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Subband Kalman Filtering for Speech Enhancement

Wen-Rong Wu,Member, IEEE,and Po-Cheng Chen

Abstract—Kalman filtering is an effective speech-enhancement Kalman filtering algorithms. To estimate the AR coefficients,
technique, in which speech signals are usually modeled as au-an EM-based algorithm was employed. In [16], Lees and Ann

toregressive (AR) processes and represented in the state-spac N ; ;
domain. Since AR coefficients identification and Kalman filtering %mposed a non-Gaussian AR model for speech signals. They

require extensive computations, real-time implementation of this Modeled the distribution of the driving-noise as a Gaussian
approach is difficult. This paper proposes a simple and practical mixture and applied a decision-directed nonlinear Kalman
scheme that overcomes these obstacles. Speech signals are fir§ilter. Again, an EM-based algorithm was used to identify
dec(;)”ln%osedl into dSUbES”dS- Subband Eptie(t?rll Sigr‘g"s e theRnknown parameters. Niediecki and Cisowki [17] assumed
modeled as low-order AR processes, such that low-order Kalman - :

filters can be applied. Enhanced fullband speech signals are that speech signals are nonstationary AR processes and used
finally obtained by combining the enhanced subband speech sig-@ random-walk model for the AR coefficients. An extended
nals. To identify AR coefficients, prediction-error filters adapted Kalman filter was then used to simultaneously estimate speech
by the LMS algorithm are applied. Due to noisy inputs, the and AR coefficients. Note that the stability of the extended

LMS algorithm converges to biased solutions. The performance 5iman filter is not guaranteed and dimensions of the Kalman
of the Kalman filter with biased parameters is analyzed. It . -
filter are greatly increased.

is shown that accurate estimates of AR coefficients are not . o . . )
required when the driving-noise variance is properly estimated. ~ The aforementioned Kalman filtering algorithms still require
New methods for making such estimates are proposed. Thus, extensive computations for two reasons: first, to identify AR
we can tolerate biased AR coefficients and take advantage of cpefficients using EM algorithms, and second, to carry out

the LMS algorithm’s simple structure. Simulation results show gyeing ysing Kalman filters. To overcome these drawbacks
that speech enhancement in the subband domain not only greatly ) ’

reduces the computational complexity, but also achieves better W€ suggest modeling and filtering speech signals in the sub-

performance compared to that in the fullband domain. band domain. Since the power spectral densities (PSD’s) of
Index Terms—AR modeling, Kalman filtering, LMS algorithm, subband .speech signals are simpler and f.Ia.tter than  their
speech enhancement, subband filtering. fullband signals, low-order AR models are sufficient, and only

lower-order Kalman filters will be required. Specifically, we
focus on first- and zeroth-order modeling. In this case, the
Kalman filter involves only scalar operations, thus saving
EECH enhancement has many applications in voieeconsiderable amount of computation. For identification of
ommunication, speech recognition, and hearing aidsR coefficients, we use a prediction-error filter adapted by
Speech enhancement often aims to reduce noise levels,tife LMS algorithm. The LMS algorithm is well known for
crease intelligibility, or reduce auditory fatigue. Many studiei¢s simplicity and robustness, however, its slow convergence
have been done using techniques such as short-time spegfratiudes its use in many practical applications. Since the
amplitude estimation [1]-[4], iterative Wiener filtering [5]-[7],PSD’s of subband speech signals are relatively flat and there
audio-based filtering [8], [9], signal-subspace processing [1(4, at most one AR coefficient, the LMS algorithm will thus
[11], and hidden Markov modeling (HMM) [12], [13]. Al- converge more rapidly.
though significant results have been achieved, most of thenThe other parameter required by the Kalman filter is AR
are not suitable for real-time implementation because theffodel's driving-noise variance. Through extensive simula-
computational complexities are generally too high. tions, we found that this variance plays a crucial role in the
The Kalman filter is well known in signal processing for itsiltering process and propose effective methods for identifying
efficient structure. In [14], Paliwal and Basu used a Kalmafl Note that the input to the prediction-error filter is noisy,
filter to enhance speech corrupted by white noise. On a shqghich means the LMS algorithm will converge to biased
time base, speech signals were modeled as stationary &#futions. We analyzed the performance of the Kalman filter
processes and AR parameters were assumed to be knoyith biased AR coefficients and were able to show that using
Gibson, Koo, and Gray considered speech enhancement Vil variance identification methods, accurate estimation of
colored noise in [15]. They modeled both speech and cQir coefficients is not required. Our driving-noise variance
ored noise as AR processes and developed scalar and vegi@inates not only have the advantage of simplicity, but
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Section 11, we describe how the Kalman filter can be appligdl. Colored Noise Filtering

in the subband domain. Section IV gives a performance analyyye assume that colored noise is stationary and can also be
sis of the Kalman filter with biased parameters. Experimentglqriped by aj-order AR model

results are reported in Section V and conclusions are drawn
in Section VI.

o) = 3 biv(n =)+ u(n) ©

Il. CONVENTIONAL KALMAN FILTERING
where {n(n)} is a zero-mean white Gaussian process with
A. White Noise Filtering varianceafl. The AR parameterd = [b; bs --- b,]* and
On a short-time basis, a speech sequefic)} can be o} can be estimated during nonspeech intervals and_are
represented as an AR process, which is essentially the out] a@u_med to be known. Therg are two types (.)f formulation.
of an all-pole linear system driven by a white noise sequenc ne is called state augmentation, and the other is measurement
ifference. State augmentation expresses (9) as a state-space
representation and incorporates that into the state equations

2(n) = awx(n — i)+ w(n) (1) (2) and (3). The state-space representatiom(ef) is similar
i=1 to that in (1). Letv(n) = [v(n) v(n—1) --- v(n—q+D]7.
where w(n) is a zero-mean white Gaussian process Wit-ﬁhen’
varianceo2. The observed speech signaln) is assumed _ _
to be contaminated by a zero-mean additive Gaussian noise ol )—F:I,,:.v(n 1)+ g.n(n) (10)
v(n), i.e., s(n) = z(n) + v(n). Let v(n) be white and v(n) = h;,v(n) (11)

EN —1).-. - T i
z(n)_[tx%n) w(n 191) x(rf) p—]t L] I que.ltlotﬂ (1)tatnd the whereF',, g, andh, are identical to those in (4), except that
corrupted speeck(n) can be reformulated in the s ae-spacg" p are replaced by, ¢. Combining (10), (11), (2), and (3),

domain as we then have
=(n) =F f(” — 1D +gun) 2) Z(n) = F&(n — 1) + Gw(n) (12)
s(n) =h"z(n) +v(n) 3) o) 3 )
ay az ap—1 Qp where
1 0 - 0 0 (n) (n) 7
F=1|0 1 .- 0 0 _ _|z(n _ _|win = 0
R : : an) = [U(”)} w(n) = [77(”) }’ r= [0 FJ’
00 10, a=lp S| W -moa 14)
1 0 g,
(_) The covariance matrix of w(n) is defined as
g=h=|: ' () Q2E[m(n)w” (n)] = diags?, o2). The Kalman equations
0 for (12) and (13) are then obtained by settilg= 0 and
01,1 replacingz(n), F, h, andg with Z(n), F, h, andG in (5)—(8).

The speech estimate is théiin) = [k 0]z(n). Note that
A T 2 EIA . ; X )
If we assume that parametess= [a; a2 --- a,]", o;, and  z(n) is of dimension(p+¢) x 1, the computational complexity
o2 are precisely known, the optimal estimatexf) can be of the Kalman filter is increased when this approach is used.
obtained from the Kalman filter. The Kalman equations for (2) The idea behind measurement difference is to perform some

and (3) are given as follows [15]: measurement transformations such that measurement noise
. . _ becomes white. Assumg > g, let s(n) = [s(n) s(n —
z(n) =Fz(n — 1)+ k(n)[s(n) —h" Fg(n —1)] (5) 1) - stn—q+ 1%, andF, = [I;g Opx(ppl?-
k(n) = P(n|n — Dh[R + Y P(n|n — )R] ™! (6) The transformed measurement is defined as
P(n|n —1) =FP(n — 1)FT + gQg" 7) .
3(n) = 1)—g'F,
P(n) =1 — k(n)h"|P(nln - 1) @ U Tnr e sty

=g,(F'F — F,FD)z(n) + win + 1) + n(n + 1)
where#(n) is the estimate ok(n), k(n) is the Kalman gain, =H"z(n) + e(n) (15)
P(nn — 1) = E{[z(n) — F&(n — )][z(n) — Fz(n — )]}

is the prediction-error covariance matriR(n) = E{[z(n) — whereH” = g (F'F—-F F*)ande(n) = w(n+1)+n(n+
&(n)][x(n) — &(n)]"} is the filtering-error covariance matrix, 1) is white Gaussian noise with a variancecdf = o2, + o2.

R = 52 is the measurement-noise variance, #hd= o2 is Now, (2) and (15) become the new state equations. Although
the driving-noise variance. A speech sample estimate at timeasurement noise has been made white, it is correlated with
instantn can then be obtained usingn) = h&(n). driving noise. Fortunately, an optimal filter is available for
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such a situation. The Kalman equations for the measurement- 3 : ; :
difference sequencgs(n)} are given by [26] ————— ARMAsignal

—————— Fullband AR
i(nln — 1) =(F — go2 o 7 2H&(n — 1) + go2 07 %5(n — 1) 25¢ ¢

(16)
#(n) =z(n|n — 1) + k(n)[5(n) — H  &(n|n — 1)] (17)
k(n) =P(njn — DH[H  P(njn — DH + 02027}

(18)

e——e——=o Subband AR

P(nin —1) =(F — go2o72H ) P(n — 1)
(F —goo *HY )T + 9o, (1 - 00 ?)g"

(19)
P(n) =[I — k(n)HY|P(n|n — 1) (20)
where Z(n|n — 1) is the optimal predictionz(n) based o ‘ . ‘
on {3(1),3(2),---,5(n — 1)}, and &(n) is the optimal 0 4 w2 3n/4 n
estimate based ons(1), 3(2), ---, 3(n)}. Note that we Radian frequency

use z(n) instead ofz(n) to denote the state estimate irFig. 1. PSD's of an ARMA and its AR-modeled signals; AR(4) in fullband
the measurement-difference method. As we can see, &g AR(1) in subband.

measurement-difference-type Kalman filter is somewhat more

complex than the state-augmentation type. However, the mg{yy points may be introduced to control the smoothness of
advantage of the measurement-difference approach is that sfgéefitting function. The idea of the piecewise fitting can be
dimensions do not increase. If the AR order of the colorgdtended to our application. We can consider signal modeling
noise is high, this method can save considerable computatigg. analogous to (but not identical) a PSD fitting problem.
The spee}:h estimate is the same as that for white noise, itf‘sing a high-order model will cause problems similar to
Z(n) = h”Z(n). Note that those encountered in curve-fitting, so we divide the PSD into
i(n) = E{a(n)[35(1), 5(2),- -+, 5(n)} consecutive segr_nen'Fs a_nc_i use a low-order model for each
= E{a(n)[s(1), s(2), -+, s(n+1)} 21) §egment_. Due to its 5|mpl_|C|ty, we use the AR model altho_u_gh
. ’ o . its PSD is not a polynomial function. Subband decomposition
where E{.} denotes the expectation operation. Thiiép) is a perfect way to realize the piecewise modeling scheme.
corresponds to a smoothing rather than a filtering result. ~ Here, we present an illustrative example. Suppose that the
The AR coefficients and driving-noise variance must b@put signalz(n) is an ARMA signal obtained by passing
estimated to apply the Kalman filter to speech enhanceme#fihite noise through a system with the following transfer
Many algorithms for performing this task have been presentddnction:
however, most of them require extensive computations and are 1— 2140322
not suitable for real-time implementation. In this paper, we H(z) = 1_ 1 F—2° (22)
z7t+ 0.5z
focus on an adaptive prediction-error filter using an LMS-type . . i
algorithm. It is kFr)lownpthat the convergence ragt]e of the LK/? et AR(i) denote theith order AR model. We first use an

algorithm is slow when the input correlation matrix has a IargriR(‘l) process to model this signal. The optimal coefficients
e

eigen-spread [25]. In addition to the convergence proble re found by solving the Yule-Walker equations. The tree-

direct application of the algorithm to noisy signals gives biasShJCture QMF bank with a prototype filter of length 32

AR parameters. These may explain why the LMS algorith}ﬁ applied _to ob_taln a four-band decomposition [24]. Ea_lch
. . subband signal is then modeled as an AR(1) process. Fig. 1
is rarely used in speech enhancement. In what follows, W \

shows the PSD'’s of the fullband AR(4) model and the subband
present new approaches that overcome these drawbacks.

AR(1) model. Note that the overall subband AR orders are
the same as that of the fullband. The averaged square error
(ASE) between the PSD’s of the AR models and the original
, signal are also calculated. The ASE is 0.0225 for the fullband
A. Formulation AR(4) model, while the ASE is 0.00132 for the subband
Our approach is motivated by the idea of curve-fitting usingR(1) model. It is clear that subband modeling is preferable
spline functions, which allows arbitrary curves to be fittetb fullband modeling. It is worth noting that there may be
using polynomial functions. For better results, we usually nestiarp changes in the subband modeling spectrum. For instance,
high-order polynomials. However, it is known that polynomieach subband signal can be modeled as AR(0). In this case,
als are inflexible; making them behave a certain way in orlee optimal filter may also have sharp changes in its spectrum.
place may cause them to misbehave elsewhere. A more flexiGlenstraints can be imposed to improve this situation, however,
approach is to use low-order piecewise polynomials. The curtrés will complicate the whole scheme. A simpler alternative is
is first divided into consecutive segments and each segmentoisdd a postfilter to smooth the optimal filter spectrum. Details
fitted using a low-order polynomial. Constraints on segmeaf this approach will be presented in a subsequent work.

lll. SuBBAND KALMAN FILTERING
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s1(n) Z1(n) Fo(2) l 2 Ho(z) T 2 Go(z)
Kalman filter
[ ] i)
Parameter Fi(2) 1 2 Hi(z) I 2 Gy(z)
Mfchan_nel estimation Mvchanr}el
s(n) ﬁi‘;li’;‘:k { | \ 5{::}1::1( | &(n) Fig. 3. A two-band processing system.
and : : : and
decimators | | \ expanders ) o .
' ! ' of (25) is the aliasing component. The perfect reconstruction
sni(n) () conditions for a conventional QMF bank are known to be
Kalman filter
|1 Fy(2)Go(z) + F1(2)Gi(z) =0z~ F (26)
Parameter Fo(—Z)Go(Z) + Fl(—Z)Gl(Z) =0 (27)
estimation

where L is an integer and”' is a constant. It is apparent
Fig. 2. Subband speech enhancement system. that even though (26) and (27) are satisfied, the aliasing
component in (25) cannot be cancelled. To have a aliasing-
The block diagram of the proposed speech enhanceméree reconstruction for arbitrar¥f(>) and H1(»), we need a
system is shown in Fig. 2. Noisy speegn) is first split into filter bank that satisfies the following conditions:

a set of subband signals;(n), wherei = 1, ---, M, by an
M-channel analysis filter bank anm/-fold decimators. The Fo(2)Go(2) + Fi(2)G1(z) = CzF (28)
subband signa¥;(n) can be expressed as follows: Fo(—2)Go(z) =0 and Fi(—2)Gi(z) =0. (29)

] Note that the conditions (28) and (29) are strict; it is difficult to
wherez;(n) andv;(n) are subband signals a{n) andw(n), design filters that satisfy these conditions. Many methods have
respectively. Ifu(n) is white, we can approximate;(n) 8 peen proposed to solve the problem [18]-[21], however, they
white (if the subband filters are ideal;(n) is exactly white). gre ejther computationally expensive or inappropriate for our
If v(n) is colored,;(n) is also colored. Thus, we modei(n) yse. Recently, an echo-cancellation algorithm, that combines
as an AR process. Since subband speech signals have sSimplef|R filter bank and a notch filter, was proposed [22]. It
spectra than their fullband counterparts, they can be mode|gds shown that the aliasing effect can be effectively reduced.
as lower-order AR signals. We focus on the modeling of AR(I3ppjication of an IIR filter bank is beyond the scope of this
and AR(0). The Kalman filtering operations will be greatly,aper, however, we found that in speech enhancement, if the
simplified in these cases. For AR(L};(n) is expressed as jnpyt SNR is low, the filtering error due to aliasing tends to
follows. be masked by other effects. In Section V, we use simulation

zi(n) = cizi(n — 1) + w;(n) (24) results to describe this.

wherew;(n) is a zero-mean white Gaussian process with a L

variance ob2, . Equation (24) is the state equation for subbarlg- Parameter Estimation

signals. Combining it with the measurement equation in (23), In this subsection, we consider estimation of AR coefficients

we can apply a bank of Kalman filters to subband speeahd driving-noise variances. As mentioned above, we use an

signals. For AR(0), we can just set = 0 in (24). adaptive prediction-error filter with the LMS algorithm for
To use the Kalman filter, the paramete{sandafui must be coefficient identification. For faster convergence, we adopt

estimated. The estimation method is described in the followitige normalized LMS algorithm. The update equation for the

subsection. The filtered subband signal, denoted;és), is coefficient vector is given as follows:

up-sampled by expanders and then processed By -amannel

synthesis filter bank to reconstruct the filtered sigi@al). a(n) =a(n — 1) + m z(n — 1)

B. Aliasing Problem [x(n) — a(n — 1)Tx(n - 1)] (30)

Aliasing is an inherent problem that arises in subband

: : i - erea(n) = [a1(n) az(n) --- ap(n)]* is the estimate of
(F;L?[;Etss;?%hseyifsr?esrhcigngsil\?:r: tgf two-band case in Fig. 3. ﬁ% coefficients in (1), and||z(n — 1)|| is the Euclidean

norm of z(n — 1). The step size: in (30) determines the
#(2) = § [Fo(2)Ho(#*)Go(2) + Fi(2)H1(2*)G1(2)] 5(2) convergence rate and stability @fn). It has been shown [25]
+ L [Fo(=2)Ho(2*)Go(2) + Fi(—2)Hi(2*)G1(2)] that wheny is chosen properly: _the_expectation an) _vviII
s(=2) (25) converge taz. This type of |dent|f|c§1t|on |s_weII_ known in AR _
modeling, however, clean speech is required in order to obtain
where Ho(z) and Hi(z) are transfer functions of subbandan unbiased estimate af In speech enhancement, only noisy
processing filters. The second term on the right-hand sidpeechs(n) is available for the normalized LMS filter. Thus,
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the AR coefficient vector update equation becomes The above method can be extended to estimgiein
colored noise. Consider the state augmentation formulation.
a(n) =a(n— 1) + W y(n— 1) We first redefine¢(n) in (32) as
yn -
[s(n) — a(n — 1)Ty(n — 1)] Bl)  &(n) =s(n)—h Fi(n—1)=h' [En)-Fi(n—1)]. (37)
where y(n) = [s(n) s(n — 1) --- s(n — p + 1)]7. Since The variance of(n) is then

s(n) is used instead of(n), the LMS algorithm will con- T — _ . _

Verge 1o a biased soluion. Lét, = Bsusnr}. R o2 =K E{(n) - Fitn ~ 1]ia(a) - Fia(a — DI}

E{v(n)v(n)T} wherev(n) = [w(n) v(n —1) - v(n — :ﬁTP(n|n — Dh. (38)

p+ DY, and P = E{z(n)z(n + 1)}. It can easily be

shown thatE{a(n)} will converge toR;!P for (30) and to From (38), the gain vectdk(n) is written as follows:

(R, + R,)"tP for (31). Through extensive experimentation, — _

we found that Kalman filtering performance degradation due k(n) = P(nln — DAl P(nln — Dk~

to biased AR coefficients is small when driving-noise variance =[FP(n —1)F + GQGlho*. (39)

estimation is also biased in some way. In other words, some

biasedo? can compensate for the effect of biased AR coefthe first element of(n) is

ficients. Thus, we will not pursue accurate estimationapf _

instead, we focus on estimztini. ° Fa(n) = {[a” " 1P(n—Dla" 0" +o7}o % (40)
Here, we propose a method for identifying,. First, we

. ; : Thus, o2, can be obtained by rewriting (40) as
consider the white noise case. Denbtén) as theith element T y 9 (40)

of k(n), F; ;(n) theijth element ofP(n), andF; ;(n|n —1) o kl(n)gg —[a¥ bT1P(n— D[a¥(n) 0]F. (41)
theijth element ofP(n|n — 1). We also define the prediction-
error for noisy input as Again, the fading-memory technique is used to recursively

estimateo? :
&(n) =s(n) — k' Fi(n — 1)

—(n) — aTE(n — 1) +v(n). (32) Fu(n+ D) =poLn)+1-p)
A{k()€3(n) — [a(n)" b71P(n —1)[a" O}
The variance of(n) can be obtained as follows: (42)
o = E{¢(n)*} = B{lz(n) — " &(n — 1)]*} + 02 Unfortunately, the method for estimating?, described
=P 1(njn — 1) + o2 (33) above cannot be used in the measurement-difference formula-

tion. So, we developed another method. Using (21), we can
where P, 1 (n|n — 1) = E{z(n) — aT&(n — 1)}2. From (6), express (32) as
(7). and (33), we have £(n) = 2(n) — aE(n— 1ln— 2) +v(n).  (43)
k1 (7’L) IPL 1(7’L|7’L — 1)[P17 1(7’L|7’L — 1) + 0,3]_1

- Using (2), we can describe the driving noise as
IP171(7’L|7’L — 1)0’5

=[a"P(n—1)a+ o030 % (34) w(n) = z(n) — a’ (n)z(n — 1). (44)

Thus, f 43 d (44), th i fr b itt
Thus, o2 can be obtained by rewriting (34) as asus fom (43) and (44), the variance &ifn) can be written

o kl(TL)O'g —a'P(n - 1a. (35) 052 = E{¢(n)?)
In practice, we cannot obtain we usea(n) to approximate it. =E{[z(n) — a"&(n — 1In — 2) + v(n)]’}

A fading-memory average is then used to recursively estimate =02 4 o2 4+ E{[a’z(n — 1) — a"#(n — 1|n — 2)]*}.
o (45)
Go(n+1)=po5,(n)+ (1 -7) This shows thato? — 02 > o2. Defining the filtered

[ki(n)é(n)? — ar (n)P(n — 1a(n)] (36) prediction error as the expectation of (44) conditioned on
{s(1), s(2), ---, s(n)}, we have
where 3 is a forgetting factor and is set close to 1. This

forgetting factor controls the variance &}, If 3 is larger, the e(n) = E{x(n)|s(1), 5(2), -+, s(n)}
variance will be smaller. However, the signal tracking ability —al E{x(n — 1)|s(1), 5(2), ---, s(n)}
becomes poorer. In practice, we found that a value around =i(njn—1)— a,T:E(n —1). (46)

0.95 provides a good compromise. The compensation capacity
of the estimate in (36) for biasef{a(n)} is discussed in Thus,e(n) is the optimal estimate afi(n). As a consequence,
Section V. o2 > o2 = E{e(n)?}. The above results indicate that the true

ur
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o2 lies somewhere betweer — o2 and o2. Thus, we can
write o2 as a linear combination of these two values.

TABLE |

1077

OVERALL COMPLEXITIES OF SPEECH ENHANCEMENT SySTEMS (WHITE NOISE)

Overations |_Fullband (4,0 Subband (1,0)
os =ao? +(1—a)(of —o7) (47) P MPU | DVU | ADU | MPU [ DVU | ADU
Kalman F. 56 4 50 5 1 5
where« is a constant between 0 and 1. Sirgge) contains QMF - - - 29 0 | 21
unprocessed noise, the variance of the estimafei$ usually L;‘ﬁs 294 (1) 12 Z [1) ‘2‘
larger than that of2. Thus, the choice of should favors2. A Total % T 5 T & T 2 T 38
proper choice ofr depends on the signal-to-noise ratio (SNR).
When the SNR is high, the estimate«x is more reliable and TABLE I

« can be smaller. By contrast, when the SNR is lawgan be
larger. Through simulations, we found that a geois 0.9-0.7

OvVERALL COMPLEXITIES OF SPEECH ENHANCEMENT
SysTEMS (CoLORED NOISE, STATE AUGMENTATION)

for input SNR’s 0-20 dB. As in (36) and (42), we still use a Onerati Fullband (4,4) Subband (1,1)
fading-memory average to recursively estimafgn + 1): perations | UpU [ DVU | ADU | MPU | DVU [ ADU
Kalman F. | 208 8 195 16 2 15
G2(n+1)=p520n)+(1-7) QMF N N R I O L
LMS 9 1 10 3 1 4
Aae(n) + (1 — a)[¢*(n) — o2} (48) 23 72 | 0 | 61 | 9 0 4
. . . Total 289 9 | 266 | 57 3 50
Note thaté(n) ande(n) are as in (43) and (46), with being
replaced bya(n).
TABLE IIl

D. Computational Complexity

OVERALL COMPLEXITIES OF SPEECH ENHANCEMENT
SysTEMS (CoLORED NOISE, MEASUREMENT DIFFERENCH

In this subsection, we discuss the computational complexi- Overati Fullband (4,4) Subband (1,1)
- e : perations 'SPy [ DVU | ADU | MPU | DVU | ADU
ties of Kalman filtering in the fullband and subband domains
) . i Kalman F. | 118 5 103 13 2 10
using the proposed schemes. First, we define three terms for QMF - . . 29 0 o7
measuring complexity: MPU, multiplications per unit of time; LMS 9 1 10 3 1 4
P . . oy 52
DVU, divisions per unit of time; and APU, additions per Gy 4 | 0 118 0 S
Total 141 6 124 53 3 46

unit of time. According to (1) and (9), speech is modeled as
AR(p) and noise AR{). Note that AR(0) means Oth-order AR

modeling, i.e., white noise. For the cases in which 1 and  than that in the fullband domain. Thus, the complexity of

¢ = 0 (white measurement noise), the Kalman filter describgfle Kalman filter can be reduced in the subband domain. We
in (5)~(8) requiresip” +2p MPU, p DVU, and3p” +2 APU. oy yse an example to illustrate this. We first consider the
Note that#" (or F',) is a shift matrix. Thus, the number of\yhite noise case. LetV = 50, M = 4, (p, q) = (4, 0)

multiplications in the Kalman filter is reduced from orde}, ine fullband domain, andp, ¢) = (1, 0) in the subband
O(p®) to O(p?). ~_domain. Table | summarizes the computational complexities
Forp > 1 andg¢ > 1 (colored measurement nois€)of the whole fullband and subband enhancement systems.
the two types of Kalman filters have different complexitiesag e can see, the overall amount of computation required
For the state-augmentation type, the Kalman filter requirgs subband processing is less than half of that required
3(p+9)* +2(p+ ¢) MPU, (p+q) DVU, and3(p+¢)* +3 for fullband processing. When colored noise is considered,
APU. For the measurement-difference type, the Kalman filtgfe computational saving is even more significant. Table II
requiresp? +4p+q+2 MPU, p+1 DVU, and6p” —p+2¢+3  ghows speech enhancement system complexities using a state-
ADU. Spepnﬁcally, wherp = 0 and ¢ = 0, the Kalman filter augmentation type Kalman filter. Here, we (gt ¢) = (4, 4)
only requires 1 MPU, 1 DVU, and 1 ADU. The output Offor fyllband and(p, ¢) = (1, 1) for subband. The complexity
the Kalman filter in this case is just a product of scalar gagy supband processing is less than one-fifth of that required for
and noisy speech. As to parameter identification, the LMgjihand processing. The high complexity required for fullband
prediction-error filter in (31) require3p + 1 MPU, 1 DVU,  pyrocessing is due to its high-order augmented state. This can
anq 2p+2 ADU: The identification of driving-noise variancepe remedied by using a measurement-difference type Kalman
using (36) requireg” + p +4 MPU andp” + 1 ADU, USING  fijter. The results shown in Table Il indicate that subband

(42) requiregp+¢)® +p+4 MPU and(p+q)* —q+1 ADU,  processing is still far less complex than fullband processing.
and using (48) require3p + 6 MPU and2p + 3 ADU.

For subband processing, we first consider the overhead
complexity of the QMF bank. The QMF bank can be efficiently
implemented by using the so-called polyphase structure [23].In this section, we analyze the performance of a Kalman
If the order of the QMF filter igV, then the complexity of an filter with biased parameters. Specifically, we consider only
M-channel QMF bank i8N/M+M MPU and2N/M+(M— the case in which speech is modeled as AR(1) and the
1)2/M APU. The overall complexity of subband processingneasurement noise is modeled as white. Consider the subband
is equal to the summation of the QMF bank, parametsignal described in (23) and (24). For simplicity, we will ignore
identification, and the Kalman filtering complexities. Note thahe subscripti. Let these signals be stationary and denote
the order of the Kalman filter in the subband domain is smallestimates of: ando?2 asé ands2. These parameters are then

ur

IV. PERFORMANCE ANALYSIS
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used in the Kalman filter. Thus, the filtering equations are where R,.(I) = E{z(n)z(n — )} and R;(l) = E{s(n)s(n —
1)}. The complex PSD of(n) is obtained as the-transform

P(nn — 1) = P(n - 1)& + &7, (49) of R.(1)
k(n) = P(n|n — 1)/[02 + P(n|n — 1)] (50) S(2) = 8u(#) — H(z1)Su(2) — H(2)S,(2)
Z(n) =éz(n — 1) + k(n)[s(n) — é&(n — 1)] (51) +H()HS,(2) (60)
P(n) =(1 = k(n))P(nln - 1) (52)
where
If the steady-state is reachefi(n) will be equal toP(n — 1). o2
Substituting (50) and (49) into (52), the steady-st&te) can S.(z) = L« (61)

— — —1
be found as the positive root of the following equation: (1 —ez)(l —ez7)

is the complex PSD of(n), and

So(2) = Su(2) + 07 (62)
From (49) and (50), we can obtain the steady-state Kalman
(49) (50). ¥ as the complex PSD of(n). Substituting (56), (61), and (62)

EPn)*+ 62+ (1 -0l -6202=0. (53)

gain as into (60), (60) can be rewritten as
A2 A2
et POt 0y (54)  5.() =
&EP(n)+ 63, + of P SNS2 12 -1 21,2
[(1-k)*(1-éz ) (1—é2)od + k> (1—cz H)(1—cx)o?)z
Thus, from (51), the steady-state filtering equation can written (1—k)éc[z—(1—k)é{z—[(1—k)e*}H(z—c)(z—c1)
as (63)
#(n) — (1 —k)éz(n — 1) = ks(n). (55) The variance ofe(n) (output mean square error), which is

equal toR.(0), can be computed from the integral ®f(z)~~*
Taking thez-transform of (55), we obtain the transfer functioraround the unit circle'

of the steady-state Kalman filter:
A E{e(n)?} = R.(0) = —— j'{ g,
- X(z) . /%' 2 A A2
H(Z) - S(Z) - 1— (1 _ k)éz—l (56) _ ) [1 (1 — k)c ]
1-(01- ) c"’][c — (1 =kl - (1 = k)éd]

where X () and S(z) denote thex-transforms ofi: and s(n), (1 —k)%(c—2&)(1 — éc) 5
respectively. Leti(n) be the impulse response of the Kalman + (1—cAe— (1 -k - (1 —k)ed T
filter. The steady-state output of the Kalman filter can be k202
written as the convolution of(n) and s(n): + m (64)

#(n) = s(n) = _ i s(n — a)h(a). (57) Note thatk is a function ofé and 62, in (54). If we assume

c ando? are fixed, then the output mean square error (MSE)
R.(0) can be rewritten as a function é6fand42. We denote
Define the filtering error based on biased parameters as this function as¢(é, 62). Thus

g(n) = z(n) — 2(n). (58) E{e(n)*} = ¢(¢, 52). (65)

Apparently, the minimum value of(¢, 6—2) is obtained at
the optimal solution &, 62) = (c, 02), i.e., the true AR
R.(1) = E{e(n)e(n — 1)} parameters. - .
— B{[e(n) — #(m)]fzln — 1) — &(n — D]} In practice, estimates of AR coefficients from noisy speech
: A : are always biased. Thus, the minimum value is never obtained.
= E{z(n)a(n — D} + E{z(n)i(n - 1)} Given a biased AR coefficient, however, we can find a
+ E{&(n)x(n = D} + E{&(n)2(n — 1)} 52 that minimizesg(¢, 52). This corresponds to the optimal
oo result in the biased environment. Note that as we show below,
=R.(l) - E{x(n) > stn—1- oc)h(oc)} this optimal&2, is not equal tar2 . In other words, some biased
a=—o0 driving-noise variance can compensate for degradation due to

The autocorrelation function af(n) is then

g biased AR coefficients. For a giveén we denote the value of
—E$ Y s(n—a)h(a)z(n —1) 52 that minimizesR.(0) as p(&):
OO(Y:_O;)O Minimize
~ ~2 ~on2
+ > D stn—a)s(n—1— Bh(a)h(B) p(&) = &3, (E 6y). (66)
@=—00 f=—o0 This is to say that for a biased AR coefficiehtthe optimal
=R, () = M(=1) * Ro(I) = h(l) = R.(I) + h(I) driving-noise variance ig(¢). The solution can be found by

g *
x h(=1) *« R (1) (59) solving d¢(¢, 62)/962 = 0. Oncep(é) has been found, we
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1.05 T T T T
0.48 i
1 Optimal
] Optimal
~————  Proposed pHma
x———=  Proposed
0.46+ i
0.951
,_,wJ UU)J 0.44+
= 0.9 =
0.42
0.85" //
0.4 T
0.8F 1 ’
0.38 : : ==
0.75 , . : .
0 02 0.4 0.6 0.8 1 0 02 0.4 0.6 08 !

Biased AR coefficient Biased AR coefficient

i A A hA ) S 2 0" —
Fig. 5. [, p()], ande[e, 6(¢)] for ¢ = 0.8, 02, = 0.72 (SNR= 0 dB). 18- 7- @[¢, p(&)] andv[e, 6(¢)] for ¢ = 0.8, oy, = 0.72 (SNR = 5 dB).

can substitute back to find[é, p(¢)]. The functiong[¢, p(¢)]  griving-noise variance of speech. For a givenve recorded

isi i ing i 2
is informative. By comparing it tg(c, o,), we can assess thethe steady-state values of the driving-noise variances estimated

effects of biased AR coefficients. by (67) denoted a¥(¢), and the output MSE's denoted

Using the analysis above, we now evaluate the performanﬁaw[é 6(¢)]. These values were compared witié) and
of our estimate of the driving-noise variance in (36). For th(%[é p(’é)]

AR(1) process, (36) can be rewritten as follows: Figs. 4-7 show the results for the narrow-band signal,

2(n+1)=p62(n)+(1-73) and Figs. 8-11 those for the wide-band signal. As these
Ak(n)[s(n) — &&(n — D)2 — P(n — 1)é}. figures show, output MSE curves obtained using our estimates
(67) were always close to the optimal ones, especially for the
wide-band signal. This can be seen in Figs. 9 and 11. The
Two sets of simulations were conducted: one for a narrowaximum difference in MSE from the optimal was less than
band AR signal withc = 0.8 and 2, = 0.72; and the other 3% (appearing whei = 0). Even in the narrow-band cases,
for a wide-band AR signal wite = 0.2 and 02, = 1.92. as Figs. 5 and 7 show, the maximum MSE difference was
In both cases, white Gaussian noise was added to the ABlow 10% (appearing wheh= 0.8). It is interesting to note
signals yielding SNR’s of 0 and 5 dB. Since computing that in Fig. 8, the difference betweefi¢) andé(¢) is large in
theoreticalp(¢) using its closed-form solution is tedious, wemany places, howeveg[é, p(é)] and[é, 6(¢)] in Fig. 9 are
used numerical methods instead. For filtering simulations,stll very close. We can also observe the effect of biased AR
given biased AR coefficient was applied to the Kalman filteroefficients. Consider the worst case shown in Fig. 5. In this
described in (49)—(52), and (67) was used to estimate tbase, the true AR coefficient was 0.8. Suppose that we had
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w

applied a biased value, say, 0.5. The coefficient would haveThese speeches were obtained from the DARPA speech
deviated 37.5%. The figures shows that the optimal MSE ord\atabase. They were uttered by two female speakers and one
increased by 8.6%. Consider another case, say Fig. 9, in whinhale speaker and digitized at an 8-kHz sampling frequency
the true coefficient was 0.2. If we had used a biased valuewith 16-bit quantization. Three noises were used to contam-
0, the coefficient would have deviated 100%, but the optimadate the speech: additive white Gaussian noise, automobile
MSE only increased by 1.1%. Similar effects can be observedgine noise, and motorcycle exhaust-pipe noise. The last
if a biased value of 0.4 is used. From the discussion above, time& were obtained by recording a 1600cc sedan and a 125cc
can conclude that accurate estimates of AR coefficients are rmadtorcycle; their spectra are shown in Fig. 12. Two objective
necessary, and our estimate of driving-noise variance can yipktformance criteria were used to evaluate filtering results,
good performance in biased environments. Using the proposeinely SNR and segmental SNR (SSNR) improvements. The
scheme, degradation due to biased coefficients can be ignoiedut SNR was defined as:

V. SIMULATIONS 1

To evaluate the performance of our approach, we carried SNR,, 299 logy, n=1
out some simulations. Four “speeches” were used, as follows. 1 =N
1) She had your dark suit in greasy wash water all year.
2) Don’t ask me to carry an oily rag like that.
3) What is England’s estimated time of arrival at Townsillewhere N was the length of speech. The output SNR, SNR
4) Draw a chart centered around fox using stereo graphi@s defined as that in (68) except thdt:) was replaced
projection. by Z(n). The SNR improvement was then SNNR— SNR,,,

(68)
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50 T " T TABLE IV
Y Automobile SNR IMPROVEMENT OF SPEECH ENHANCEMENT FOR WHITE NOISE
i - Motorcycle BN SNR;, = 0 4B SNR,, — 5 dB
45+ [ \ ° [ i Ideal Actual Ideal Actual
{ i Iy \ 1 | 7.278 (4,0) | 6.070 (4,0) | 5.550 (0,0) | 5.425 (4,0) | 4.468 (4,0) | 3.960 (0,0)
I W SN
@ [ " | | N M A/v R . 2 | 7.292 (1,0) | 6.766 (1,0) | 6.642 (0,0) | 5.655 (1,0) | 5.158 (1,0) | 5.006 (0,0)
< Hq I ,,«‘\x | M J \‘W’M\ ,\‘ N / 4 | 7.851 (1,0) | 6.889 (1,0) | 6.825 (0,0) | 6.144 (1,0} | 5.257 (1,0) | 5.205 (0,0)
2 40l Py ok M ' i \/’V JA § | 8.259 (1,0) | 6.672 (1,0) | 6.545 (0,0) | 6.430 (1,0) | 4.942 (1,0) | 4.846 (0,0)
? M I W\ Iy \ /\\/\ \v /\/\/ | W
2 10 [ SR ’ L
3 N LIINRTAY TABLE V
5 35 ) ‘” A ,[ 1 J R SNR IMPROVEMENT OF SPEECH ENHANCEMENT
a , w\kﬁ/ FOR AuToMoBILE Noise (SNR,, = 0 dB)
o ‘ ,w“j J BN State Augmentation Measurement Diff.
3 oL, il | Tdeal Actual [deal Actual
\ ,\e/‘\;' 1 | 7.862 (4,4) | 6.576 (4,4) | 5.915 (4,0) | 5.446 (0,0) | 9.478 (4,4) | 6.890 (4,4)
Vo 2 | 8.675 (1,1) | 7.968 (1,1) | 7.678 (1,0) | 7.556 (0,0) | 9.360 (1,1) | 8.220 (1,1)
A 4 | 9.437 (1,1) | 8303 (1,1) | 7.993 (1,0) | 8.009 (0,0) | 9.772 (1,1) | 8.557 (1,1)
o5 ‘ , ‘ 8 | 9.878 (1,1) | 8.100 (1,1) | 7.913 (1,0) | 7.853 (0,0) | 10.20 (1,1} | 8.386 (1,1)
0 4 /2 3n/4 n
Radian frequency
. , . TABLE VI
Fig. 12. PSD's of color noises. SNR IMPROVEMENT OF SPEECH ENHANCEMENT
FoR AuTomoBILE Noise (SNR,, = 5 dB)

, . State Augmentation Measurement Diff.
and SNR’s was represented in dB. To calculate SSNR, WéN gz Actual Idcal Actual
first divided a speech signal into consecutive segments and 5984 (4.4) | 4.957 (4,4) | 4438 (4,0 | 3.902 (0,0) | 7.550 (4,4) | 5.544 (4,4)
h d b df h 6.852 (1,1) | 6.145 (1,1) | 5.958 (1,0) | 5.787 (0,0) | 7-423 (1,1) | 6.266 {1,1)
then averaged SNR’s obtained from those segments. Tf‘sz 7.478 (1,1) | 6.366 (1,1) | 6.149 (1,0) | 6.129 (0,0) | 7.764 (1 1) 76.460 (1.1)
improvement in SSNR was defined as that in SNR. 8 | 7.837 (1,1) | 6.072 (1,1) [ 5.963 (1,0) | 5.903 (0,0) [ 8.087 (1,1) | 6.210 {1,1)

Noise sequences were added to speeches yielding 0 and 5
dB SNR,. The forggttmg factord in .(36) was set to 0.95_. TABLE VI
The QMF bank was implemented using a tree structure with a SNR IMPROVEMENT OF SPEECH ENHANCEMENT
prototype filter of length 16 [24]. For comparison, we also con- FOR MoTorcycLe Noise (SNR,, = 0 dB)
sidered ideal cases in which noise-free speeches were assumgd State Augmentation Measurement Diff
Ideal Actual Ideal Actual

to be available. In this circumstance, AR parameters could ber—7ssg a3y | 5.459

( 4.806 (4,0) | 4.565 (0,0) | 9.523 (4,4) [ 5.899 (4,4)
accurately estimated using some complex methods. We applied [8515 (1,)) 7-395E
(

)

y | 7.040 (1,0) | 6.966 (0,0) | 9.201 (1,1) | 7.435 (1,1)
y | 7.868 (1,0) | 7.858 (0,0) | 9.749 (1,1) | 8.108 (1,1)
) [ 7.838 (1,0) | 7.805 (0,0) | 10.08 (1,1) | 8.127 (L,1)

the recursive maximum-likelihood algorithm (RMLE) [27]. ~3t55ee 83 e

These results provided references for performance bounds.
Table IV shows averaged SNR improvements or all speeches

in white noise environments. The term “BN” in the tablesutperformed fullband processing substantially, and that the
means “band number.” The AR orders of speech and noise agst performance appeared in four-band decomposition. Note
represented byp, ¢); the first element is the order of speechthat for (0, 0) modeling, the SNR improvement was close to
and the second is that of noise. To determine performanaifaer cases. For example, it was 0.3 dB lower than that of (1, 1)
degradation due to model simplification, we also carried oatodeling in four-band decomposition. But, the computational
simulations in which colored noise was modeled as whitmmplexity required for (0, 0) modeling was much lower.
noise, and in which even speech was modeled as white sigiables VII and VIII show the filtering results for motorcycle
We look first at the results for the ideal cases. We can easilgise. As we can see, subband processing performed even
see that improvement increased as band number was increaketter than fullband processing. The SNR improvement for (1,
However, for actual cases, the best performance was achietg¢dnodeling in four-band decomposition was 2.6 dB higher
when the band number was four. In Table IV (white noise), wean that for (4, 4) modeling in fullband when SNR= 0

find that the SNR improvement for four-band decompositio#B. For (0, 0) modeling, the performance was still very close
was about 0.8 dB higher than that of fullband processing that of (1, 1). For ideal cases, the SNR improvement with
when speech signals were modeled as colored signal. Thar-band decomposition was 1.3-1.6 dB higher than actual.
difference was 1.3 dB when speech was modeled as whitee also observed that the ideal SNR improvement achieved by
signal. Note that for subband processing, filtering performante measurement-difference type in fullband was much higher
was almost undegraded for white signal modeling of speec¢han that achieved by the state-augmentation type. This is due
The SNR improvement for subband processing using fouo the fact that the bandwidths of speech signals are narrower
band decomposition was about 1 dB lower than that fam fullband, which favors the smoothing results. When the
ideal cases. number of bands is increased, this effect is reduced.

For simulations of colored noise, we set= 0.95 in (42) The aliasing effect in (25) was also studied. The length of
and (48), anda = 0.9 in (48). Tables V and VI show the the prototype filter was increased from 16 to 64, making the
SNR improvement when automobile noise was used. TVv@MF transition band much sharper, and as a consequence,
types of Kalman filters were used here, state-augmentation atielding a much smaller aliasing effect. Motorcycle-noise
measurement-difference. We found that subband processangulations were performed again, and the results may be
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TABLE VIII
SNR IMPROVEMENT OF SPEECH ENHANCEMENT
FOR MoTorcycLE Noise (SNR, = 5 dB)

which is larger than that for SNR improvement. As to (O,
0) modeling, the SSNR improvement remained close to other
cases. We can thus conclude that if computational complexity

State A 3 i M t Diff. . . . . . .
BN e e ugmﬂjt::gf el | Actuel is the main implementation concern, (0, 0) modeling with
T ]5.936 (4,4) | 4.130 (4,1) | 3.534 (4,0; 3.250 Eo,o; 7554 54.,4; 4764 54,4; subband processing can be used, and that the performance
2 ]6.683 (1,1) | 5.597 {1,1) | 5.282 (1,0) | 5.155 (0,0) | 7.353 (1,1) | 5.628 (1,1 . . .
T asT (L) 6,087 (11) | 6.040 (1.0) | 6.01 (0.0) | 7770 (1.1) | 6.268 (L.1) degrqda}tlon will be s.mall. For other types of noise, the results
8 | 7.825 (1,1) | 6.041 (1,1) | 5.950 (1,0) | 5.915 (0,0) | 8.016 (1,1) | 6.072 (1,1) are similar and details have been omitted.
TABLE IX
SEGMENTAL SNR IMPROVEMENT OF SPEECH ENHANCEMENT VI. CONCLUSIONS
FOR MoTorcycLE Noise (SNR,, = 0 dB) . .
-~ Siaie Augmentation R PP In this paper, we have proposgd techmques _for ;peech en-
Tdeal Actual Tdeal Actual hancement in the subband domain. We first split noisy speech
1 | 13.05 (4,4) | 10.49 (4,4) | 10.02 (4,0) | 9.908 (0,0) | 14.02 (4,4) | 9.260 (4,4) ; ; ;
s (L0 08 (L To7E (0o 1074 @0y 157 (.0} 589 (1) into subband signals using a QMF bank. We Fhen modeleq the
4 [13.48 (1,1) | 10.95 (1,1) | 10.57 (1,0) | 10.73 (0,0) | 13.82 (1,1) | 10.40 (1,1) subband signals as AR processes and applied Kalman filters
8 [13:54(1,1) | 1088 (1,1) | 10.28 (1,0) [ 1023 (0,0) { 1372 (1,1) | 10.18 (1)) {0 perform enhancement. For ease of implementation, we only
considered AR(1) and AR(0) for subband signals. We used a
TABLE X prediction-error filter with the LMS algorithm for AR coeffi-
SEGMENTAL SNR' IMPROVEMENT OF SPEECH ENHANCEMENT cient identification and proposed new methods for estimating
FOR MOTORCYCLE NOISE (SNR = 5 dB) driving-noise variance. Due to its inherent characteristics, the
BN State Augmentation Measurement Difl prediction-error filter converges to biased solutions in noisy
Ideal Actual Ideal Actual i g - .
T [ 10.03 (4,4) | 7.990 (4,4) | 7.487 (4,0) | 7.310 (0,0) | 11.12 (4,4) | 7.404 (4,4) environments. Performance of the Kalman filter with biased
2 | 10.05 (1,1) | 8.369 (1,1) | 8.079 (1,0) | 8.015 (0,0) | 10.80 (1,1) | 7.808 (1,1) parameters was also analyzed. We found that when the AR
4 | 10.56 (1,1) | 8.456 (1,1) | 8.100 (1,0) | 8.220 (0,0) | 10.89 (1,1) [ 8.217 (1,1} .. . . .
8§ | 10.65 (1,1) | 7.895 (1,1) | 7.805 (1,0) | 7.756 (0,0) | 10.85 (1,1) | 7.901 (L,1) coefficients were biased, we could apply an optimal driving-

noise variance to minimize the output MSE. Simulations

. ) showed that the MSE yielded by our estimates of driving-noise
summarized as follows. When the input SNR was 0 dB (ariance were close to the optimal. We also found through

dB), averaged SNR improvements were increased by 0.dgpaysis that MSE's for biased parameters do not deviate much
(0.18), 0.16 (0.21), and 0.16 (0.24) dB for 2-band, 4-banflym the optimal MSE’s with true parameters. This indicates
and 8-band decomposition, respectively. Note that the SNRyt accurate estimates of AR coefficients are not required
improvement resulting from the 5 dB input was higher thag,q,ideqd driving-noise variances are properly estimated. This
that for 0 dB. We also found that the greater the numbfgiifies the use of the prediction-error filtering. Finally, we
of band decompositions, the greater the improvement Weng that speech enhancement in the subband domain not
could obtain. Subjective listening tests indicated no percepthﬁy had much lower computational complexity, but also gave

differences from previous results. We thus conclude that thé\er SNR improvement than that in the fullband domain.
aliasing effect was indeed smaller for the sharp-transition QM

band. However, at low SNR’s, the aliasing effect tends to be
masked by other effects.

We then evaluated the SSNR filtering results. We useg;
a segment size of 120 and did not take segments around
silence into account. This enabled us to observe the filtering]
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