frames concentrating on key objects. Only the key objects in the query sequence are
considered and compared. In such a case, the superfluous objects in the query sequence
are considered and compared. In such a case, the superfluous objects in a reference frame
can be ignored on purpose when they do not appear in the query frame. This means that
the cost of deleting an object in a reference frame is weighted zero. Meanwhile, the case of
a relabel operation, which replaces a symbol in a reference frame with an empty-node in
a query frame, is viewed as a special case of the delete operation. On the contrary, all the
objects specified in a query are needed for measuring the distance. Therefore, the
computation of editing distance between a reference frame and a query frame is modified
into a partial function. The partial tree matching algorithm is proposed in Hsu et al. [15]
for computing the partial tree distance. Note that this algorithm also takes O(n2

1n2
2) time

complexity to compute the partial distance between two trees consisting of nodes n1 and

390 F.-J. HSU ET AL.
n2 , respectively. We use c (reference, query) to represent the partial distance between
a reference frame and a query frame. Similar to the definition of tree distance d, the
partial distance c is the product of two partial tree distances in two axis directions
respectively.

To demonstrate the computation of partial distance, we use the example picture f2 in
Figure 2(a), which is regarded as the reference frame, and query sketch q2 in Figure 2(b),
which is considered as query frame. The 2D C-trees of f2 and q2 are in Figures 3 and 4,
respectively. Because the editing operations needed to transform from f2 to q2 are all
delete operations (even if a relabel operation needed in the x-direction is actually
a special case of the delete operation) the partial tree distance between them are
both zero for two axis directions, respectively. That is, the partial distance between f2
and q2, c(f2, q2), is zero. In such a case, the reference f2 matches the query q2 with zero cost.
In other words, the query q2 is a partial description of the reference f2 without any
difference.

Now, we can employ the similarity strategy via partial distance to integrate the
matching algorithms discussed in Section 5. The example data in Table 6 is made for
demonstrating the computation of partial distances between a reference sequence V and
a query sequence U.

For the three matching schemes discussed in Section 4, the proposed matching
algorithms can be modified and extended for approximate sequence matching by
replacing d(vi , uj) with the partial distance c(vi , uj). We use Algorithms 2 and 4 to
illustrate the approximate sequence matching.

The Segment Matching algorithm can select the similar segment(s) in V under
a threshold. We just replace d (vi, uj) with c(vi, uj) in Algorithm 2. There are only two
segments in V matched under q\3, v6v7v8v9v10 and v7v8v9v10v11. The segment v6v7v8v9v10

has the minimum cost correspondence for the query U.
The Subsequence Matching algorithm is modified similarly. The distance computa-

tion function d(vi, uj) is replaced with the partial distance c(vi, uj). We can easily obtain
an approximate subsequence in reference sequence V comparing with U. Only one
matching correspondence, M(v3, u1, 0), (v5, u2, 0), (v8, u3, 2), (v9, u4, 0), (v11, u5, 0)N, is se-
lected under a constraint threshold 4, representing the size of each query frame. The
computation of approximate sequence matching is shown in Table 7 and the optimal
matching is obtained at a cost equal to 2.

Therefore, the approximate sequence matching can provide a comprehensive re-
trieval of video data. The general mechanism in retrieving the most similar sequence(s)
from N video sequences in the database, S1, S2, 2 , SN , via a query sequence T is
performed through the following three steps.
Table 6. The partial distances between source stream V and a sequence U

c(vi , uj) v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

u1 2 1 0 1 1 1 2 3 3 4 4 4
u2 3 2 1 1 0 1 2 2 2 3 3 4
u3 4 4 4 4 4 3 3 2 2 1 1 0
u4 4 4 3 2 2 2 2 1 0 1 1 2
u5 4 4 4 4 3 2 2 2 1 1 0 1

Table 7. The computation of approximate sequence matching between V and U

V

d 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 4 2 1 0 0 0 0 0 0 0 0 0 0

U 2 8 6 4 2 1 0 0 0 0 0 0 0 0
3 12 10 8 6 5 4 3 3 2 2 1 1 0
4 16 14 12 10 8 7 6 5 4 2 2 2 2
5 20 18 16 14 12 11 9 8 7 5 3 2 2

VIDEO DATA INDEXING BY 2D C-TREES 391
Step 1: Compute all the partial distances of the frame pairs between a sequence Sk and T,

c(ski, tj), 14i4DSk D, 14j4DT D.

Step 2: Compute the minimum partial subsequence matching for Sk and T, t(Sk, T).
Step 3: Repeat Steps 1 and 2 for all sequence Sk , 14k4N. Then choose the one(s)

with minimum cost to be the most similar matched video sequence(s) for T.

In summary, for a query sequence T consisting of n frames, we must compute the
minimum partial distance O(mn) time taken to compare N reference sequences that have
m frames and choose the most similar sequence with minimum cost in the databases.

7. Prototype System

We use the above mechanisms to implement an Interactive Video Information System
(IVIS) in our experimental project. The schematic diagram of the IVIS is shown in
Figure 10.

There are three subsystems in the IVIS. The query subsystem provides users an
interactive interface to query and browse the retrieved results. The system supports
single frame query and frame sequence query. The interface allows users to draw a query
image by assembling object icons designed to use an existing query template consisting
of query frames. The subsystem contains a query processing module and an interactive
browser module. To achieve content-based retrieval, a friendly user interface is required
for users to refine query visually and navigate their way through the database visually.

The information management subsystem is the core of an IVIS. There are four
modules in the subsystem: content acquisition module, video indexing module, video
store/retrieval module and index matching module. When we collect the source video
streams, the content acquisition module processes the raw data and identifies some key
image frames. The representative objects in key frames are also extracted. These tasks
are not easy to achieve automatically using techniques in pattern recognition and image
understanding at the current stage and are performed instead in a human-assisted
fashion. After extracting the representative objects from identified key frames, the video
indexing module can construct the 2D C-trees to be the representative indexing of key
frames. All the video streams and key frames are stored in the data storage subsystem by
the video store/retrieval module. The index matching module computes the minimum

Figure 10. Schematic diagram of an interactive video information system

392 F.-J. HSU ET AL.
matching distance for the query processing subsystem based upon the proposed
approximate sequence matching mechanism.

There are three major databases in the data storage subsystem. The constructed 2D
C-trees are the representative indexing of video streams and are kept in the Index Store.
All the source video data in the AVI file format are compressed to the compressed video
streams for reducing the storage space. The identified key frame data are also collected
in the database for providing the annotation with indices to speed up retrieval of the
desired video streams.

In the experimental project, we capture 48 streams from ‘The Lion King’ cartoon
produced by The Walt Disney Company. Each stream takes 99 s and consists of about
1500 frames. There are 351 key frames that have been identified in all and some are
listed in Appendix A. Each stream has 7 or 8 key frames on an average. For this popular
animation, 78 roles are chosen to be the objects, which are extracted from the key
frames in a human-assisted fashion. These objects are classified into 28 categories
represented by a set of designed icons in the system. The labels of objects are listed in
Appendix B. The objects and their bounding rectangles within images are also extracted

Figure 11. An example template query for approximate sequence matching

VIDEO DATA INDEXING BY 2D C-TREES 393
after capturing the images from the source video. Each frame containing about five
objects on an average is constructed into two 2D C-trees along the x- and y-axis directions
independently and these two indexing representations have been stored. The number of
objects within each frame implies the number of nodes in its corresponding 2D C-trees.

In IVIS, we concentrate on video information retrieval based upon approximate
sequence matching mechanism. We allow users to draw a sequence of query frames by
assembling object icons designed or use an existing query template consisting of some
consecutive query frames. An example is shown in Figure 11. Before computing the
distances among frames, two 2D C-trees of each frame in the query sequence are
constructed first. Starting from the first reference sequence of the video database, we
compute all the partial distances between the frame pairs of this reference sequence and the
query sequence. The subsequence matching distance between this reference sequence and
the query sequence is easily computed by Algorithm 4. While all the sequences of the
database are compared with the query one by one, the minimum one represents the
most similar sequence for the query. The result via a query template in Figure 11 is
shown in Figure 12. After retrieving a stream, the user can manipulate the stream via
basic operations, such as Play, Reverse, Pause, Goto, Backward, Forward and so on.

For the 48 video streams, we have used each representative key frame sequence to be
the test query sequences against the others. Each comparison takes 15 to 25 ms in
a Pentium-133 CPU with 64MB RAM environment. It is clear that all the video streams
are exactly retrieved from the databases without distance zero. Our initial results validate
the effectiveness of similarity retrieval by 2D C-trees matching.

8. Conclusions

Chang et al. proposed an effective 2D string approach for spatial indexing of image data.
To represent the spatio-temporal information, we extend the approach of iconic image

Figure 12. A result stream via a query template in Figure 11

394 F.-J. HSU ET AL.
indexing to video data indexing in this paper. We investigate a new knowledge model,
2D C-tree, to characterize the spatial information of video content. The indexing
technique represents the spatial content within individual frames and constructs an
ordering set of 2D C-trees for a video sequence. Each frame is constructed into two
representative 2D C-trees along the x- and y-axes. The ordering set of 2D C-trees then
becomes the representative indexing of the video sequence. The similarity between two
frames is measured by the editing distance between their corresponding 2D C-trees. The
video sequence matching problem is solved by computing the minimum cost of
corresponding frames. For various applications or demands, we propose three matching
schemes for video information retrieval: full-sequence matching, segment matching and subsequ-
ence matching. We also extend the matching schemes to approximate sequence matching
by computing the partial distances between reference frames and query frames. The
approximate sequence matching provides a comprehensive operation for retrieving
video data. We also briefly present our developed prototype based on the proposed
strategy in video information retrieval.

This work concentrates on handling the spatial-temporal relationships of video data.
Nevertheless, how to integrate with other useful features [21], such as color, shape,
texture, and even voice, for video retrieval is worthy of exploring in many practical
applications, such as news database, electronic shopping and distance learning. More-
over, the automatic content extraction, especially object recognition or identification in
video frames, is also among our future research direction.

VIDEO DATA INDEXING BY 2D C-TREES 395
Acknowledgement

We are grateful to The Walt Disney Company for allowing us the experimental use of
‘The Lion King ’ production.

Appendix A

Some key frames of the 48 streams collected in our project

396 F.-J. HSU ET AL.
Appendix B

Seventy eight roles are chosen to be the objects in ‘The Lion King’ cartoon

Category Object

Lion Mufasa, Simba
~

cub, Simba
~

adult, Scar, Simba
~

son, Sarabi,
Nana

~
cub, Nana

~
adult, Sanafina, Lioness, Lionesses

Baboon Rafiki, Baboon1, Baboons
Hornbill Zazu
Hyena Banzai, Shenzi, Ed, Hyena1, Hyenas
Warthog Pumbaa
Meerkat Timon
Animal Hippo, Elephant, Rhino, Giraffe, Zebra, Antelope, Leopard, Ape,

Vulture, Wildebeest, Squirrel, Bird, Crocodile, Mouse
Animals Hippos, Elephants, Rhinos, Giraffes, Zebras, Antelopes, Leopards,

Apes, Vultures, Wildebeests, Squirrels, Birds, Crocodiles
Insect Ant, Butterfly, Worm
Land Pride

~
land, Cracked

~
land

Rock Pride
~

rock, Rock
Grass Dark

~
grass, Bright

~
grass

Sun Sun
Valley Valley
Tree Tree1, Trees, Forest
Sky Dark

~
sky, With

~
stars, Bright

~
sky

Termite
~

mt Termite
~

mt
Gorge Gorge
Thornbushes Thornbushes
Flame Flame
Jungle Jungle
Pond Pond
Waterfall Waterfall
Stream Stream
Mount Mount
Flowers Flowers
Skull Skull
Cub

~
painting Cub

~
painting

References

1. K. Shearer, S. Venkatesh & D. Kieronska (1996) Spatial indexing for video databases. Journal
of Visual Communication and Image Representation 7, 325—335.

2. E. Oomoto & K. Tanaka (1993) OVID: Design and implementation of a video-object
database system. IEEE Transactions on Knowledge and Data Engineering 5, 629—643.

3. S. W. Smoliar & H. Zhang (1994) Content-based video indexing and retrieval. IEEE
Multimedia 1, 62—72.

VIDEO DATA INDEXING BY 2D C-TREES 397
4. C. W. Chang (1996) Structured video computing and content-based retrieval in a video information system.
Ph.D dessertation, National Chiao Tung University, Taiwan, R.O.C.

5. A. D. Narasimhalu (1995) Special section on content-based retrieval. ACM Multimedia Systems
3, 1—2.

6. T. S. Chua & L. Q. Ruan (1995) A video retrieval and sequencing system. ACM Transactions
on Information systems 13, 373—407.

7. J. K. Wu, A. D. Narasimhalu, B. M. Mehtre, C. P. Lam & Y. J. Gao (1995) CORE:
a content-based retrieval engine for multimedia information systems. ACM Multimedia Systems
3, 25—41.

8. A. Gupta, T. Weymouth & R. Jain (1991) Semantic queries with pictures: the VIMSYS
model. In: Proceedings of the 17th International Conference on Very Large Data Bases, Barcelona,
pp. 69—79.

9. S. K. Chang, Q. Y. Shi & C. W. Yan (1987) Iconic indexing by 2-D strings. IEEE Transaction
on Pattern Analysis and Machine Intelligent PAMI-9, 413—428.

10. S. Y. Lee, M. K. Shan & W. P. Yang (1989) Similarity retrieval of iconic image database.
Pattern Recognition 22, 675—682.

11. F. J. Hsu, S. Y. Lee & P. S. Lin (1997) 2D C-tree spatial representation for iconic image.
In: Proceedings of the 2nd International Conference on Visual Information Systems (Visual ’97), San
Diego, CA, pp. 287—294.

12. S. Y. Lee & F. J. Hsu (1990) 2D C-string: a new spatial knowledge representation for image
database systems. Pattern Recognition 23, 1077—1087.

13. S. Y. Lee & F. J. Hsu (1992) Spatial reasoning and similarity retrieval of images using 2D
C-string knowledge representation. Pattern Recognition 25, 305—318.

14. K. S. Fu (1982) Syntactic Pattern Recognition and Application. Prentice-Hall, Englewood Cliffs,
NJ.

15. F. J. Hsu, S. Y. Lee & P. S. Lin (1998) Similarity retrieval by 2D C-trees matching in image
databases. Journal of Visual Communication and Image Representation 9, 87—100.

16. K. Zhang (1995) Algorithms for the constrained editing distance between ordered labeled
trees and related problems. Pattern Recognition 28, 465—474.

17. U. Manber (1989) Introduction to Algorithms: A Creative Approach. Addison-Wesley, Reading,
MA.

18. Y. P. Wang & T. Pavlidis (1990) Optimal correspondence of string subsequences. IEEE
Transaction on Pattern Analysis and Machine Intelligent PAMI-12, 1080—1087.

19. D. E. Knuth, J. H. Morris & V. R. Pratt (1977) Fast Pattern matching in strings. SIAM Journal
of Computing 6, 323—350.

20. P. Ciaccia, F. Rabitti & P. Zezula (1996) Similarity Search in Multimedia Database Systems.
In: Proceedings of the 1st International Conference on Visual Information Systems (Visual ’96),
Melbourne, Australia, pp. 107—115.

21. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner,
D. Lee, D. Petkovic, D. Steele & P. Yanker (1995) Query by image and video content: the
QBIC system. IEEE Computer 44, 23—32.

	TABLES
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7

	FIGURES
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

	Notation
	1. Introduction
	2. Spatial Indexing
	3. 2D C-tree
	4. Video Information Retrieval
	5. Matching Algorithms
	5.1. Full-Sequence Matching Scheme
	5.2. Segment Matching
	5.3. Subsequence matching

	6. Approximate Sequence Matching
	7. Prototype System
	8. Conclusions
	Acknowledgement
	Appendix A
	Appendix B
	References

