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Optical-soliton propagation in a dispersion-flattened fiber is investigated, of which third-order dispersion is nil
and fourth-order dispersion exists with linear and quadratic intensity-dependent refractive-index changes.
For four possible sign combinations of the second-order dispersion and the Kerr-effect terms, we found that
there are two types of bright-soliton solutions and two types of dark-soliton solutions. The magnitude of the
fourth-order dispersion parameter is related to the quadratic intensity-dependent nonlinearity coefficient, and
their signs are opposite. The peak power and the period of the soliton are determined by the magnitude of the
fourth-order dispersion parameter. We numerically show that the bright-soliton solution in anomalous
second-order dispersion and the positive Kerr coefficient regime is stable and becomes quasi stable when the
Raman effect is considered. © 1998 Optical Society of America [S0740-3224(98)01308-3]
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1. INTRODUCTION
The optical soliton in an optical fiber owing to the balance
of the anomalous second-order dispersion and self-phase
modulation has been studied both theoretically and ex-
perimentally. It can propagate1–4 undistorted over a
long distance and remains unaffected after collision with
other solitons. It has potential applications in optical fi-
ber communications, pulse compressions, and all-optical
switchings. The behavior of the soliton is commonly de-
scribed by the nonlinear Schrödinger equation as long as
the pulse width exceeds roughly 1 ps. It is necessary to
include the higher-order linear and nonlinear terms, such
as third-order dispersion, fourth-order dispersion, the
self-frequency shift, and the self-steepening terms for
shorter pulses.5–16

The higher-order dispersion effects have been exten-
sively investigated in the negative second-order disper-
sion regime.5–11 It is shown that the third-order disper-
sion can induce radiation at the blue frequency
component and that the amplitude of the radiation is
small and can be obtained by the perturbation method.5,6

If the carrier frequency of the soliton is chosen at the
minimum of the second-order dispersion, where the third-
order dispersion is zero, or the pulse propagation is con-
sidered in a dispersion-flattened fiber of which third-order
dispersion is nil, the fourth-order dispersion will play an
important role. In the regime of negative fourth-order
dispersion the propagation of the solitonlike solution is
radiationless, and this solution has been shown stable up
to a threshold value of the third-order dispersion
parameter7,8; a new type of stationary stable solitonlike
solution with oscillating tails has been found9; the dy-
namics and interactions of bright-solitonlike solutions
with oscillating tails have been investigated.10 In the re-
gime of positive fourth-order dispersion an unstable equi-
librium pulse solution for a bright optical soliton has been
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found, and the width of the soliton is determined by the
magnitude of the fourth-order dispersion parameter.11

On the other hand, the soliton propagation in the non-
linear medium with an intensity-dependent refractive-
index change has also been studied.17–20 It has been
found that a saturable nonlinear medium can support two
localized solitons with the same pulse width but different
peak intensities,17–19 which are called bistable solitons.20

The modulational instability in a doped glass fiber has
been theoretically analyzed by considering the saturable
nonlinearity and the third- and fourth-order disper-
sions.21

In this paper we shall investigate the soliton propaga-
tion in a dispersion-flattened fiber of which third-order
dispersion is nil and fourth-order dispersion exists with a
linear and quadratic intensity-dependent refraction-index
change. The refraction-index change of such fiber has
the form Dn(uAu2) 5 n2uAu2 1 n4uAu4. For four possible
sign combinations of the second-order dispersion and the
Kerr coefficient we can obtain two types of bright-soliton
solutions and two types of dark-soliton solutions. For
some cases, bistable soliton solutions exist, which are the
undistorted pulses with the same duration but different
peak powers. We numerically show that the bright-
soliton solution in anomalous second-order dispersion and
the positive Kerr coefficient regime is stable and becomes
quasi stable when the Raman effect is considered.

2. PROPAGATION EQUATION
The propagation equation for solitons in a dispersion-
flattened fiber of which third-order dispersion is nil (b3
5 0) and fourth-order dispersion exists with an
intensity-dependent nonlinearity is
1998 Optical Society of America
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where A(z, T) is the slowly varying amplitude of the field
strength, z is the distance coordinate in the direction of
propagation, T is measured in a frame of reference mov-
ing with the pulse at the group velocity b1

21 (T 5 t
2 b1z), b2 is the second-order dispersion parameter, b4
is the fourth-order dispersion parameter, c is the velocity
of light in vacuum, v0 is the angular frequency of the car-
rier wave, and Dn(uAu2) is the nonlinear refractive-index
change. In the ordinary case, Dn(uAu2) 5 n2uAu2, we
have the well-known nonlinear Schrödinger equation
with a Kerr-type nonlinearity. In this paper we consider
another type of nonlinear refractive-index change,17,18

Dn~ uAu2! 5 n2uAu2 1 n4uAu4. (2)

Substituting Eq. (2) into Eq. (1) and introducing dimen-
sionless soliton units

j 5
z
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T
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N
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A, b 5
b4

24ub2uT0
2 ,

where LD 5 T0
2/ub2u is dispersion length, T0 5 Tw/

1.763 and TW is the initial pulse full width at half-
maximum, N 5 (v0LDP0un2u/c)1/2 is the soliton order,
and P0 is peak power of the incident pulse, we obtain
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(3)

where Sb2
5 sgn(b2), Sn2

5 sgn(n2), and a 5 n4P0 /un2u.

3. SOLUTIONS AND DISCUSSION
We shall find the soliton solutions of Eq. (3) for four pos-
sible sign combinations of Sb2

and Sn2
.

A. Sb2
< 0 and Sn2

> 0
In this case a soliton is in the anomalous second-order
dispersion (b2 , 0) and the positive nonlinear coefficient
n2 regime, and Eq. (3) can be rewritten as
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The bright optical soliton solution of Eq. (4) can be writ-
ten as

u~j, t! 5 A0r sech~rt!exp~id0r2j/2!. (5)

Substituting Eq. (5) into Eq. (4), we obtain the following
relations for the soliton parameters:

d0 5 1 1 2br2, (6a)

A0 5 ~1 1 20br2!1/2, (6b)

a 5 2
24b

A0
4 . (6c)

To fulfill Eq. (6c), the signs of a and b must be opposite.
When a . 0, we must take b , 0. As a result, we get
from Eqs. (6a) and (6b) that d0 , 1, A0 , 1, and b
. 21/20r2. From Eqs. (6b) and (6c), we obtain

b 5
2~12/a 1 20r2! 1 A~12/a!~12/a 1 40r2!

400r4 .

Therefore, when the values of a and r are given, we have
only one set of b, A0 , and d0 . On the other hand, when
a , 0, we must take b . 0 and obtain d0 . 1 and A0
. 1. When the condition 0 . a . 23/10r2 is satisfied,
we obtain

b 5
2~12/a 1 20r2! 6 A~12/a!~12/a 1 40r2!

400r4 ;

that is, there are two sets of b, A0 , and d0 when the val-
ues of a and r are given. This is the case of a bistable
soliton solution. When the value of a is equal to 23/10r2,
we obtain b 5 1/20r2, A0 5 A2, and d0 5 1.1. For a
, 23/10r2, no solution is found. Figures 1, 2, and 3
show b, and amplitude that is equal to A0r, and d0 , as
functions of a, respectively.

B. Sb2
> 0 and Sn2

< 0
In this case a soliton is in the normal second-order disper-
sion (b2 . 0) and the negative nonlinear coefficient n2
regime, and Eq. (3) can be rewritten as

Fig. 1. b as a function of (a) a , 0 and (b) a . 0 for case A with
r 5 0.8 (thick solid curve), r 5 1 (solid curve), and r 5 1.2
(dashed curve).
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The bright optical soliton solution can be written as

u~j, t! 5 A0r sech~rt!exp~2id0r2j/2!. (8)

Substituting Eq. (8) into Eq. (7), we obtain the following
relations for the soliton parameters:

d0 5 1 2 2br2, (9a)

A0 5 ~1 2 20br2!1/2, (9b)

a 5 2
24b

A0
4 . (9c)

Equations (9c) and (6c) are identical, and the signs of a
and b must be opposite. When a . 0 and b , 0, we gain
d0 . 1 and A0 . 1. When the condition 0 , a
, 3/10r2 is satisfied, from Eqs. (9b) and (9c), we obtain

b 5
2~12/a 2 20r2! 6 A~12/a!~12/a 2 40r2!

400r4 ;

that is, there are two sets of b, A0 , and d0 when the val-
ues of a and r are given. This is also the case of a
bistable soliton solution. When a 5 3/10r2, we obtain
b 5 21/20r2, A0 5 A2, and d0 5 1.1. For a . 3/10r2,

Fig. 2. Amplitude as a function of (a) a , 0 and (b) a . 0 for
case A with r 5 0.8 (thick solid curve), r 5 1 (solid curve), and
r 5 1.2 (dashed curve).
no solution is found. In addition, when a , 0 and b
. 0, we obtain d0 , 1, A0 , 1, and b , 1/20r2. From
Eqs. (9b) and (9c) we obtain

b 5
2~12/a 2 20r2! 2 A~12/a!~12/a 2 40r2!

400r4 .

Thus we have only one set of b, A0 , and d0 when the val-
ues of a and r are given.

C. Sb2
> 0 and Sn2

> 0
In this case a soliton is in the normal second-order disper-
sion (b2 . 0) and the positive nonlinear coefficient n2 re-
gime, and Eq. (3) can be rewritten as
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The dark optical soliton solution can be written as

u~j, t! 5 A0r tanh~rt!exp~id0r2j!. (11)

Substituting Eq. (12) into Eq. (11), we obtain the follow-
ing relations for the soliton parameters:

d0 5 1 1 16br2, (12a)

A0 5 ~1 1 40br2!1/2, (12b)

a 5 2
24b

A0
4 . (12c)

Fig. 3. d0 as a function of (a) a , 0 and (b) a . 0 for case A
with r 5 0.8 (thick solid curve), r 5 1 (solid curve), and r 5 1.2
(dashed curve).
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When a . 0, we must have b , 0. From Eqs. (12a) and
(12b), we obtain d0 , 1, A0 , 1, and b . 21/40r2. Us-
ing Eqs. (12b) and (12c), we obtain

b 5
2~12/a 1 40r2! 1 A~12/a!~12/a 1 80r2!

1600r4 .

Hence, when the values of a and r are given, we have only
one set of b, A0 , and d0 . Additionally, when a , 0 and
b . 0, we obtain d0 . 1 and A0 . 1. When the condi-
tion 0 . a . 23/20r2 is fulfilled, we obtain

b 5
2~12/a 1 40r2! 6 A~12/a!~12/a 1 80r2!

1600r4 ;

that is, there are two sets of b, A0 , and d0 when the val-
ues of a and r are given. Similarly, this is the case of a
bistable soliton solution. When a 5 23/20r2, we obtain
b 5 1/40r2, A0 5 A2, d0 5 1.1. No solution is found for
a , 23/20r2.

D. Sb2
< 0 and Sn2

< 0
In this case a soliton is in the anomalous second-order
dispersion (b2 , 0) and the negative nonlinear coefficient
n2 regime, and Eq. (3) can be rewritten as
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(13)

The dark optical soliton solution can be written as

u~j, t! 5 A0r tanh~rt!exp~2id0r2j!. (14)

Substituting Eq. (14) into Eq. (13), we obtain the follow-
ing relations for the soliton parameters:

d0 5 1 2 16br2, (15a)

A0 5 ~1 2 40br2!1/2, (15b)

a 5 2
24b

A0
4 . (15c)

When a . 0 and b , 0, we have d0 . 1 and A0 . 1.
When the condition 0 , a , 3/20r2 is fulfilled, we obtain

b 5
2~12/a 2 40r2! 6 A~12/a!~12/a 2 80r2!

1600r4 ;

that is, there are two sets of b, A0 , and d0 when the val-
ues of a and r are given. This is also the case of a
bistable soliton solution. When a 5 3/20r2, we obtain
b 5 21/40r2, A0 5 A2, and d0 5 1.1. On the other
hand, a , 0 and b . 0, we obtain d0 , 1, A0 , 1, and

b 5
2~12/a 2 40r2! 2 A~12/a!~12/a 2 80r2!

1600r4 .

Hence, when the values of a and r are given, we have only
one set of b, A0 , and d0 .

4. NUMERICAL RESULTS
The type of nonlinear refractive-index change Dn(uAu2)
5 n2uAu2 1 n4uAu4 may be attributed to various pro-
cesses. To obtain a large effect of the quadratic
intensity-dependent term, we must have a smaller value
of n2 and a larger value of n4 . The optical fiber doped
with two appropriate materials can satisfy such require-
ments. One dopand should have a positive sign n2

(a)

. 0 and a high saturation intensity Isat
(a) , and the other

dopand should have a negative sign n2
(b) , 0 with nearly

the same magnitude, un2
(a) 2 un2

(b)uu,0.1un2
(b)u, and a

low saturation intensity Isat
(b) such that Isat

(b) ! Isat
(a) or vice

versa. The nonlinear refractive-index change can be
written as

Dn~ uAu2! 5 n2
~a !uAu2 2 un2

~b !u
uAu2
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~b !

(16a)

or
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~b !uuAu2,

(16b)

which can be approximately expressed by Dn(uAu2)
5 n2uAu2 1 n4uAu4 with n2 5 n2

(a) 2 un2
(b)u, n4

5 un2
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(b), or n4 5 2n2
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Here we consider case A and take a 5 0.2 and r 5 1.
Then we obtain b 5 20.064, A0 5 0.934, and d0
5 0.987. In a typical fiber the parameters used to nu-
merically solve Eqs. (3) are soliton wavelength l
5 1.55 mm, b2 5 20.5 fs2/mm, b3 5 0 fs3/mm, b4
5 2550 fs4/mm, n2 5 2.3 3 10220 m2/W, and the soliton
pulse width TW 5 150 fs. The effective fiber cross sec-
tion is 50 mm2. The dispersion length LD is 14.5 m. The
initial condition is u(j 5 0, t) 5 Ai sech(t), where Ai is
initial amplitude. Figure 4 shows the pulse shapes of the
modified soliton, Ai 5 0.934, and the conventional soli-
ton, Ai 5 1, at j 5 30LD . For input modified soliton, it

Fig. 4. Pulse shapes of the modified soliton (solid curve),
Ai 5 0.934, and the conventional soliton (thick solid curve),
Ai 5 1, at j 5 30LD . The dashed curve shows the initial con-
ventional soliton.
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is numerically shown that the pulse shape remains the
same initial pulse shape and its change of the phase is
consistent with the analytic result. Therefore the modi-
fied soliton is a stable soliton solution of Eq. (4). For the
input conventional soliton, the pulse shape changes as it
propagates along the fiber. In addition, the Raman effect
can be introduced by modifying of the nonlinear term as
follows:21

uuu2u → uuu2u 2
TR

T0
u

]uuu2

]t
,

Fig. 5. Power evolution of pulse shapes of the modified soliton,
including the Raman effect.

Fig. 6. (a) Peak power and (b) pulse width versus distance for
the conventional soliton (dashed-dotted curve) and the modified
soliton without (dashed curve) and with (solid curve) the Raman
effect.
where the Raman effect contributed by the uuu4u term is
neglected and TR is the slope of the Raman gain profile at
the carrier frequency. Here we take TR 5 3 fs. In Fig.
5 we show the power evolution of pulse shapes, including
the Raman effect. One can see that the pulse shape is
quasi stable and there is a time delay. Figure 6 shows
the peak power and pulse width versus distance for the
conventional soliton and the modified soliton without and
with the Raman effect. For the modified soliton the
pulse width and the peak power do not change when the
Raman effect is not considered. When the Raman effect
is included, the change of the pulse width and peak power
is ;2.2% around 30LD . However, for the case of the con-
ventional soliton, its pulse width and peak power vary
along the fiber.

5. CONCLUSION
In conclusion, we have shown that soliton exists in a
dispersion-flattened fiber of which third-order dispersion
is nil and fourth-order dispersion exists with linear and
quadratic intensity-dependent refractive-index changes.
We have obtained four soliton solution forms by four pos-
sible sign combinations of the second-order dispersion
and the Kerr coefficient. These solution forms include
two types of bright soliton solutions and two types of dark
soliton solutions. The peak power and the period of the
soliton solution are determined by the magnitude of the
fourth-order dispersion parameter, which is related to the
quadratic intensity-dependent nonlinearity coefficient.
It is found that there are bistable solitons in certain
ranges. We have numerically shown that a soliton in the
anomalous second-order dispersion and positive Kerr co-
efficient regime is stable and becomes quasi stable when
the Raman effect is considered.
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