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Abstract

A new method using fuzzy uncertainty, which measures the uncertainty of the uniform
surface in an image, is proposed for texture analysis. A grey-scale image can be transformed into
a fuzzy image by the uncertainty definition. The distribution of the membership in a measured
fuzzy image, denoted by the fuzzy uncertainty texture spectrum (FUTS), is used as the texture
feature for texture analysis. To evaluate the performance of the proposed method. supervised
texture classification and rotated texture classification are applied. Experimental results reveal
high-accuracy classification rates and show that the proposed method is a good tool for texture
analysis. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Texture analysis is an import technique in image processing. The major problem of
texture analysis is the extraction of texture features. The general methods for feature
extraction are to estimate local features at each pixel in a texture image and then
derive a set of statistics from the distributions of the local features. The surveys and
comparisons of different methods for feature extraction can be found [3,6]. A new
method for texture feature extraction based on fuzzy theory is presented. Fuzzy set
theory [2,8] is a mathematical tool in modeling ambiguity or uncertainty and has
been applied in image processing [4,5,7]. In texture analysis, we define uniform surface
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uncertainty, which ranges from 0 to 1, for a point p in the texture as the degree of
p belong to uniform physical surface (as defined by the neighborhood average
intensity). Therefore, we can transform a grey-scale image into a fuzzy image by suing
the uncertainty definition. For a more rough texture, the intensity of pixels in its
corresponding fuzzy image will cause a smaller value. The membership distribution of
the fuzzy image which transformed from a texture, denoted as Fuzzy Uncertainty
Texture Spectrum (FUTS), is then used as a distinguishing feature for texture classi-
fication. alternatively, FUTS owns the rotation invariant property and this seems to
be desirable. It is important in object recognition from texture and inspection
applications where controlling the environment to ensure that the samples to be tested
have the same orientations as the training samples is either costly, difficult, or even
impossible. To evaluate the performance of the proposed method, supervised texture
classification and rotated texture classification are applied to discriminate natural
texture images extracted from Brodatz album [1]. Experimental results reveal high-
accuracy rates by the proposed method.

2. Fuzzy uncertainty texture spectrum and rotation invariant property

A grey-scale image f can be transformed into a fuzzy image by a fuzzification
function ¢. A variety of fuzzification functions can be used to reflect the degree to
which a pixel intensity represents a uniform physical surface. However, textural
properties need neighborhood information about the pixel in order to define ad-
equately membership functions. Here, a simplified triangular membership function
used to describe a uniform surface illustrated in Fig. 1 and the uniform surface
uncertainty is defined as
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where maxgf(i,j) is the maximum intensity within the (w x ) surface region
R centered at point (i, j) and the average intensity is given by
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Fig. 1. Fuzzy membership function for a uniform surface.
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Note that if f(i, j) is equal to the average neighborhood intensity f(i, j) then f(i, j)
possesses “full membership” to the surface region R; meaning of the pixel lies on
uniform surface, Alternatively, if f(i,j) is significantly different than the average
neighborhood intensity f(i, j), then w; — 0. That means the pixel f(i,j) not lies on
uniform surface.

To analyze a texture image, we can transform it into its corresponding fuzzy image
by using Eq. (1). As the value in fuzzy image represents the local aspect, the statistics of
these values in the fuzzy image should reveal its texture surface information. The
occurrence distribution of these values is called the fuzzy uncertainty texture spectrum
(FUTS), with the abscissa indicating the belief degree and the ordinate representing its
occurrence frequency. In the practical application of classification, the uniform surface
uncertainty values (range from O to 1) in a fuzzy image are uniformly quantized into
L levels to reduce the calculation time for the pursuit statistics. Formally, the
unnormalized frequency is defined by

Siw) = #{v=_p ;xL-1]G)ef}, 3)

where # denotes the number of elements in image fand 0 <v < L — 1.

To evaluate the performance of the extracted feature by using the proposed method,
we calculate and compare the FUTS for two Brodatz textures D77 and D90 [8],
respectively (Fig. 2). The two textures are shown in Fig. 3f and g and their corre-
sponding FUTS are displayed in Fig. 2a and b. From Fig. 2, we can find that the
measured FUTS are distinguishable from each other so they can serve as a good
discriminating tool in texture classification. The FUTS of D90 shows a higher
frequency than D77 when the measured uncertainty is closed to 1 and this gives that
the texture image D90 is more smooth than D77.

In most practical applications of texture classification, the rotation invariant
property seems to be desirable. The definition of Eq. (1) is rotation invariant if we use
a disk region to compute the fuzzy uncertainty. This implies that the corresponding
FUTS is rotation invariant. Fig. 4a—d displays an example of straw textures with
different orientations and their corresponding FUTS with 7 x 7 surface region. From
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Fig. 2. Fuzzy image and FUTS of texture (a) D77, (b) D90, respectively.



118 Y.-G. Lee et al. |Neurocomputing 20 (1998) 115-122

e =

() D77 (g) D90 (h) D93

Fig. 3. Eight texture images extracted from Brodatz Album.

Fig. 4e-h, we can find that these FUTS are similar from each other and this shows the
ability of FUTS to classify rotated texture images.

3. Texture classification and results

To demonstrate the discrimination performance of the FUTS, we use a supervised
classification with minimum distance rule to classify nature images, extracted from
Brodatz album. Eight 256 x 256 natural images with 256 gray levels are used for the
texture classification (see Fig. 3). Each texture image is divided into 16 nonoverlap-
ping 64 x 64 subimages. The subimages are further divided into two sets — training and
test set. The evaluation is performed using a supervised classification over these test
subimages. In the process of classification, the uniform surface uncertainty values
(range from 0 to 1) in a fuzzy image are uniformly quantized into 256 levels to reduce
the calculation time for the pursuit statistics. The procedure of our experiment is
described as follows:

Step 1: When this supervised texture classification algorithm is applied. We have to
select one subimage as the training set from each texture image.

Step 2: For each texture type k, calculate the FUTS of the corresponding training
samples and denote it as S, where S; = Si(j), k =1-8 and j =0, ...,255.
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Fig. 4. (a)—«(d) are four natural texture images with different orientations, and (e)—(h) are their corresponding
FUTS, respectively.
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Table 1
The result of test set classified by using FUTS method (average accuracy rate is 97.5%). The average surface
intensity, f(i, j), is given over an (7 x 7) region

Classification result

ID. D4 D9 D15 D28 D54 D77 D90 D93

D4 15

D9 15

D15 15

D28 15

D54 15

D77 15

D90 2% 13 1?
D93 15

* Misclassification.

Step 3: Calculate the FUTS for each considered test subimages and denote it as T,
T =T(j).

Step 4. Calculate the distance of FUTS between the considered test subimage and all
the training result S as

255

DT, 8) = ). IT(j) — S(j)l- ()

j=0

Step 5: The test subimage will be assigned to class [ such that D(7, §)) is the minimum
among all the D(T, S})'s.
The experimental result listed in Table 1 shows 97.5% average accuracy rate.

4. Rotated texture classification

In order to show the goodness of the proposed method in capturing the rotation
effects on real texture, we show synthesized realizations of real textures that are
subjected to different rotations and compare them to rotated real textures. Eight
different natural textures (see Fig. 3) chosen from Brodatz album have been tested.
The experiments were performed in two stages. The first stage is the training phase
where for each texture class a 128 x 128 image was taken and assumed as a rotation of
0°. We compute the corresponding FUTS of each training sample. In the second stage
of the experiment, which is the classification stage, each texture class is imaged into
eight 128 x 128 tested images under different rotations which are randomly selected
from 0° to 360°. For each considered tested image, we calculate its corresponding
FUTS and compute the distance of the FUTS between the considered test sample and
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the training result using Eq. (4). Finally, the test sample will be assigned to one class
by using minimum distance classifier. The experimental results 100% accuracy classi-
fication rates when we use 3 x 3, 5x 5,7 x 7, and 9 x 9 surface regions. This shows that
the proposed method is a good tool to classify rotated texture images.

5. Conclusions

A new method using FUTS is proposed for texture analysis in this paper. The
classification method is simple, and the number of mathematical operations applied to
FUTS is small. Promising results have been obtained with accuracy rate 97.5% by
using only one training sample for each texture type. Alternatively, we employ FUTS
to rotated texture classification and the result shows 100% accuracy rate. From these
experimental results, we conclude that FUTS is an excellent discriminating tool in
texture analysis and classification.
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