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of manipulators is small. However, with an increase in the
number of degrees of freedom of the manipulators, the parallel
algorithms will be more efficient than the serial algorithms. For
example, the serial algorithm of [5] is more efficient than the
parallel algorithm of [14], however, whenn = 6, the operations
of computation of [14] is 556 while [5] is 869.

2) Compared with other algorithms, the parallel algorithm using
three processors is more efficient.

3) Because the formulation developed in this paper possesses
good parallelism, the further improvement in computational
efficiency could easily be achieved by increasing the proces-
sors, while it is not the same case based on the recursive
Newton–Euler formulation [10].
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Automatically Integrating Multiple Rule Sets
in a Distributed-Knowledge Environment
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Abstract—In this paper, an actual knowledge application is made by
means of evolution paradigms in terms of knowledge acquisition. An
automatic knowledge integration approach in a distributed-knowledge
environment is thus proposed to integrate multiple rule sets into a single
effective rule set. The proposed approach consists of two phases: knowl-
edge encoding and knowledge integration. In the encoding phase, each
knowledge input is translated and expressed as a rule set, then encoded
as a bit string. The combined bit strings from multiple knowledge inputs
form an initial knowledge population, which is then ready for integration.
In the knowledge integration phase, a genetic search technique generates
an optimal or nearly optimal rule set from these initial knowledge-input
strings. Finally, experimental results from diagnosis of brain tumors show
that the rule set derived by the proposed approach is much more accurate
than each initial rule set.

I. INTRODUCTION

Developing an expert system requires construction of a com-
plete, consistent, and unambiguous knowledge base [2], [16]. The
knowledge required to develop a knowledge-based system is often
distributed among groups of experts rather than being available
for elicitation from a single expert [11]. Acquiring and integrat-
ing multiple knowledge inputs from many experts or by various
knowledge-acquisition techniques [6], [7], [17], [21] thus plays an im-
portant role in building effective knowledge-based systems. Recently,
knowledge acquisition and integration systems [3], [12], [19], based
on thePersonal Constructs Psychology (PCP)model [15] orIntegrity
Constraints [2], [16], have been successfully applied. Examples
include AQUINAS [4], ETS [5], KSSO [12], and KITTEN [19].
These knowledge-integration methods then present the following
problems.

1) Domain experts must intervene during integration to resolve
conflicts and contradictions.

2) Integration is time-consuming (requiring weeks or months).
3) The more knowledge sources consulted, the more difficult and

complex the integration.

In order to overcome these problems, we propose a genetic
knowledge-integration method that automatically combines multiple
rule sets into one integrated knowledge base by means of evolutionary
knowledge acquisition paradigms. Each rule set is encoded as a bit
string and evaluated by an evaluation function. The proposed method
then chooses good rule sets according to their fitness values and mates
them. Domain experts need not intervene in the integration process.
Finally, experimental results show that the proposed approach can
greatly improve the knowledge base. Our knowledge integration is
thus a successful application of genetic algorithms. Specifically, our
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Fig. 1. Knowledge-integration scheme in a distributed-knowledge environ-
ment.

approach can effectively integrate multiple knowledge sources in an
environment with good communication facilities of networks.

The remainder of this paper is organized as follows. An automatic
knowledge-integration approach for a distributed-knowledge environ-
ment is proposed in Section II. Experiments on brain tumor diagnosis
are reported in Section III. Conclusions are given in Section IV.

II. K NOWLEDGE INTEGRATION IN A

DISTRIBUTED-KNOWLEDGE ENVIRONMENT

In this section, we propose a genetic knowledge-integration ap-
proach that rapidly constructs a knowledge-based system without
human intervention by integrating knowledge from multiple sources.
Here, we assume all knowledge sources are represented by rules
since almost all knowledge derived by knowledge-acquisition (K.A.)
tools or induced by machine-learning (M.L.) methods may easily
be translated into or represented by rules. Fig. 1 shows the pro-
posed knowledge-integration scheme. A genetic algorithm is used
to maintain a population of possible rule sets and search for the best
integrated one.

Our knowledge integration consists of two processes:encoding
and integration. The encoding process transforms each rule set
into a bit-string structure. The integration process chooses bit-string
rule sets for “mating,” gradually creating good offspring rule sets.
The offspring rule sets then undergo recursive “evolution” until
termination criteria are met. The best bit string rule set in the
population is then output and translated into if–then rules. The
encoding process is first explained below.

A. Knowledge Encoding

Since rule sets derived from different knowledge sources generally
differ in syntax and size, designing an appropriate data structure to
accommodate these rule sets is crucial. Several strategies have been
proposed to represent rule-set knowledge structures for conceptual
learning [3], [9], [10], [14]. For example, theMichigan approach
[3] encodes individual rules into fixed-length bit strings, with each
individual in the population representing a rule. Another, thePitts-
burgh approach [9], encodes rule sets into variable-length bit strings,
with each individual in the population representing a rule set. Since
multiple rule sets must be combined, and the rule sets are derived
from different sources, representation of variable-length rule sets
is preferred in this paper to preserve the syntactic and semantic
constraints of variable-length rule sets. We thus encode knowledge
using the Pittsburgh approach. The rule sets from different sources

must, however, be translated into a uniform syntactical representation
before being encoded. The steps for translation of rule sets are
described below.

1) Collect the features and possible values from the conditional
parts of the rule sets. An elementary feature is a unit condition
that cannot be decomposed into simpler ones. All features
comprise a feature set.

2) Collect classes from the conclusion parts of the rule sets. An
elementary class is a unit conclusion that cannot be decomposed
into simpler ones. All classes comprise a class set.

3) Translate each rule into an intermediary representation that
retains its essential syntax and semantics. If some features in
the feature set are not used by the rule,dummytests are inserted
into the condition part of the rule. Each rule in the intermediary
representation is then composed ofN feature testsand oneclass
pattern, whereN is the number of global features collected.

4) If the feature testsor class patternsare numerical, they are
first discretized into a number of possible regions [18]. Each
feature test is then encoded into a fixed-length binary string,
with length equal to the number of possible test values. Each
bit thus represents a possible value. Similarly, the class pattern
is encoded into a fixed-length binary string with each bit
representing a possible class.N feature tests and one class
pattern are then encoded and concatenated together as a fixed-
length rule substring.

5) For each rule set, concatenate all its rule substrings. Since
different rule sets might have different numbers of rules, the
lengths of the rule sets might be different.

An example that demonstrates the encoding process is shown
below.

Example 1: Assume in diagnosing brain tumors, two classes
{Adenoma, Meningioma} are to be distinguished using three features
{Location, Calcification, Edema}. Assume FeatureLocation has
three possible values {brain surface, sellar, brain stem}, Feature
Calcificationhas four possible values {none, marginal, vascular-like,
lumpy}, and FeatureEdemahas three possible values {none, <2 cm,
<0.5 hemisphere}. Also assume that a rule setRSi from a knowledge
source has only these two rules:

R1 if (Location= sellar) and (Calcification= no), then Class is
Adenoma;

R2 if (Location= brain surface) and (Edema< 2 cm), then Class
is Meningioma.

The intermediary representation ofR1 and R2 would then be
constructed as follows:

R
0

1 if (Location = sellar) and (Calcification= no) and (Edema
= no or Edema < 2 cm or Edema < 0.5 hemisphere), then
Class is Adenoma;

R
0

2 if (Location = brain surface) and (Calcification = no or
Calcification = marginal or Calcification = vascular like or
Calcification = lumpy) and (Edema< 2 cm), then Class is
Meningioma.

The tests with underlines are dummy tests. Also,R1 andR2 are
logically equivalent toR0

1 and R0

2. Using the intermediary form,
we encode each feature test into a fixed-length binary string. For
example, the set of legal values for feature location is {brain surface,
sellar, brain stem}. Three bits are then used to represent this feature.
The bit string 101 would represent the test for Location being “brain
surface” or “brain stem.” As a result, the above rules are, respectively,
encoded as follows:
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Rule Location Calcification Edema Class
010 1000 111 10
100 1111 010 01

Finally, rule set RSi is encoded as “01010001111010011
1101001.”

As Example 1 shows, we can encode and translate rule sets into
bit strings with a uniform syntax for integration.

B. Knowledge Integration

In our approach, the initial set of bit strings for rule sets comes from
multiple knowledge sources. Each rule set represents one individual
in the initial population. In order to develop a “good” knowledge
base from an initial population of rule sets, the genetic algorithm
selectsparent rule sets with high fitness values for mating. An
objective evaluation function and a set of training instances then
qualify the rule set. The training instances are examples actually
occurring in the applications and can also be gathered from the
distributed environment. Two important factors are used in evaluating
derived rule sets, the accuracy and the complexity of the resulting
knowledge structure. Accuracy is evaluated using training instances
as in (1), shown at the bottom of the page. The complexity of the
resulting rule set (RS) is the ratio of rule increase, defined as in (2),
shown at the bottom of the page, whereRSi is the initial rule set,
andm is the number of initial rule sets. Accuracy and complexity are
combined to represent the fitness value of the rule set. The evaluation
function is defined as follows:

fitness(RS) =
[Accuracy(RS)]

[Complexity(RS)]�
(3)

where � is a control parameter, representing a tradeoff between
accuracy and complexity. The fitness function can also reduce the
impact of noisy information that causes rule-set overfitting (excessive
complexity) [7].

C. Genetic Operators

Genetic operators are very important to the success of specific
GA applications. There are generally two ways of employing genetic
operators [10]: conventional mutation and crossover operators only
may be used or new genetic operators may be added to these. Each
has its advantages and disadvantages. By designing new genetic
operators, the genetic process can take domain-specific characteristics
into consideration, thus making the results closer to those desired.
This however takes more execution time than using only the original
operators. In this paper, both ways are examined and compared.
Two fundamental genetic operators (crossover, mutation) and two
domain-specific operators (fusion, fission) are used in the genetic
algorithm.

The crossover operator used in this paper selects crossover points
differently from that in the simple genetic algorithm. The crossover
operator in the simple genetic algorithm chooses the same points

Fig. 2. Example of crossover.

for both parent chromosomes, but, the crossover operator here need
not use the same point positions for both parent chromosomes. The
crossover points may occur within rule strings or at rule boundaries.
The only requirement for crossover points is that they “match up
semantically.”

The crossover operator takes two parent rule sets and swaps parts
of their genes to produce offspring rule sets. If the genes swapped are
desirable, the offspring rule sets will inherit these advantages from
their parents and will survive after this generation. Thus, the resulting
rule sets will be closer to the one really desired from generation to
generation. The detailed procedure is shown below.

1) Select a crossover point in one of the parents at random.
2) If the chosen point occurs at some rule boundary, the crossover

point in the other parent must also be at a rule boundary.
Otherwise, the point may be within the rule stringp bits to left
of a rule boundary. The crossover point for the other parent
must also be within the rule string andp bits to left of some
rule boundary.

3) Cross the genes of the parents according to the crossover points.
4) Generate new offsprings.

Example 2: Assume that parent rule setsRS1 andRS2 (shown in
Fig. 2), respectively, containn andm rules for classifying training
instances with four features (F1; F2; F3, andF4). FeatureF1 has
three possible values, featuresF2; F3, andF4 all have two possible
values. Three classes are to be determined. A crossover operation
with crossover points atcp1 andcp2 is shown in Fig. 2.

The mutation operator is the same as the that used in the simple
genetic algorithm. It randomly changes some elements in a selected
rule set, leading additional genetic diversity to help the integration
process escape from local-optimum “traps.”

Problems such asredundancy[13], subsumption[13], contradic-
tion [13], and misclassification[13] do arise when integrating rule
sets. We thus propose two domain-specific operators,fusion and
fission, to solve these problems. Fusion emulates natural evolution’s
chromosomal genetic folding phenomenon to eliminate redundancy
and subsumption. Assume that redundant rulesRuleki andRulekj
belong to rule setRSk. The redundancy relationship betweenRuleki
andRulekj is found by matching strings. Below, an example is given
to illustrate how fusion deals with redundancy.

Example 3: Assume that redundant rulesRuleki andRulekj exist
in RSk. To remove the redundancy, fusion folds the redundant rules,
as shown in Fig. 3.

Accuracy(RS) =
the total number of training instances correctly matched byRS

the total number of training instances
(1)

Complexity(RS) =
Number of rules within the integrated rule setRS

m

i=1

(Number of rules within initialRSi) m

(2)
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Fig. 3. Fusion operation for eliminating redundancy.

Fig. 4. Fusion operation for eliminating subsumption.

Since redundancy is a special case of subsumption, the fusion
function can be extended to solve subsumption problems. Assume
that in the rule setRSq; Ruleqi is subsumed byRuleqj . The logical
“OR” operation can be used to find subsumptive relationships. If a
string resulting from an “OR” operation betweenRuleqi andRuleqj
is the same asRuleqi, ruleRuleqi subsumes ruleRuleqj. The fusion
operator eliminates this by folding the subsumptive rules together.
Below, an example is given to illustrate how fusion deals with
subsumption.

Example 4: Assume that in rule setRSq; Ruleqi subsumes
Ruleqj. The fusion operator folds the subsumptive rules together,
removing the subsumption as shown in Fig. 4.

The fusion operator thus reduces rule-set complexity by eliminating
redundancy and subsumption.

Misclassifications and contradictions may also occur in rule sets.
We propose a fission operator that emulates natural evolution’s
chromosomalschizogenesisto eliminate misclassifications and con-
tradictions. A misclassification occurs when rules classify training
instances incorrectly. Fission selects the “closest”near-missrule [21]
to specialize the wrongly classified training instance. Assume rules
Ruleki; � � � ; Rulekj; � � � ; Rulekn all misclassify training instance
III. The closest near-miss relationship among these rules with respect
to III can be found by string-matching. IfRulekj has the fewest
differing string bits when matched with training instanceIII, then
Rulekj is the closest near-miss to training instanceIII. Fission
specializesRulekj into more specific rules that do not include this
instance. InstanceIII is also transformed into a rule and inserted into
the rule set. An example of handling misclassification is given below.

Example 5: Assume that ruleRulekj in rule setRSk misclassifies
training instanceIII and is the closest near-miss to this instance.
Assume that instanceIII has four featuresF1; F2; F3; F4, oneclass
pattern, and is encoded as 100, 10, 01, 10, 010. The execution of the
fission operator proceeds as shown in Fig. 5.

Two kinds of contradiction may occur in a rule set. The first
occurs when two rules with the same feature values point to different
classes; the second occurs when a rule points to two or more classes
simultaneously. The first case of contradiction is removed by the
crossover and mutation operators; that is, the bit strings of conflicting
rules may be altered or rearranged to remove the contradiction. In the
second case, the fission operator is used to split the rule into more
specific ones, each pointing to only one class. These new rules will
still contradict each other, but have been reduced to the first class of
contradiction, and can then be removed by the crossover and mutation
operators. An example of resolving a contradiction is given below.

Example 6: Assume that the rule setRSk contains the rule
Ruleki, which points to two conclusions. To resolve the contradiction
in Ruleki, fission specializes ruleRuleki into rules Rule0

ki and
Rule00

ki, each having only one conclusion, as shown in Fig. 6.

Fig. 5. Fission operation for eliminating misclassification.

Fig. 6. Fission operation for eliminating contradiction.

TABLE I
ACCURACY OF THE TEN INITIAL RULE SETS

The fission operator thus acts as a specialization operation that
resolves misclassification and contradiction problems and promotes
rule accuracy.

Although fusion and fission may raise rule-set accuracy, they
cause great computational burdens if performed whenever a new
chromosome is generated. Operation probabilities for these two
operators are thus set to achieve a tradeoff between time complexity
and accuracy. These two operators are then performed on a new
chromosome with the given probabilities.

III. EXPERIMENTAL RESULTS

Brain tumor diagnosis [20] was used as the problem domain to
test the performance of the proposed knowledge-integration approach.
The 504 cases used in these experiments were obtained from Veterans
General Hospital (VGH), Taipei, Taiwan [20]. The goal of the
experiments was to identify one of six possible classes of brain tumors
frequently found in Taiwan. The 504 cases were first divided into
two groups, a training set and a test set. The training set was used
to evaluate the fitness of rule sets during the integration process; the
test set acted as input events to test the derived rule set, and the
percentage of correct predictions was recorded. In each run, 70%
of the brain tumor cases were selected at random for training and
the remaining 30% of the cases were used for testing. Because of
incorrect recording or transcription errors, the cases contained noise
that led to cases with identical features being classified differently.
Ten initial rule sets were obtained from different groups of experts at
VGH or derived via machine-learning [6], [7], [17], [20]. Each rule,
consisting of twelve feature tests and a class pattern, was encoded into
a bit string 105 bits long. The accuracy of the ten initial rule sets was
measured using the test instances. The results are shown in Table I.

Although the ten initial rule sets were not accurate enough, they
could still however act as a set of locally-optimal solutions that
indicate useful information in the search space. Beginning with these
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TABLE II
EFFECTIVENESS OF THEDOMAIN-SPECIFIC OPERATORS

rule sets, the genetic algorithm could then more rapidly reach the
(nearly) global optimal solution than that it could have with nothing to
refer to. Of course, each initial rule set could first have been improved
by the same GA scheme before integration. We do not however prefer
this alternative since it cannot use information from the other rule
sets and thus would take more time to get good results. Similarly, we
could also have abandoned these initial rule sets and directly applied
the genetic algorithm to acquire knowledge from training instances.
But the same disadvantages would still have resulted.

In the experiments, the operation frequency to each bit string
chosen for crossover, mutation, fusion, and fission operators was set at
0.9, 0.04, 0.01, and 0.01, respectively. The parameter� in the fitness
function is used for a tradeoff between accuracy and complexity.
If the � value is small, the fitness function then focuses on the
classification accuracy. Contrarily, if the� value is large, the fitness
function is then dominated by the complexity. Here,� was set at
0.125. Two experiments were made to evaluate the effectiveness of
the proposed methods: one with domain-specific operators (fusion and
fission) and the other without them. Table II shows a comparison of
these two approaches as to accuracy, number of rules in the resulting
knowledge base, integration time, and resulting complexity, averaged
over 50 runs.

Experimental results show that using the knowledge-integration
algorithm with domain-specific operators yields more accurate results
than those obtained without domain-specific operators. Domain-
specific operators, however, have additional computational burdens.
As Table II shows, integration with domain-specific operators takes
15 264.7 s after 2000 generations, but, without domain-specific oper-
ators, needs only 11264.3 s. Note that every accuracy rate in Table II
is higher than that of any initial rule set in Table I.

Fig. 7 shows the relationship between the generations and the
fitness values of the resulting rule set for the proposed approach
at different domain-specific operator rates. The more generations
there were, the higher the fitness values of the resulting rule set.
The integration process initially appeared unstable. Fusion operations
reduced the structural complexity of the resulting rule sets, but fission
operations increased it. Also, fusion does not affect the accuracy of
the resulting rule sets, but fission may increase it. It is thus hard to
see any trend for the domain-specific operators at this stage. In the
later stages, the integration process stabilizes. The larger the domain-
specific operator probabilities, the higher the fitness values of the
resulting rule set. Domain-specific operators thus play an important
role in the genetic process.

IV. CONCLUSIONS AND DISCUSSIONS

We have shown how knowledge integration can be effectively
represented and addressed by a genetic algorithm with two domain-
specific operators. Experimental results showed that our genetic
knowledge-integration approach is valuable for combining multiple
rule sets in distributed-knowledge environments. Our approach differs
from some notable approaches [5], [8], [16], mainly in that it requires
no human experts’ intervention during integration. Our approach is
thus dependent on computer execution speeds, not on human experts.
This saves much time since experts may be geographically dispersed,
and their deliberations may be very time consuming. Our approach

Fig. 7. Relationship between fitness values and generations for different
domain-specific operator probabilities.

is also scalable and can be used effectively when the number of rule
sets to be integrated is large, and integrating large numbers of rule
sets may increase the validity of the resulting knowledge base. Our
method is also objective since human experts are not involved in the
integration process.

Problems such as redundancy, subsumption, misclassification, and
contradiction in the integration are solved automatically. Although,
the work presented here shows good results, it is only a beginning.
Some future investigations are proposed below.

1) Knowledge sources or actual instances may contain fuzzy
information in the real world. We are currently studying how
to automatically generate the appropriate membership functions
and deal with fuzzy knowledge.

2) Many issues in the field of knowledge verification remain
unresolved. Our approach addresses four commonly seen issues
(redundancy, subsumption, misclassification, and contradic-
tion). Modifying or designing new genetic operators to deal
with other knowledge verification issues is another interesting
topic.
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Matching Strengths of Answers
in Fuzzy Relational Databases

Ding-An Chiang, Nancy P. Lin, and Chien-Chou Shis

Abstract—In this paper, imprecise information is represented by fuzzy
disjunctive information, and an extended fuzzy relational model is used to
accommodate such information. In the presence of imprecise information,
answers to a query can be categorized into two kinds of answers: sure
answers and possible answers. To find more likely answers to a given
query, we develop a method to measure the matching strength of each
tuple as an answer to the query. The quality of an answer is higher
in the case where less extra information is required and the more sure
information is provided.

Index Terms—Extra information, fuzzy disjunctive information, match-
ing information, self-information.

I. INTRODUCTION

In real-world applications, the motivation of using fuzzy set theory
in database systems lies on the need of handling imprecise infor-
mation. Some authors have used fuzzy set theory to accommodate
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different types of imprecise information [1]–[4], [9], [15]. Frequently,
the major strategy of dealing with imprecise information in fuzzy
relational databases is to use a set of values to express imprecise
information [1]–[3], [22]. Accordingly, Raju and Majumdar [19] clas-
sify fuzzy relational databases into two types:type-1fuzzy relational
databases andtype-2fuzzy relational databases. The characteristic of
type-1 relational databases is that the attribute value is conformed
andhomogeneous; each attribute domain can only be a fuzzy set. On
the other hand, atype-2fuzzy relational database is aheterogeneous
fuzzy relational database, and each attribute domain can be a set of
fuzzy sets.

Some authors have defined different fuzzy relational models to
accommodate different types of imprecise information. The attribute
values can be a set of values, and the attribute domains may
contain different data types in these models [1], [2], [4], [17].
However, information such as “((John), (Engineering), (30 000))_

((John), (Manager), (high, 0.9))” cannot be easily represented by
these models. Therefore, to capture more of the meaning of the
data, the fuzzy relational model is generalized based on the theory
of type-2 fuzzy relation and thefirst-order logic. Each tuplettt will
be fuzzy disjunctive information in the proposed model, where fuzzy
disjunctive information is a generalization of disjunctive information,
which has been studied by many authors in classical relational
databases [6]–[8], [13], [26]. For example, John’s age is either
18 or 19 and “((John), (Sales), (30 000))_ ((John), (Manager),
(high, 0.9))” is fuzzy disjunctive information. Consequently, a fuzzy
relational database is viewed as a particular kind of first-order logic
interpretations, and the query processing is a truth determination of
a first-order formula applied to a fuzzy relational database.

With the introduction of imprecise information into a database, we
need to consider measures of uncertainty during the query evaluation
process, and much research has been done regarding measures of
uncertainty. Probability theory is the classical means of handling
uncertainty, and it is useful and successful in many applications.
However, the problem of using probability theory is that thea priori
probability of an object is difficult or impossible to estimate [16].
Therefore, in this paper, we assume that all attributes are independent
and identically distributed.

Several researchers have viewed the measure of uncertainty as
a measure of fuzziness. De Luca and Termini [14] showed that a
measure of uncertainty can be viewed as a measure of fuzziness.
Following De Luca and Termini’s suggestion in some aspects, other
researchers suggested that any measure of fuzziness should be a
measure of that lack of distinction between the fuzzy set and its
complement [10], [25]. To evaluate uncertainty of answers to a given
fuzzy query, Buckles and Petry [3] adapted De Luca and Termini’s
formula for measuring uncertainty in a fuzzy relational database.
They provided a formula to compute the fuzzy entropy of a relation
with respect to the query. However, measuring uncertainty is not
suitable in determining more likely answers to a specific query,
and we will discuss this argument in Section III. Therefore, the
practical application of query evaluation to imprecise information
is still lacking.

To consolidate and advance the state of the research in query
processing for fuzzy relational databases, we provide another view
of measuring the matching strength of an answer to a query by
self-information, where self-information of a tuple is defined as the
amount of information given by the tuple as an answer to the given
query. That is, the matching strength of a tuple to a query can be
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