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Subband Kalman Filtering for Speech Enhancement
Wen-Rong Wu,Member, IEEE,and Po-Cheng Chen

Abstract—Kalman filtering is an effective speech-enhancement
technique, in which speech signals are usually modeled as au-
toregressive (AR) processes and represented in the state-space
domain. Since AR coefficients identification and Kalman filtering
require extensive computations, real-time implementation of this
approach is difficult. This paper proposes a simple and practical
scheme that overcomes these obstacles. Speech signals are first
decomposed into subbands. Subband speech signals are then
modeled as low-order AR processes, such that low-order Kalman
filters can be applied. Enhanced fullband speech signals are
finally obtained by combining the enhanced subband speech sig-
nals. To identify AR coefficients, prediction-error filters adapted
by the LMS algorithm are applied. Due to noisy inputs, the
LMS algorithm converges to biased solutions. The performance
of the Kalman filter with biased parameters is analyzed. It
is shown that accurate estimates of AR coefficients are not
required when the driving-noise variance is properly estimated.
New methods for making such estimates are proposed. Thus,
we can tolerate biased AR coefficients and take advantage of
the LMS algorithm’s simple structure. Simulation results show
that speech enhancement in the subband domain not only greatly
reduces the computational complexity, but also achieves better
performance compared to that in the fullband domain.

Index Terms—AR modeling, Kalman filtering, LMS algorithm,
speech enhancement, subband filtering.

I. INTRODUCTION

SPEECH enhancement has many applications in voice
communication, speech recognition, and hearing aids.

Speech enhancement often aims to reduce noise levels, in-
crease intelligibility, or reduce auditory fatigue. Many studies
have been done using techniques such as short-time spectral
amplitude estimation [1]–[4], iterative Wiener filtering [5]–[7],
audio-based filtering [8], [9], signal-subspace processing [10],
[11], and hidden Markov modeling (HMM) [12], [13]. Al-
though significant results have been achieved, most of them
are not suitable for real-time implementation because their
computational complexities are generally too high.

The Kalman filter is well known in signal processing for its
efficient structure. In [14], Paliwal and Basu used a Kalman
filter to enhance speech corrupted by white noise. On a short-
time base, speech signals were modeled as stationary AR
processes and AR parameters were assumed to be known.
Gibson, Koo, and Gray considered speech enhancement with
colored noise in [15]. They modeled both speech and col-
ored noise as AR processes and developed scalar and vector
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Kalman filtering algorithms. To estimate the AR coefficients,
an EM-based algorithm was employed. In [16], Lees and Ann
proposed a non-Gaussian AR model for speech signals. They
modeled the distribution of the driving-noise as a Gaussian
mixture and applied a decision-directed nonlinear Kalman
filter. Again, an EM-based algorithm was used to identify
unknown parameters. Niedźwiecki and Cisowki [17] assumed
that speech signals are nonstationary AR processes and used
a random-walk model for the AR coefficients. An extended
Kalman filter was then used to simultaneously estimate speech
and AR coefficients. Note that the stability of the extended
Kalman filter is not guaranteed and dimensions of the Kalman
filter are greatly increased.

The aforementioned Kalman filtering algorithms still require
extensive computations for two reasons: first, to identify AR
coefficients using EM algorithms, and second, to carry out
filtering using Kalman filters. To overcome these drawbacks,
we suggest modeling and filtering speech signals in the sub-
band domain. Since the power spectral densities (PSD’s) of
subband speech signals are simpler and flatter than their
fullband signals, low-order AR models are sufficient, and only
lower-order Kalman filters will be required. Specifically, we
focus on first- and zeroth-order modeling. In this case, the
Kalman filter involves only scalar operations, thus saving
a considerable amount of computation. For identification of
AR coefficients, we use a prediction-error filter adapted by
the LMS algorithm. The LMS algorithm is well known for
its simplicity and robustness, however, its slow convergence
precludes its use in many practical applications. Since the
PSD’s of subband speech signals are relatively flat and there
is at most one AR coefficient, the LMS algorithm will thus
converge more rapidly.

The other parameter required by the Kalman filter is AR
model’s driving-noise variance. Through extensive simula-
tions, we found that this variance plays a crucial role in the
filtering process and propose effective methods for identifying
it. Note that the input to the prediction-error filter is noisy,
which means the LMS algorithm will converge to biased
solutions. We analyzed the performance of the Kalman filter
with biased AR coefficients and were able to show that using
our variance identification methods, accurate estimation of
AR coefficients is not required. Our driving-noise variance
estimates not only have the advantage of simplicity, but
can also compensate for performance degradation due to
biased AR coefficients. Thus, we can take advantage of the
LMS algorithm’s simple structure, which facilitates real-time
implementation.

This paper is organized as follows. Section II states the
formulation of speech enhancement using the Kalman filter. In
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Section III, we describe how the Kalman filter can be applied
in the subband domain. Section IV gives a performance analy-
sis of the Kalman filter with biased parameters. Experimental
results are reported in Section V and conclusions are drawn
in Section VI.

II. CONVENTIONAL KALMAN FILTERING

A. White Noise Filtering

On a short-time basis, a speech sequence can be
represented as an AR process, which is essentially the output
of an all-pole linear system driven by a white noise sequence:

(1)

where is a zero-mean white Gaussian process with
variance . The observed speech signal is assumed
to be contaminated by a zero-mean additive Gaussian noise

, i.e., . Let be white and

. Equation (1) and the
corrupted speech can be reformulated in the state-space
domain as

(2)

(3)

...
...

...
...

...

... (4)

If we assume that parameters , and
are precisely known, the optimal estimate of can be

obtained from the Kalman filter. The Kalman equations for (2)
and (3) are given as follows [15]:

(5)

(6)

(7)

(8)

where is the estimate of , is the Kalman gain,

is the prediction-error covariance matrix,
is the filtering-error covariance matrix,

is the measurement-noise variance, and is
the driving-noise variance. A speech sample estimate at time
instant can then be obtained using .

B. Colored Noise Filtering

We assume that colored noise is stationary and can also be
described by a -order AR model

(9)

where is a zero-mean white Gaussian process with
variance . The AR parameters and

can be estimated during nonspeech intervals and are
assumed to be known. There are two types of formulation.
One is called state augmentation, and the other is measurement
difference. State augmentation expresses (9) as a state-space
representation and incorporates that into the state equations
(2) and (3). The state-space representation of is similar
to that in (1). Let .
Then,

(10)

(11)

where , and are identical to those in (4), except that
are replaced by . Combining (10), (11), (2), and (3),

we then have

(12)

(13)

where

(14)

The covariance matrix of is defined as

diag . The Kalman equations
for (12) and (13) are then obtained by setting and
replacing , , , and with , , , and in (5)–(8).
The speech estimate is then . Note that

is of dimension , the computational complexity
of the Kalman filter is increased when this approach is used.

The idea behind measurement difference is to perform some
measurement transformations such that measurement noise
becomes white. Assume , let

, and
The transformed measurement is defined as

(15)

where and
is white Gaussian noise with a variance of .

Now, (2) and (15) become the new state equations. Although
measurement noise has been made white, it is correlated with
driving noise. Fortunately, an optimal filter is available for
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such a situation. The Kalman equations for the measurement-
difference sequence are given by [26]

(16)

(17)

(18)

(19)

(20)

where is the optimal prediction based
on , and is the optimal
estimate based on . Note that we
use instead of to denote the state estimate in
the measurement-difference method. As we can see, the
measurement-difference-type Kalman filter is somewhat more
complex than the state-augmentation type. However, the main
advantage of the measurement-difference approach is that state
dimensions do not increase. If the AR order of the colored
noise is high, this method can save considerable computation.
The speech estimate is the same as that for white noise, i.e.,

. Note that

(21)

where denotes the expectation operation. Thus,
corresponds to a smoothing rather than a filtering result.

The AR coefficients and driving-noise variance must be
estimated to apply the Kalman filter to speech enhancement.
Many algorithms for performing this task have been presented,
however, most of them require extensive computations and are
not suitable for real-time implementation. In this paper, we
focus on an adaptive prediction-error filter using an LMS-type
algorithm. It is known that the convergence rate of the LMS
algorithm is slow when the input correlation matrix has a large
eigen-spread [25]. In addition to the convergence problem,
direct application of the algorithm to noisy signals gives biased
AR parameters. These may explain why the LMS algorithm
is rarely used in speech enhancement. In what follows, we
present new approaches that overcome these drawbacks.

III. SUBBAND KALMAN FILTERING

A. Formulation

Our approach is motivated by the idea of curve-fitting using
spline functions, which allows arbitrary curves to be fitted
using polynomial functions. For better results, we usually need
high-order polynomials. However, it is known that polynomi-
als are inflexible; making them behave a certain way in one
place may cause them to misbehave elsewhere. A more flexible
approach is to use low-order piecewise polynomials. The curve
is first divided into consecutive segments and each segment is
fitted using a low-order polynomial. Constraints on segment

Fig. 1. PSD’s of an ARMA and its AR-modeled signals; AR(4) in fullband
and AR(1) in subband.

end points may be introduced to control the smoothness of
the fitting function. The idea of the piecewise fitting can be
extended to our application. We can consider signal modeling
as analogous to (but not identical) a PSD fitting problem.
Using a high-order model will cause problems similar to
those encountered in curve-fitting, so we divide the PSD into
consecutive segments and use a low-order model for each
segment. Due to its simplicity, we use the AR model although
its PSD is not a polynomial function. Subband decomposition
is a perfect way to realize the piecewise modeling scheme.

Here, we present an illustrative example. Suppose that the
input signal is an ARMA signal obtained by passing
white noise through a system with the following transfer
function:

(22)

Let AR( ) denote the th order AR model. We first use an
AR(4) process to model this signal. The optimal coefficients
are found by solving the Yule–Walker equations. The tree-
structure QMF bank with a prototype filter of length 32
is applied to obtain a four-band decomposition [24]. Each
subband signal is then modeled as an AR(1) process. Fig. 1
shows the PSD’s of the fullband AR(4) model and the subband
AR(1) model. Note that the overall subband AR orders are
the same as that of the fullband. The averaged square error
(ASE) between the PSD’s of the AR models and the original
signal are also calculated. The ASE is 0.0225 for the fullband
AR(4) model, while the ASE is 0.00132 for the subband
AR(1) model. It is clear that subband modeling is preferable
to fullband modeling. It is worth noting that there may be
sharp changes in the subband modeling spectrum. For instance,
each subband signal can be modeled as AR(0). In this case,
the optimal filter may also have sharp changes in its spectrum.
Constraints can be imposed to improve this situation, however,
this will complicate the whole scheme. A simpler alternative is
to add a postfilter to smooth the optimal filter spectrum. Details
of this approach will be presented in a subsequent work.
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Fig. 2. Subband speech enhancement system.

The block diagram of the proposed speech enhancement
system is shown in Fig. 2. Noisy speech is first split into
a set of subband signals, , where , by an

-channel analysis filter bank and -fold decimators. The
subband signal can be expressed as follows:

(23)

where and are subband signals of and ,
respectively. If is white, we can approximate as
white (if the subband filters are ideal, is exactly white).
If is colored, is also colored. Thus, we model
as an AR process. Since subband speech signals have simpler
spectra than their fullband counterparts, they can be modeled
as lower-order AR signals. We focus on the modeling of AR(1)
and AR(0). The Kalman filtering operations will be greatly
simplified in these cases. For AR(1), is expressed as
follows.

(24)

where is a zero-mean white Gaussian process with a
variance of . Equation (24) is the state equation for subband
signals. Combining it with the measurement equation in (23),
we can apply a bank of Kalman filters to subband speech
signals. For AR(0), we can just set in (24).

To use the Kalman filter, the parametersand must be
estimated. The estimation method is described in the following
subsection. The filtered subband signal, denoted as , is
up-sampled by expanders and then processed by an-channel
synthesis filter bank to reconstruct the filtered signal .

B. Aliasing Problem

Aliasing is an inherent problem that arises in subband
processing systems. Consider the two-band case in Fig. 3. The
output of the system is given by

(25)

where and are transfer functions of subband
processing filters. The second term on the right-hand side

Fig. 3. A two-band processing system.

of (25) is the aliasing component. The perfect reconstruction
conditions for a conventional QMF bank are known to be

(26)

(27)

where is an integer and is a constant. It is apparent
that even though (26) and (27) are satisfied, the aliasing
component in (25) cannot be cancelled. To have a aliasing-
free reconstruction for arbitrary and , we need a
filter bank that satisfies the following conditions:

(28)

and (29)

Note that the conditions (28) and (29) are strict; it is difficult to
design filters that satisfy these conditions. Many methods have
been proposed to solve the problem [18]–[21], however, they
are either computationally expensive or inappropriate for our
use. Recently, an echo-cancellation algorithm, that combines
an IIR filter bank and a notch filter, was proposed [22]. It
was shown that the aliasing effect can be effectively reduced.
Application of an IIR filter bank is beyond the scope of this
paper, however, we found that in speech enhancement, if the
input SNR is low, the filtering error due to aliasing tends to
be masked by other effects. In Section V, we use simulation
results to describe this.

C. Parameter Estimation

In this subsection, we consider estimation of AR coefficients
and driving-noise variances. As mentioned above, we use an
adaptive prediction-error filter with the LMS algorithm for
coefficient identification. For faster convergence, we adopt
the normalized LMS algorithm. The update equation for the
coefficient vector is given as follows:

(30)

where is the estimate of
AR coefficients in (1), and is the Euclidean
norm of . The step size in (30) determines the
convergence rate and stability of . It has been shown [25]
that when is chosen properly, the expectation of will
converge to . This type of identification is well known in AR
modeling, however, clean speech is required in order to obtain
an unbiased estimate of. In speech enhancement, only noisy
speech is available for the normalized LMS filter. Thus,
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the AR coefficient vector update equation becomes

(31)

where . Since
is used instead of , the LMS algorithm will con-

verge to a biased solution. Let
where

, and . It can easily be
shown that will converge to for (30) and to

for (31). Through extensive experimentation,
we found that Kalman filtering performance degradation due
to biased AR coefficients is small when driving-noise variance
estimation is also biased in some way. In other words, some
biased can compensate for the effect of biased AR coef-
ficients. Thus, we will not pursue accurate estimation of,
instead, we focus on estimating .

Here, we propose a method for identifying . First, we
consider the white noise case. Denote as the th element
of , the th element of , and
the th element of . We also define the prediction-
error for noisy input as

(32)

The variance of can be obtained as follows:

(33)

where . From (6),
(7), and (33), we have

(34)

Thus, can be obtained by rewriting (34) as

(35)

In practice, we cannot obtain; we use to approximate it.
A fading-memory average is then used to recursively estimate

:

(36)

where is a forgetting factor and is set close to 1. This
forgetting factor controls the variance of . If is larger, the
variance will be smaller. However, the signal tracking ability
becomes poorer. In practice, we found that a value around
0.95 provides a good compromise. The compensation capacity
of the estimate in (36) for biased is discussed in
Section IV.

The above method can be extended to estimate in
colored noise. Consider the state augmentation formulation.
We first redefine in (32) as

(37)

The variance of is then

(38)

From (38), the gain vector is written as follows:

(39)

The first element of is

(40)

Thus, can be obtained by rewriting (40) as

(41)

Again, the fading-memory technique is used to recursively
estimate :

(42)

Unfortunately, the method for estimating described
above cannot be used in the measurement-difference formula-
tion. So, we developed another method. Using (21), we can
express (32) as

(43)

Using (2), we can describe the driving noise as

(44)

Thus, from (43) and (44), the variance of can be written
as

(45)

This shows that . Defining the filtered
prediction error as the expectation of (44) conditioned on

, we have

(46)

Thus, is the optimal estimate of . As a consequence,
. The above results indicate that the true
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lies somewhere between and . Thus, we can
write as a linear combination of these two values.

(47)

where is a constant between 0 and 1. Since contains
unprocessed noise, the variance of the estimatedis usually
larger than that of . Thus, the choice of should favor . A
proper choice of depends on the signal-to-noise ratio (SNR).
When the SNR is high, the estimate of is more reliable and

can be smaller. By contrast, when the SNR is low,can be
larger. Through simulations, we found that a goodis 0.9–0.7
for input SNR’s 0–20 dB. As in (36) and (42), we still use a
fading-memory average to recursively estimate :

(48)

Note that and are as in (43) and (46), with being
replaced by .

D. Computational Complexity

In this subsection, we discuss the computational complexi-
ties of Kalman filtering in the fullband and subband domains
using the proposed schemes. First, we define three terms for
measuring complexity: MPU, multiplications per unit of time;
DVU, divisions per unit of time; and APU, additions per
unit of time. According to (1) and (9), speech is modeled as
AR( ) and noise AR(). Note that AR(0) means 0th-order AR
modeling, i.e., white noise. For the cases in which and

(white measurement noise), the Kalman filter described
in (5)–(8) requires MPU, DVU, and APU.
Note that (or ) is a shift matrix. Thus, the number of
multiplications in the Kalman filter is reduced from order

to .
For and (colored measurement noise),

the two types of Kalman filters have different complexities.
For the state-augmentation type, the Kalman filter requires

MPU, DVU, and
APU. For the measurement-difference type, the Kalman filter
requires MPU, DVU, and
ADU. Specifically, when and , the Kalman filter
only requires 1 MPU, 1 DVU, and 1 ADU. The output of
the Kalman filter in this case is just a product of scalar gain
and noisy speech. As to parameter identification, the LMS
prediction-error filter in (31) requires MPU, 1 DVU,
and ADU. The identification of driving-noise variance
using (36) requires MPU and ADU, using
(42) requires MPU and ADU,
and using (48) requires MPU and ADU.

For subband processing, we first consider the overhead
complexity of the QMF bank. The QMF bank can be efficiently
implemented by using the so-called polyphase structure [23].
If the order of the QMF filter is , then the complexity of an

-channel QMF bank is MPU and
APU. The overall complexity of subband processing

is equal to the summation of the QMF bank, parameter
identification, and the Kalman filtering complexities. Note that
the order of the Kalman filter in the subband domain is smaller

TABLE I
OVERALL COMPLEXITIES OF SPEECH ENHANCEMENT SYSTEMS (WHITE NOISE)

TABLE II
OVERALL COMPLEXITIES OF SPEECH ENHANCEMENT

SYSTEMS (COLORED NOISE; STATE AUGMENTATION)

TABLE III
OVERALL COMPLEXITIES OF SPEECH ENHANCEMENT

SYSTEMS (COLORED NOISE; MEASUREMENT DIFFERENCE)

than that in the fullband domain. Thus, the complexity of
the Kalman filter can be reduced in the subband domain. We
now use an example to illustrate this. We first consider the
white noise case. Let , ,
in the fullband domain, and in the subband
domain. Table I summarizes the computational complexities
of the whole fullband and subband enhancement systems.
As we can see, the overall amount of computation required
for subband processing is less than half of that required
for fullband processing. When colored noise is considered,
the computational saving is even more significant. Table II
shows speech enhancement system complexities using a state-
augmentation type Kalman filter. Here, we let
for fullband and for subband. The complexity
of subband processing is less than one-fifth of that required for
fullband processing. The high complexity required for fullband
processing is due to its high-order augmented state. This can
be remedied by using a measurement-difference type Kalman
filter. The results shown in Table III indicate that subband
processing is still far less complex than fullband processing.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of a Kalman
filter with biased parameters. Specifically, we consider only
the case in which speech is modeled as AR(1) and the
measurement noise is modeled as white. Consider the subband
signal described in (23) and (24). For simplicity, we will ignore
the subscript . Let these signals be stationary and denote
estimates of and as and . These parameters are then
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used in the Kalman filter. Thus, the filtering equations are

(49)

(50)

(51)

(52)

If the steady-state is reached, will be equal to .
Substituting (50) and (49) into (52), the steady-state can
be found as the positive root of the following equation:

(53)

From (49) and (50), we can obtain the steady-state Kalman
gain as

(54)

Thus, from (51), the steady-state filtering equation can written
as

(55)

Taking the -transform of (55), we obtain the transfer function
of the steady-state Kalman filter:

(56)

where and denote the -transforms of and ,
respectively. Let be the impulse response of the Kalman
filter. The steady-state output of the Kalman filter can be
written as the convolution of and :

(57)

Define the filtering error based on biased parameters as

(58)

The autocorrelation function of is then

(59)

where and
. The complex PSD of is obtained as the-transform

of :

(60)

where

(61)

is the complex PSD of , and

(62)

is the complex PSD of . Substituting (56), (61), and (62)
into (60), (60) can be rewritten as

(63)

The variance of (output mean square error), which is
equal to , can be computed from the integral of
around the unit circle:

(64)

Note that is a function of and in (54). If we assume
and are fixed, then the output mean square error (MSE)

can be rewritten as a function ofand . We denote
this function as . Thus

(65)

Apparently, the minimum value of is obtained at
the optimal solution ( ), i.e., the true AR
parameters.

In practice, estimates of AR coefficients from noisy speech
are always biased. Thus, the minimum value is never obtained.
Given a biased AR coefficient, however, we can find a

that minimizes . This corresponds to the optimal
result in the biased environment. Note that as we show below,
this optimal is not equal to . In other words, some biased
driving-noise variance can compensate for degradation due to
biased AR coefficients. For a given, we denote the value of

that minimizes as :

(66)

This is to say that for a biased AR coefficient, the optimal
driving-noise variance is . The solution can be found by
solving . Once has been found, we
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Fig. 4. �(ĉ) and�(ĉ) for c = 0:8; �2
w

= 0:72 (SNR = 0 dB).

Fig. 5. �[ĉ; �(ĉ)], and [ĉ; �(ĉ)] for c = 0:8; �2
w

= 0:72 (SNR= 0 dB).

can substitute back to find . The function
is informative. By comparing it to , we can assess the
effects of biased AR coefficients.

Using the analysis above, we now evaluate the performance
of our estimate of the driving-noise variance in (36). For the
AR(1) process, (36) can be rewritten as follows:

(67)

Two sets of simulations were conducted: one for a narrow-
band AR signal with and ; and the other
for a wide-band AR signal with and .
In both cases, white Gaussian noise was added to the AR
signals yielding SNR’s of 0 and 5 dB. Since computing a
theoretical using its closed-form solution is tedious, we
used numerical methods instead. For filtering simulations, a
given biased AR coefficient was applied to the Kalman filter
described in (49)–(52), and (67) was used to estimate the

Fig. 6. �(ĉ) and�(ĉ) for c = 0:8; �2
w

= 0:72 (SNR= 5 dB).

Fig. 7. �[ĉ; �(ĉ)] and [ĉ; �(ĉ)] for c = 0:8; �2
w

= 0:72 (SNR= 5 dB).

driving-noise variance of speech. For a given, we recorded
the steady-state values of the driving-noise variances estimated
by (67) denoted as , and the output MSE’s denoted
as . These values were compared with and

.
Figs. 4–7 show the results for the narrow-band signal,

and Figs. 8–11 those for the wide-band signal. As these
figures show, output MSE curves obtained using our estimates
were always close to the optimal ones, especially for the
wide-band signal. This can be seen in Figs. 9 and 11. The
maximum difference in MSE from the optimal was less than
3% (appearing when ). Even in the narrow-band cases,
as Figs. 5 and 7 show, the maximum MSE difference was
below 10% (appearing when ). It is interesting to note
that in Fig. 8, the difference between and is large in
many places, however, and in Fig. 9 are
still very close. We can also observe the effect of biased AR
coefficients. Consider the worst case shown in Fig. 5. In this
case, the true AR coefficient was 0.8. Suppose that we had
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Fig. 8. �(ĉ) and�(ĉ) for c = 0:2; �2
w

= 1:92 (SNR = 0 dB).

Fig. 9. �[ĉ; �(ĉ)] and [ĉ; �(ĉ)] for c = 0:2; �2
w

= 1:92 (SNR= 0 dB).

applied a biased value, say, 0.5. The coefficient would have
deviated 37.5%. The figures shows that the optimal MSE only
increased by 8.6%. Consider another case, say Fig. 9, in which
the true coefficient was 0.2. If we had used a biased value of
0, the coefficient would have deviated 100%, but the optimal
MSE only increased by 1.1%. Similar effects can be observed
if a biased value of 0.4 is used. From the discussion above, we
can conclude that accurate estimates of AR coefficients are not
necessary, and our estimate of driving-noise variance can yield
good performance in biased environments. Using the proposed
scheme, degradation due to biased coefficients can be ignored.

V. SIMULATIONS

To evaluate the performance of our approach, we carried
out some simulations. Four “speeches” were used, as follows.

1) She had your dark suit in greasy wash water all year.
2) Don’t ask me to carry an oily rag like that.
3) What is England’s estimated time of arrival at Townsille.
4) Draw a chart centered around fox using stereo graphic

projection.

Fig. 10. �(ĉ) and�(ĉ) for c = 0:2; �2
w

= 1:92 (SNR= 5 dB).

Fig. 11. �[ĉ; �(ĉ)] and [ĉ; �(ĉ)] for c = 0:2; �2
w

= 1:92 (SNR= 5 dB).

These speeches were obtained from the DARPA speech
database. They were uttered by two female speakers and one
male speaker and digitized at an 8-kHz sampling frequency
with 16-bit quantization. Three noises were used to contam-
inate the speech: additive white Gaussian noise, automobile
engine noise, and motorcycle exhaust-pipe noise. The last
two were obtained by recording a 1600cc sedan and a 125cc
motorcycle; their spectra are shown in Fig. 12. Two objective
performance criteria were used to evaluate filtering results,
namely SNR and segmental SNR (SSNR) improvements. The
input SNR was defined as:

SNR (68)

where was the length of speech. The output SNR, SNR,
was defined as that in (68) except that was replaced
by . The SNR improvement was then SNR SNR ,
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Fig. 12. PSD’s of color noises.

and SNR’s was represented in dB. To calculate SSNR, we
first divided a speech signal into consecutive segments and
then averaged SNR’s obtained from those segments. The
improvement in SSNR was defined as that in SNR.

Noise sequences were added to speeches yielding 0 and 5
dB SNR . The forgetting factor in (36) was set to 0.95.
The QMF bank was implemented using a tree structure with a
prototype filter of length 16 [24]. For comparison, we also con-
sidered ideal cases in which noise-free speeches were assumed
to be available. In this circumstance, AR parameters could be
accurately estimated using some complex methods. We applied
the recursive maximum-likelihood algorithm (RMLE) [27].
These results provided references for performance bounds.
Table IV shows averaged SNR improvements or all speeches
in white noise environments. The term “BN” in the tables
means “band number.” The AR orders of speech and noise are
represented by ; the first element is the order of speech,
and the second is that of noise. To determine performance
degradation due to model simplification, we also carried out
simulations in which colored noise was modeled as white
noise, and in which even speech was modeled as white signal.
We look first at the results for the ideal cases. We can easily
see that improvement increased as band number was increased.
However, for actual cases, the best performance was achieved
when the band number was four. In Table IV (white noise), we
find that the SNR improvement for four-band decomposition
was about 0.8 dB higher than that of fullband processing
when speech signals were modeled as colored signal. The
difference was 1.3 dB when speech was modeled as white
signal. Note that for subband processing, filtering performance
was almost undegraded for white signal modeling of speech.
The SNR improvement for subband processing using four-
band decomposition was about 1 dB lower than that for
ideal cases.

For simulations of colored noise, we set in (42)
and (48), and in (48). Tables V and VI show the
SNR improvement when automobile noise was used. Two
types of Kalman filters were used here, state-augmentation and
measurement-difference. We found that subband processing

TABLE IV
SNR IMPROVEMENT OF SPEECH ENHANCEMENT FOR WHITE NOISE

TABLE V
SNR IMPROVEMENT OF SPEECH ENHANCEMENT

FOR AUTOMOBILE NOISE (SNRin = 0 dB)

TABLE VI
SNR IMPROVEMENT OF SPEECH ENHANCEMENT

FOR AUTOMOBILE NOISE (SNRin = 5 dB)

TABLE VII
SNR IMPROVEMENT OF SPEECH ENHANCEMENT

FOR MOTORCYCLE NOISE (SNRin = 0 dB)

outperformed fullband processing substantially, and that the
best performance appeared in four-band decomposition. Note
that for (0, 0) modeling, the SNR improvement was close to
other cases. For example, it was 0.3 dB lower than that of (1, 1)
modeling in four-band decomposition. But, the computational
complexity required for (0, 0) modeling was much lower.
Tables VII and VIII show the filtering results for motorcycle
noise. As we can see, subband processing performed even
better than fullband processing. The SNR improvement for (1,
1) modeling in four-band decomposition was 2.6 dB higher
than that for (4, 4) modeling in fullband when SNR
dB. For (0, 0) modeling, the performance was still very close
to that of (1, 1). For ideal cases, the SNR improvement with
four-band decomposition was 1.3–1.6 dB higher than actual.
We also observed that the ideal SNR improvement achieved by
the measurement-difference type in fullband was much higher
than that achieved by the state-augmentation type. This is due
to the fact that the bandwidths of speech signals are narrower
in fullband, which favors the smoothing results. When the
number of bands is increased, this effect is reduced.

The aliasing effect in (25) was also studied. The length of
the prototype filter was increased from 16 to 64, making the
QMF transition band much sharper, and as a consequence,
yielding a much smaller aliasing effect. Motorcycle-noise
simulations were performed again, and the results may be
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TABLE VIII
SNR IMPROVEMENT OF SPEECH ENHANCEMENT

FOR MOTORCYCLE NOISE (SNRin = 5 dB)

TABLE IX
SEGMENTAL SNR IMPROVEMENT OF SPEECH ENHANCEMENT

FOR MOTORCYCLE NOISE (SNRin = 0 dB)

TABLE X
SEGMENTAL SNR IMPROVEMENT OF SPEECH ENHANCEMENT

FOR MOTORCYCLE NOISE (SNRin = 5 dB)

summarized as follows. When the input SNR was 0 dB (5
dB), averaged SNR improvements were increased by 0.15
(0.18), 0.16 (0.21), and 0.16 (0.24) dB for 2-band, 4-band,
and 8-band decomposition, respectively. Note that the SNR
improvement resulting from the 5 dB input was higher than
that for 0 dB. We also found that the greater the number
of band decompositions, the greater the improvement we
could obtain. Subjective listening tests indicated no perceptible
differences from previous results. We thus conclude that the
aliasing effect was indeed smaller for the sharp-transition QMF
band. However, at low SNR’s, the aliasing effect tends to be
masked by other effects.

We then evaluated the SSNR filtering results. We used
a segment size of 120 and did not take segments around
silence into account. This enabled us to observe the filtering
behavior during high energy periods. Tables IX and X show
the averaged SSNR improvement for the motorcycle noise.
Unlike the results in Tables VII and VIII, the gain due to
subband processing was not that significant (below 1.2 dB).
As we can see, the best results still appeared in four-band
decomposition. Note that there were two design parameters
( and ) in the measurement-difference type but only one
( ) in the state-augmentation type. The speech signal during
high energy periods is usually highly nonstationary. For such
periods, filtering with fixed parameter values is not optimal.
In other words, during these periods, AR parameters are
more difficult to identify. This effect explains the following
results. 1) For the ideal cases, the SSNR improvement of the
measurement-difference type was higher than that of the state-
augmentation type. However, for the actual cases, the SSNR
improvement of the measurement-difference type was lower.
2) The difference in SSNR improvement between the ideal
and actual cases for four-band decomposition was 2.1–3.4 dB,

which is larger than that for SNR improvement. As to (0,
0) modeling, the SSNR improvement remained close to other
cases. We can thus conclude that if computational complexity
is the main implementation concern, (0, 0) modeling with
subband processing can be used, and that the performance
degradation will be small. For other types of noise, the results
are similar and details have been omitted.

VI. CONCLUSIONS

In this paper, we have proposed techniques for speech en-
hancement in the subband domain. We first split noisy speech
into subband signals using a QMF bank. We then modeled the
subband signals as AR processes and applied Kalman filters
to perform enhancement. For ease of implementation, we only
considered AR(1) and AR(0) for subband signals. We used a
prediction-error filter with the LMS algorithm for AR coeffi-
cient identification and proposed new methods for estimating
driving-noise variance. Due to its inherent characteristics, the
prediction-error filter converges to biased solutions in noisy
environments. Performance of the Kalman filter with biased
parameters was also analyzed. We found that when the AR
coefficients were biased, we could apply an optimal driving-
noise variance to minimize the output MSE. Simulations
showed that the MSE yielded by our estimates of driving-noise
variance were close to the optimal. We also found through
analysis that MSE’s for biased parameters do not deviate much
from the optimal MSE’s with true parameters. This indicates
that accurate estimates of AR coefficients are not required
provided driving-noise variances are properly estimated. This
justifies the use of the prediction-error filtering. Finally, we
found that speech enhancement in the subband domain not
only had much lower computational complexity, but also gave
higher SNR improvement than that in the fullband domain.
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