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of manipulators is small. However, with an increase in the Automatically Integrating Multiple Rule Sets
number of degrees of freedom of the manipulators, the parallel in a Distributed-Knowledge Environment
algorithms will be more efficient than the serial algorithms. For

example, the serial algorithm of [5] is more efficient than the Ching-Hung Wang, Tzung-Pei Hong,
parallel algorithm of [14], however, when= 6, the operations Shian-Shyong Tseng, and Chih-Mao Liao

of computation of [14] is 556 while [5] is 869.
2) Compared with other algorithms, the parallel algorithm using ) o
Abstract—In this paper, an actual knowledge application is made by

three processors is more efficient. : ) ; e
. . . means of evolution paradigms in terms of knowledge acquisition. An
3) Because the. formulation devgloped n th'S. paper pos_sesﬁﬁﬁ)matic knowledge integration approach in a distributed-knowledge
good parallelism, the further improvement in computation@nvironment is thus proposed to integrate multiple rule sets into a single
efficiency could easily be achieved by increasing the procesffective rule set. The proposed approach consists of two phases: knowl-

sors, while it is not the same case based on the recursfT, 000t B e e eosed a5 & rule set then encoded
. w input i X u '
Newton—Euler formulation [10]. as a bit string. The combined bit strings from multiple knowledge inputs
form an initial knowledge population, which is then ready for integration.
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Bxpent Expert & Training ke must, however, be translated into a uniform syntactical representation
ii-mup ? r Ciroup # DChais Set 1 E_'\ Deta St = % before being encoded. The steps for translation of rule sets are

:‘- ,,-f \‘ FI ; described below.
| o R | ot [ ML ] v o ML ] 1) Collect the features and possible values from the conditional
Tsad 1 Tooln Bledsied 1 Mo . . .
e parts of the rule sets. An elementary feature is a unit condition
;‘ﬂ!.&?} 'E:ﬁ"h‘;'--j c’ﬁjﬂ_‘ﬁ;'] .:'ﬁuT!QE- \'_‘,. that c_annot be decomposed into simpler ones. All features
e S e ; el comprise a feature set.
Bshdi M | o[l Fehee [ | Fesiy 2) Collect classes from the conclusion parts of the rule sets. An
22 i T =] Set & Closs Set elementary class i i lusion th bed d
T = — . y class is a unit conclusion that cannot be decompose
B _I_'!. i hr::IT' e P L into simpler ones. All classes comprise a class set.
| marmesdinry R [ETTES 3 [rermieduary . . K .
,mm,mi,,=| ropressaiation pepressrsistion. || reprewsscaticn 3) Translate each rule into an intermediary representation that
‘_"--."___---__i__ e T 4 retains its essential syntax and semantics. If some features in
T P Enowiedar |...,,;,.][rﬁi':|'" the feature set are not used by the rdiemmytests are inserted
P Sy into the condition part of the rule. Each rule in the intermediary
e ! representation is then composed\bfeature testsand oneclass
Krarwielge Aacc I .
= — pattern, where N is the number of global features collected.

4) If the feature testr class patternsare numerical, they are
first discretized into a number of possible regions [18]. Each
feature test is then encoded into a fixed-length binary string,

approach can effectively integrate multiple knowledge sources in an  With length equal to the number of possible test values. Each
environment with good communication facilities of networks. bit thus represents a possible value. Similarly, the class pattern
The remainder of this paper is organized as follows. An automatic IS encoded into a fixed-length binary string with each bit
knowledge-integration approach for a distributed-knowledge environ-  representing a possible clasy. feature tests and one class
ment is proposed in Section II. Experiments on brain tumor diagnosis  pattern are then encoded and concatenated together as a fixed-

Fig. 1. Knowledge-integration scheme in a distributed-knowledge environ-
ment.

are reported in Section Ill. Conclusions are given in Section IV. length rule substring.
5) For each rule set, concatenate all its rule substrings. Since
Il. KNOWLEDGE INTEGRATION IN A different rule sets might have different numbers of rules, the

DISTRIBUTED-KNOWLEDGE ENVIRONMENT lengths of the rule sets might be different.

In this section, we propose a genetic knowledge-integration ap-an example that demonstrates the encoding process is shown
proach that rapidly constructs a knowledge-based system with@ydfio,.
human intervention by integrating knowledge from multiple sources. Example 1: Assume in diagnosing brain tumors, two classes
I—!ere, vlve aSSLljlnl;'e al: I;novﬂquedst())urkces Iars represgqtgd by "{' enoma, Meningioma} are to be distinguished using three features
fcl)r:I;se grmigztj(?e d nbowriagﬁinsrllt\a/:miny (n’\jvti r%:zgcéi'sr':gn E;gbﬁocation, Calcification, Edema}. Assume Featutecation has
be translated into ></)r represented b)? rule.s. Fig. 1 showsythe 0 ree possible values {brain surface, sellar, brain stem}, Feature
. . o - . aicificationhas four possible values {none, marginal, vascular-like,
posed knowledge-integration scheme. A genetic algorithm is usI ) . and FeatureE(F:I)emahas three {ossible vaI?Jes {none, <2 cm
to maintain a population of possible rule sets and search for the b&LPPYs, ) P ’ ’
integrated one <0.5 hemisphere}. Also assume that a rule 88t from a knowledge
Our knowledge integration consists of two processemoding SOurce has only these two rules:
and integration. The encoding process transforms each rule setp it (_ocation = sellar) and (Calcificatior= no), then Class is
into a bit-string structure. The integration process chooses bit-string  Agenoma:
rule sets for “mating,” gradually creating good offspring rule sets. R if (Location = brain surface) and (Edema 2 cm), then Class
The offspring rule sets then undergo recursive “evolution” until is Meningioma
termination criteria are met. The best bit string rule set in the '
population is then output and translated into if—-then rules. TheThe intermediary representation @, and R, would then be
encoding process is first explained below. constructed as follows:

R} if (Location = sellar) and (Calcificationr= no) and Edema

A. Knowledge Encoding = no or Edema < 2 cm or Edema < 0.5 hemisphere), then
Since rule sets derived from different knowledge sources generally  cjass is Adenoma:

differ in syntax and size, designing an appropriate data structure topr
accommodate these rule sets is crucial. Several strategies have been
proposed to represent rule-set knowledge structures for conceptual
learning [3], [9], [10], [14]. For example, thMichigan approach Meningioma
[3] encodes individual rules into fixed-length bit strings, with each . ' )

individual in the population representing a rule. Another, Rigs- ~ 1he tests with underlines are dummy tests. Alfl, and ¢, are
burgh approach [9], encodes rule sets into variable-length bit stringd0gically equivalent toR; and R;. Using the intermediary form,
with each individual in the population representing a rule set. Sin¥¢ encode each feature test into a fixed-length binary string. For
multiple rule sets must be combined, and the rule sets are deri®@mple, the set of legal values for feature location is {brain surface,
from different sources, representation of variable-length rule s&gllar, brain stem}. Three bits are then used to represent this feature.
is preferred in this paper to preserve the syntactic and semankiee bit string 101 would represent the test for Location being “brain
constraints of variable-length rule sets. We thus encode knowledg&face” or “brain stem.” As a result, the above rules are, respectively,
using the Pittsburgh approach. The rule sets from different sourescoded as follows:

if (Location = brain surface) andQglcification = no or
Calcification = marginal or Calcification = vascular like or
Calcification = lumpy) and (Edema< 2 cm), then Class is
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Rule Location Calcification Edema Class

@
Rule ! Rule ;. Ru1e1
/ 1] 1 n
R 010 1000 111 10 RS, 2100 1101 10 001 o 010 0101 01 010... 001 01 01 01 100
R} 100 1111 010 01 @, 7 bits
RS;:01001 1001 100 ... 110 1170 10 101 ....... 100 01 10 01 161
7 bits
Ruley, Ruley; Crossover Ruley,,
Finally, rule set RS; is encoded as “01010001111010011 RS] 100 11 01 10 001 cooooeeneeene. 0100110 10 101 ....... 100 01 10 01 101
1101001." _ RSy 010011001 100 .. 110 11 01 01 010... 001 61 01 01 100
As Example 1 shows, we can encode and translate rule sets into
bit strings with a uniform syntax for integration. Fig. 2. Example of crossover.
B. Knowledge Integration for both parent chromosomes, but, the crossover operator here need

In our approach, the initial set of bit strings for rule sets comes froRPt USe the same point positions for both parent chromosomes. The

multiple knowledge sources. Each rule set represents one individGg#SSOVer points may occur within rule strings or at rule tloundanes.
in the initial population. In order to develop a “good” knowledgeThe only requirement for crossover points is that they “match up

base from an initial population of rule sets, the genetic algorithifmantically.”
selectsparent rule sets with high fitness values for mating. An 1€ Crossover operator takes two parent rule sets and swaps parts
objective evaluation function and a set of training instances th@htheir genes to produce offspring rule sets. If the genes swapped are

qualify the rule set. The training instances are examples actuafi§Sirable, the offspring rule sets will inherit these advantages from
flieir parents and will survive after this generation. Thus, the resulting

occurring in the applications and can also be gathered from t ) X >
distributed environment. Two important factors are used in evaluatifiy® Sets will be closer to the one really desired from generation to

derived rule sets, the accuracy and the complexity of the resultif§neration. The detailed procedure is shown below.

knowledge structure. Accuracy is evaluated using training instancest) Select a crossover point in one of the parents at random.

as in (1), shown at the bottom of the page. The complexity of the2) If the chosen point occurs at some rule boundary, the crossover
resulting rule setRS) is the ratio of rule increase, defined as in (2), point in the other parent must also be at a rule boundary.
shown at the bottom of the page, wheRé; is the initial rule set, Otherwise, the point may be within the rule stripdits to left
andm is the number of initial rule sets. Accuracy and complexity are ~ Of a rule boundary. The crossover point for the other parent
combined to represent the fitness value of the rule set. The evaluation Must also be within the rule string apdbits to left of some

function is defined as follows: rule boundary. _ .
] ; Accuracy RS 3) Cross the genes of the parents according to the crossover points.
fitnes 25) = [ Y15 (3)  4) Generate new offsprings.

" [Complexity RS)]~
h o trol " i tradeoff bet Example 2: Assume that parent rule sef5; and RS, (shown in
Where a 1S a control parameter, representing a tradeolt betweet, 2), respectively, contain andm rules for classifying training

accuracy and complexity. The fithess function can also reduce liﬂ tances with four featuresF(, Fs, Fy, and Fy). FeatureF, has
impact of noisy information that causes rule-set overfitting (excessiwree possible values, featurés FJ an,dF4 all have two possible

complexity) [7]. values. Three classes are to be determined. A crossover operation
) with crossover points atp; andcp, is shown in Fig. 2.
C. Genetic Operators The mutation operator is the same as the that used in the simple
Genetic operators are very important to the success of specgienetic algorithm. It randomly changes some elements in a selected
GA applications. There are generally two ways of employing genetiale set, leading additional genetic diversity to help the integration
operators [10]: conventional mutation and crossover operators oplypcess escape from local-optimum “traps.”
may be used or new genetic operators may be added to these. Eadhroblems such aedundancy{13], subsumptior{13], contradic-
has its advantages and disadvantages. By designing new gentic [13], and misclassification[13] do arise when integrating rule
operators, the genetic process can take domain-specific characteristits. We thus propose two domain-specific operatfusion and
into consideration, thus making the results closer to those desirédsion to solve these problems. Fusion emulates natural evolution’s
This however takes more execution time than using only the originiromosomal genetic folding phenomenon to eliminate redundancy
operators. In this paper, both ways are examined and comparadd subsumption. Assume that redundant riege,; and Ruley;
Two fundamental genetic operatorsrdssover, mutationand two belong to rule seRS;. The redundancy relationship betweBnle;;
domain-specific operatordugion, fissiop are used in the genetic andRule,; is found by matching strings. Below, an example is given
algorithm. to illustrate how fusion deals with redundancy.
The crossover operator used in this paper selects crossover pointSxample 3: Assume that redundant rulés:le;; and Ruley; exist
differently from that in the simple genetic algorithm. The crossoven RS;.. To remove the redundancy, fusion folds the redundant rules,
operator in the simple genetic algorithm chooses the same poiats shown in Fig. 3.

Accuracy RS) = the total number of training |nstan(?e§ cqrrectly matchedrtSy B
the total number of training instances

Number of rules within the integrated rule st

Complexity RS) = (2

Z (Number of rules within initialRSi)} /m

=1
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Ruley, Ruley; Rulekj Ruley; Ruley; Ruley,
RS, 1100110110001 ............ 0100101 01 010...01001 01 01 010 ......... RS, 100110110001 ..... 100 10 01 17100 ... 001 01 01 01 100
RSk 100110110001 .............. 01001 01 01 010 .. RS, 2100110110001 ...... 100 10 0107 100 100 100116 010 ...001 01 01 01 100
Ruley Ruley; Rule"kj Rudey,
Fig. 3. Fusion operation for eliminating redundancy. Insert J

Fig. 5. Fission operation for eliminating misclassification.

Ruley; Rule ; Rule ;
RS 2100 110110 001 e 11001 01 01 010...010 01 01 01 010 .......
7 Fusion Ruley, Ruley; Ruley,
RS 2100110110001 . 1oofiotot0 RS, :100 1101 10 001 ...... 100 10 01 10 120 ... 001 01 01 01 100
Fission _
Fig. 4. Fusion operation for eliminating subsumption. RS, 100 1101 10,001 ....... 100 1001 10200 100 1001 18070 001 01 01 01 100
Rule,,; Rule'ki Rule';(i Rule;,

Since redundancy is a special case of subsumption, the fusion o . o o
function can be extended to solve subsumption problems. Assufi@ 6 Fission operation for eliminating contradiction.
that in the rule seRS,, Rule,; is subsumed byRule,;. The logical
“OR” operation can be used to find subsumptive relationships. If a TABLE |
string resulting from an “OR” operation betweé&le,; and Ruley; ACCURACY OF THE TEN INITIAL RULE SETS
is the same aRule,;, rule Rule,; subsumes rul®ule,;. The fusion

operator eliminates this by folding the subsumptive rules togethelfule Sets | Accuracy | No. of rules || Rule Sets | Accuracy | No. of rules

Below, an example is given to illustrate how fusion deals witfRuleSet1 | 60.03% 52 Rule Set 6 | 77.89% 56
subsumption Rule Set2 | 79.81% 56 Rule Set7 | 68.53% 52
' . Rule Set3 | 73.24% 56 Rule Set8 | 72.83% 53

Example 4: Assume that in rule setizS,, Rule,i subsumes oo —c - ——=ron 3 Rule Set9 1 7624% 6

Ruleg;. The fusion operator folds the subsumptive rules togethegri <5
removing the subsumption as shown in Fig. 4.

The fusion operator thus reduces rule-set complexity by eliminating
redundancy and subsumption.

Misclassifications and contradictions may also occur in rule sets.The fission operator thus acts as a specialization operation that
We propose a fission operator that emulates natural evolutiopesolves misclassification and contradiction problems and promotes
chromosomakchizogenesito eliminate misclassifications and con-yje accuracy.
tradictions. A misclassification occurs when rules classify training ajthough fusion and fission may raise rule-set accuracy, they
instances incorrectly. Fission selects the “closeséir-missule [21]  cayse great computational burdens if performed whenever a new
to specialize the wrongly classified training instance. Assume rulggromosome is generated. Operation probabilities for these two
Ruleyi, -+, Ruley;, -+, Ruley, all misclassify training instance operators are thus set to achieve a tradeoff between time complexity

I. The closest near-miss relationship among these rules with respge accuracy. These two operators are then performed on a new
to I can be found by string-matching. Rule,; has the fewest chromosome with the given probabilities.

differing string bits when matched with training instanfe then
Ruley; is the closest near-miss to training instanEe Fission
specializesRuley; into more specific rules that do not include this IIl. EXPERIMENTAL RESULTS
instance. Instancé is also transformed into a rule and inserted into Brain tumor diagnosis [20] was used as the problem domain to
the rule set. An example of handling misclassification is given belotest the performance of the proposed knowledge-integration approach.
Example 5: Assume that rul&?ule,; in rule setRS, misclassifies The 504 cases used in these experiments were obtained from Veterans
training instancel and is the closest near-miss to this instancé&eneral Hospital (VGH), Taipei, Taiwan [20]. The goal of the
Assume that instancE has four featured’, F,, Fs, F'4, oneclass experiments was to identify one of six possible classes of brain tumors
pattern and is encoded as 100, 10, 01, 10, 010. The execution of tlhequently found in Taiwan. The 504 cases were first divided into
fission operator proceeds as shown in Fig. 5. two groups, a training set and a test set. The training set was used
Two kinds of contradiction may occur in a rule set. The firsto evaluate the fitness of rule sets during the integration process; the
occurs when two rules with the same feature values point to differasst set acted as input events to test the derived rule set, and the
classes; the second occurs when a rule points to two or more clagsssentage of correct predictions was recorded. In each run, 70%
simultaneously. The first case of contradiction is removed by tlod the brain tumor cases were selected at random for training and
crossover and mutation operators; that is, the bit strings of conflictitfee remaining 30% of the cases were used for testing. Because of
rules may be altered or rearranged to remove the contradiction. In theorrect recording or transcription errors, the cases contained noise
second case, the fission operator is used to split the rule into mdnat led to cases with identical features being classified differently.
specific ones, each pointing to only one class. These new rules W#n initial rule sets were obtained from different groups of experts at
still contradict each other, but have been reduced to the first classv@H or derived via machine-learning [6], [7], [17], [20]. Each rule,
contradiction, and can then be removed by the crossover and mutationsisting of twelve feature tests and a class pattern, was encoded into
operators. An example of resolving a contradiction is given belowa bit string 105 bits long. The accuracy of the ten initial rule sets was
Example 6: Assume that the rule seRS; contains the rule measured using the test instances. The results are shown in Table I.
Ruley;, which points to two conclusions. To resolve the contradiction Although the ten initial rule sets were not accurate enough, they
in Ruley,;, fission specializes ruléiuley; into rules Rule); and could still however act as a set of locally-optimal solutions that
Rule};, each having only one conclusion, as shown in Fig. 6. indicate useful information in the search space. Beginning with these

58.67% 52 Rule Set 10| 70.19% 53
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TABLE I
EFFECTIVENESS OF THEDOMAIN-SPECIFIC OPERATORS
Rule Sets Accuracy | No. of rules | Time (second)|Complexity

Integration without domain-specific operators (2000 generations) 85.83% 168 11264.3 3.1168

Integration with domain-specific operators (700 generations) 87.83% 75 5102.4 1.3914

Integration with domain-specific operators (2000 generations) 91.42% 92 15264.7 1.7086
rule sets, the genetic algorithm could then more rapidly reach the g4
(nearly) global optimal solution than that it could have with nothing to passEEEEEEEaREEasREe N

80

refer to. Of course, each initial rule set could first have been improved
by the same GA scheme before integration. We do not however prefer
this alternative since it cannot use information from the other rule
sets and thus would take more time to get good results. Similarly, Weg;m
could also have abandoned these initial rule sets and directly appliq§
the genetic algorithm to acquire knowledge from training instances.
But the same disadvantages would still have resulted.

In the experiments, the operation frequency to each bit string
chosen for crossover, mutation, fusion, and fission operators was set at
0.9, 0.04, 0.01, and 0.01, respectively. The parameterthe fitness
function is used for a tradeoff between accuracy and complexity.
If the o value is small, the fithess function then focuses on the
classification accuracy. Contrarily, if thevalue is large, the fitness
function is then dominated by the complexity. Here was set at Fig.
0.125. Two experiments were made to evaluate the effectivenessiam
the proposed methods: one with domain-specific operators (fusion and
fission) and the other without them. Table Il shows a comparison of
these two approaches as to accuracy, number of rules in the resul
knowledge base, integration time, and resulting complexity, avera
over 50 runs.

Experimental results show that using the knowledge-integratigillet
algorithm with domain-specific operators yields more accurate resufts®
than those obtained without domain-specific operators. Domain-"
specific operators, however, have additional computational burde
As Table Il shows, integration with domain-specific operators tak&de

——P=0.01

= P=0.02
4 — P=0.04
60
56
52 Diwvnes bttt b e Ly
0 250 500 750 1000 1250 1500 1750 2000

Generation
(@ =0.125, crossover=0.9, mutation=0.04)

7. Relationship between fitness values and generations for different
ain-specific operator probabilities.

I Iso scalable and can be used effectively when the number of rule
g% S to be integrated is large, and integrating large numbers of rule
sets may increase the validity of the resulting knowledge base. Our

hod is also objective since human experts are not involved in the

gration process.

roblems such as redundancy, subsumption, misclassification, and

gntradiction in the integration are solved automatically. Although,

work presented here shows good results, it is only a beginning.

15264.7 s after 2000 generations, but, without domain-specific opt§rqme future investigations are propo§ed below. )
ators, needs only 11264.3 s. Note that every accuracy rate in Table [{) Knowledge sources or actual instances may contain fuzzy

is higher than that of any initial rule set in Table I.
Fig. 7 shows the relationship between the generations and the
fithess values of the resulting rule set for the proposed approach

at different domain-specific operator rates. The more generationsz)

there were, the higher the fitness values of the resulting rule set.
The integration process initially appeared unstable. Fusion operations
reduced the structural complexity of the resulting rule sets, but fission
operations increased it. Also, fusion does not affect the accuracy of
the resulting rule sets, but fission may increase it. It is thus hard to
see any trend for the domain-specific operators at this stage. In the
later stages, the integration process stabilizes. The larger the domain-
specific operator probabilities, the higher the fithess values of the
resulting rule set. Domain-specific operators thus play an importarit]
role in the genetic process. 2]

IV. CONCLUSIONS AND DISCUSSIONS 3
We have shown how knowledge integration can be effectively
represented and addressed by a genetic algorithm with two domait
specific operators. Experimental results showed that our genetic
knowledge-integration approach is valuable for combining multiple
rule sets in distributed-knowledge environments. Our approach differs)
from some notable approaches [5], [8], [16], mainly in that it requires
no human experts’ intervention during integration. Our approach i
thus dependent on computer execution speeds, not on human expet%
This saves much time since experts may be geographically dispersgg,
and their deliberations may be very time consuming. Our approach

information in the real world. We are currently studying how
to automatically generate the appropriate membership functions
and deal with fuzzy knowledge.

Many issues in the field of knowledge verification remain
unresolved. Our approach addresses four commonly seen issues
(redundancy, subsumption, misclassification, and contradic-
tion). Modifying or designing new genetic operators to deal
with other knowledge verification issues is another interesting
topic.
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With the introduction of imprecise information into a database, we
need to consider measures of uncertainty during the query evaluation
process, and much research has been done regarding measures of

Matching Strengths of Answers uncertainty. Probability theory is the classical means of handling
in Fuzzy Relational Databases uncertainty, and it is useful and successful in many applications.
However, the problem of using probability theory is that #eriori
Ding-An Chiang, Nancy P. Lin, and Chien-Chou Shis probability of an object is difficult or impossible to estimate [16].
Therefore, in this paper, we assume that all attributes are independent
and identically distributed.
i AbStrt?Ct_—‘][(‘)rtmzt%ip;gg%rig;i Lrggrfrﬂfztiofeiztifﬁ;ﬁfgéi?i?ﬂ;‘éﬁ?’o Several researchers have viewed the measure of uncertainty as
alcséggf%ﬁj;e such inf’ormation. In the preser?/ce of imprecise information, a measure of fuzzmess. De Lucz-J_. and Termini [14] showed that a
answers to a query can be categorized into two kinds of answers: sure Measure of uncertainty can be viewed as a measure of fuzziness.
answers and possible answers. To find more likely answers to a given Following De Luca and Termini’'s suggestion in some aspects, other
query, we develop a method to measure the matching strength of each researchers suggested that any measure of fuzziness should be a
tuple as an answer to the query. The quality of an answer is higher . o q e of that lack of distinction between the fuzzy set and its
in the case where less extra information is required and the more sure . )
information is provided. complement [10], [25]. To evaluate uncertainty of answers to a given
fuzzy query, Buckles and Petry [3] adapted De Luca and Termini's
formula for measuring uncertainty in a fuzzy relational database.
They provided a formula to compute the fuzzy entropy of a relation
with respect to the query. However, measuring uncertainty is not
I. INTRODUCTION suitable in determining more likely answers to a specific query,

In real-world applications, the motivation of using fuzzy set theorgnd we will discuss this argument in Section Ill. Therefore, the
in database systems lies on the need of handling imprecise infBfactical application of query evaluation to imprecise information

mation. Some authors have used fuzzy set theory to accommodatstill lacking.
To consolidate and advance the state of the research in query
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