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Optical-soliton propagation in a dispersion-flattened fiber is investigated, of which third-order dispersion is nil
and fourth-order dispersion exists with linear and quadratic intensity-dependent refractive-index changes.
For four possible sign combinations of the second-order dispersion and the Kerr-effect terms, we found that
there are two types of bright-soliton solutions and two types of dark-soliton solutions. The magnitude of the
fourth-order dispersion parameter is related to the quadratic intensity-dependent nonlinearity coefficient, and
their signs are opposite. The peak power and the period of the soliton are determined by the magnitude of the
fourth-order dispersion parameter. We numerically show that the bright-soliton solution in anomalous
second-order dispersion and the positive Kerr coefficient regime is stable and becomes quasi stable when the
Raman effect is considered. © 1998 Optical Society of America [S0740-3224(98)01308-3]
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1. INTRODUCTION

The optical soliton in an optical fiber owing to the balance
of the anomalous second-order dispersion and self-phase
modulation has been studied both theoretically and ex-
perimentally. It can propagate'™ undistorted over a
long distance and remains unaffected after collision with
other solitons. It has potential applications in optical fi-
ber communications, pulse compressions, and all-optical
switchings. The behavior of the soliton is commonly de-
scribed by the nonlinear Schrodinger equation as long as
the pulse width exceeds roughly 1 ps. It is necessary to
include the higher-order linear and nonlinear terms, such
as third-order dispersion, fourth-order dispersion, the
self-frequency shift, and the self-steepening terms for
shorter pulses.?~16

The higher-order dispersion effects have been exten-
sively investigated in the negative second-order disper-
sion regime.>~!! It is shown that the third-order disper-
sion can induce radiation at the blue frequency
component and that the amplitude of the radiation is
small and can be obtained by the perturbation method.>®
If the carrier frequency of the soliton is chosen at the
minimum of the second-order dispersion, where the third-
order dispersion is zero, or the pulse propagation is con-
sidered in a dispersion-flattened fiber of which third-order
dispersion is nil, the fourth-order dispersion will play an
important role. In the regime of negative fourth-order
dispersion the propagation of the solitonlike solution is
radiationless, and this solution has been shown stable up
to a threshold value of the third-order dispersion
parameter”S; a new type of stationary stable solitonlike
solution with oscillating tails has been found® the dy-
namics and interactions of bright-solitonlike solutions
with oscillating tails have been investigated.!® In the re-
gime of positive fourth-order dispersion an unstable equi-
librium pulse solution for a bright optical soliton has been
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found, and the width of the soliton is determined by the
magnitude of the fourth-order dispersion parameter.!!

On the other hand, the soliton propagation in the non-
linear medium with an intensity-dependent refractive-
index change has also been studied.'’?° It has been
found that a saturable nonlinear medium can support two
localized solitons with the same pulse width but different
peak intensities,!” ™! which are called bistable solitons.2°
The modulational instability in a doped glass fiber has
been theoretically analyzed by considering the saturable
nonlinearity and the third- and fourth-order disper-
sions.?!

In this paper we shall investigate the soliton propaga-
tion in a dispersion-flattened fiber of which third-order
dispersion is nil and fourth-order dispersion exists with a
linear and quadratic intensity-dependent refraction-index
change. The refraction-index change of such fiber has
the form An(JA|%) = nyA|? + n4A|*. For four possible
sign combinations of the second-order dispersion and the
Kerr coefficient we can obtain two types of bright-soliton
solutions and two types of dark-soliton solutions. For
some cases, bistable soliton solutions exist, which are the
undistorted pulses with the same duration but different
peak powers. We numerically show that the bright-
soliton solution in anomalous second-order dispersion and
the positive Kerr coefficient regime is stable and becomes
quasi stable when the Raman effect is considered.

2. PROPAGATION EQUATION

The propagation equation for solitons in a dispersion-
flattened fiber of which third-order dispersion is nil (B33
= 0) and fourth-order dispersion exists with an
intensity-dependent nonlinearity is
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where A(z, T) is the slowly varying amplitude of the field
strength, z is the distance coordinate in the direction of
propagation, T is measured in a frame of reference mov-
ing with the pulse at the group velocity B, ! (T =t
— fB12), Bs is the second-order dispersion parameter, 8,
is the fourth-order dispersion parameter, c is the velocity
of light in vacuum, v is the angular frequency of the car-
rier wave, and An(JA|?) is the nonlinear refractive-index
change. In the ordinary case, An(JA|%) = nylA|?, we
have the well-known nonlinear Schrodinger equation
with a Kerr-type nonlinearity. In this paper we consider
another type of nonlinear refractive-index change,!”-8

An(|A[%) = nylAl* + nylAl* @)
Substituting Eq. (2) into Eq. (1) and introducing dimen-

sionless soliton units

g = —, T= —, u=—A, B = —
Ly T, P, 2416,IT,?

where Lp = T,%/|Bs] is dispersion length, T, = T,/
1.763 and Ty is the initial pulse full width at half-
maximum, N = (woLpPo|nsl/c)V? is the soliton order,
and P, is peak power of the incident pulse, we obtain

a ; Pu dtu s
(9—§u = _Esﬁzﬁ + lﬂm + i8S, lulfu + ialultu,

(3)
where Sz, = sgn(By), S,, = sgn(ny), and a = naPo/|ngl.
3. SOLUTIONS AND DISCUSSION

We shall find the soliton solutions of Eq. (3) for four pos-
sible sign combinations of Sy, and S,,,.

A. Sp,<0and S, >0

In this case a soliton is in the anomalous second-order
dispersion (Bs < 0) and the positive nonlinear coefficient
n, regime, and Eq. (3) can be rewritten as

J i Pu tu
Eu =52 + i’BW +ilul?u + iajultu.  (4)
The bright optical soliton solution of Eq. (4) can be writ-
ten as
u(€, 7) = Agr sech(rr)exp(idyr2él2). (5)

Substituting Eq. (5) into Eq. (4), we obtain the following
relations for the soliton parameters:

8 =1+ 28r2, (6a)

Ao = (1 + 208r2)12 (6b)
248

= ——0. (6c)

o ?6— C

To fulfill Eq. (6¢), the signs of @ and B8 must be opposite.
When a > 0, we must take 8 < 0. As a result, we get
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from Eqgs. (6a) and (6b) that 5, <1, Ag <1, and B
> —1/20r2. From Egs. (6b) and (6c), we obtain

—(12/a + 20r2) + J(12/a)(12/a + 40r2)
B= 40074

Therefore, when the values of @ and r are given, we have
only one set of 8, Ay, and §,. On the other hand, when
a < 0, we must take g8 > 0 and obtain 6, > 1 and A,
> 1. When the condition 0 > « > —3/10r? is satisfied,
we obtain

—(12/a + 20r2) = J(12/a)(12/a + 40r2)
A= 40074

’

that is, there are two sets of 8, Ay, and &, when the val-
ues of @ and r are given. This is the case of a bistable
soliton solution. When the value of a is equal to —3/10r2,
we obtain B8 = 1/20r2, A, = V2, and 8 = 1.1. For «
< —3/10r2, no solution is found. Figures 1, 2, and 3
show B, and amplitude that is equal to Ayr, and &, as
functions of «, respectively.

B. Sg,>0and S, <0

In this case a soliton is in the normal second-order disper-
sion (B9 > 0) and the negative nonlinear coefficient n4
regime, and Eq. (3) can be rewritten as
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Fig. 1. Bas afunction of (a) « < 0 and (b) @ > 0 for case A with

r = 0.8 (thick solid curve), r = 1 (solid curve), and r = 1.2
(dashed curve).
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Fig. 2. Amplitude as a function of (a) @ < 0 and (b) « > 0 for
case A with r = 0.8 (thick solid curve), r = 1 (solid curve), and
r = 1.2 (dashed curve).

3 i Pu dtu ) .
——u=—-———1iB—F +ilul®u — ialul*u. (7)
o€ 2 97 A ar lul alul
The bright optical soliton solution can be written as
u(€, ) = Aor sech(rr)exp(—idor2él2). (8)

Substituting Eq. (8) into Eq. (7), we obtain the following
relations for the soliton parameters:

So=1—2pr? (9a)

Ay = (1 — 208r3)2, (9b)
24

= —7. (9c)

a ?6— C

Equations (9¢) and (6¢) are identical, and the signs of «
and B must be opposite. When @ > 0 and 8 < 0, we gain
S >1 and Ay>1. When the condition 0 < «
< 3/10r2 is satisfied, from Egs. (9b) and (9¢), we obtain

—(12/a — 20r%) = \(12/a)(12/a — 40r2)

= 4007 :

that is, there are two sets of 8, A, and &, when the val-
ues of @ and r are given. This is also the case of a
bistable soliton solution. When « = 3/10r2, we obtain
B = —1/20r2, A, = 2, and 8, = 1.1. For « > 3/10r2,
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no solution is found. In addition, when « < 0 and g
> 0, we obtain 6, < 1, A; < 1, and 8 < 1/20r2. From
Egs. (9b) and (9¢) we obtain

—(12/a — 20r%) — \(12/a)(12/a — 40r2)
a 400r* :

Thus we have only one set of 8, A, and §, when the val-
ues of @ and r are given.

C. Sp,>0and S,, >0
In this case a soliton is in the normal second-order disper-
sion (B9 > 0) and the positive nonlinear coefficient n 4 re-
gime, and Eq. (3) can be rewritten as

d i Pu *u ) .
—u=———7 +if— +ilulfu + ialul*u. (10)
9E 2 972 A o7 Jul lul

The dark optical soliton solution can be written as

u(€, 1) = Aor tanh(r7)exp(i 5yr2€). (11

Substituting Eq. (12) into Eq. (11), we obtain the follow-
ing relations for the soliton parameters:

5, =1+ 168r2, (12a)
Ay = (1 + 408r2)12 (12b)

248

= —AO . (12¢)
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Fig. 3. &, as a function of (a) @ < 0 and (b) @ > 0 for case A

with » = 0.8 (thick solid curve), r = 1 (solid curve), and r = 1.2
(dashed curve).
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When a > 0, we must have 8 < 0. From Egs. (12a) and
(12b), we obtain §; < 1, Ay < 1, and B > —1/40r2. Us-
ing Egs. (12b) and (12¢), we obtain

—(12/a + 40r?) + J(12/a)(12/a + 80r2)

= 16007

Hence, when the values of « and r are given, we have only
one set of B, Ay, and §,. Additionally, when @ < 0 and
B > 0, we obtain §; > 1 and Ay > 1. When the condi-
tion 0 > « > —3/20r? is fulfilled, we obtain

—(12/a + 40r%) = \(12/a)(12/a + 80r2)

A= 16007 :

that is, there are two sets of 8, Ay, and &, when the val-
ues of @ and r are given. Similarly, this is the case of a
bistable soliton solution. When a = —3/20r2, we obtain
B = 1/40r%, A, = \/2, 6, = 1.1. No solution is found for
a < —3/20r2.

D. Sg,<0and S, <0
In this case a soliton is in the anomalous second-order
dispersion (85 < 0) and the negative nonlinear coefficient
ny regime, and Eq. (3) can be rewritten as

d i *u tu

+ ilul?u — iajultu.

&' T g PoE
(13)

The dark optical soliton solution can be written as
u(€, 1) = Aor tanh(r7)exp(—idyr2é). (14)

Substituting Eq. (14) into Eq. (13), we obtain the follow-
ing relations for the soliton parameters:

5y =1— 16p8r2, (15a)

Ay = (1 — 408r3)'2, (15b)
248

a=— . (15¢)
A

When a > 0 and B8 <0, we have §; > 1 and A, > 1.
When the condition 0 < a < 3/20r2 is fulfilled, we obtain

—(12/a — 40r%) = (12/a)(12/a — 80r2)

A= 16007 :

that is, there are two sets of 8, A, and &, when the val-
ues of @ and r are given. This is also the case of a
bistable soliton solution. When « = 3/20r2, we obtain
B = —1/40r2, Ag = 2, and &, = 1.1. On the other
hand, « < 0 and B > 0, we obtain 6, < 1, Ay < 1, and

—(12/a — 40r%) — \(12/a)(12/a — 80r2)
B 160074

Hence, when the values of « and r are given, we have only
one set of B, Ay, and &;.

4. NUMERICAL RESULTS

The type of nonlinear refractive-index change An(|A|?)
= nyA|? + nyuA|* may be attributed to various pro-
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cesses. To obtain a large effect of the quadratic
intensity-dependent term, we must have a smaller value
of ny and a larger value of n,. The optical fiber doped
with two appropriate materials can satisfy such require-
ments. One dopand should have a positive sign 7,
> 0 and a high saturation intensity %), and the other
dopand should have a negative sign n,'®) < 0 with nearly

the same magnitude, [n,'? — |n,®)||<0.1|n,'?|, and a
low saturation intensity 1) such that I'%) < I'%) or vice
versa. The nonlinear refractive-index change can be
written as
An(|A]%) @IA]* = [ny )] A (16a)
n =n - |n —_— a
2 201 1A
or
An(|A]?%) = ny@ A7 nyIAJ?
n =ny'¥Y —m———|n
o1+ japae P ’

(16b)
which can be approximately expressed by An(|A|?)
= ngA|? + nyAl*  with  ng = ny®@ — |[ny®|, ny
= |no®|18), or ny = —ny' /1%, We obtain

|n2(b)\Po
T @ )70
|n2 - |n2 ||Isat
or
_nz(a)PO
T L@ @)@
|n2 - |n2 ||Isat

Here we consider case A and take @ = 0.2 and r = 1.
Then we obtain B = —0.064, A, = 0934, and &,
= 0.987. In a typical fiber the parameters used to nu-
merically solve Egs. (3) are soliton wavelength \
= 155 um, By = —05f%mm, B;=0f%mm, B,
= —550 fs*/mm, ny = 2.3 X 1072° m*W, and the soliton
pulse width Tw = 150 fs. The effective fiber cross sec-
tion is 50 um?2. The dispersion length L, is 14.5 m. The
initial condition is u(¢ = 0, 7) = A; sech(7), where A; is
initial amplitude. Figure 4 shows the pulse shapes of the
modified soliton, A; = 0.934, and the conventional soli-
ton, A; = 1, at £ = 30Lp. For input modified soliton, it
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Pulse shape, power (Py)

0.2

0 "
-300 -150 0 150 300

Time (fs)
Fig. 4. Pulse shapes of the modified soliton (solid curve),
A; = 0.934, and the conventional soliton (thick solid curve),

A;=1,at ¢ = 30Lp. The dashed curve shows the initial con-
ventional soliton.
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is numerically shown that the pulse shape remains the
same initial pulse shape and its change of the phase is
consistent with the analytic result. Therefore the modi-
fied soliton is a stable soliton solution of Eq. (4). For the
input conventional soliton, the pulse shape changes as it
propagates along the fiber. In addition, the Raman effect
can be introduced by modifying of the nonlinear term as
follows:?!

Tr  dlul?
2 2. _ R
ulPu = ulPu = 75w =,
§ N
-~ 24 /\
5 /\
- AN
2 12
VAN
0 v T A T T
<1200 -600 0 600 1200

Time (fs)

Fig. 5. Power evolution of pulse shapes of the modified soliton,
including the Raman effect.
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Fig. 6. (a) Peak power and (b) pulse width versus distance for
the conventional soliton (dashed-dotted curve) and the modified

soliton without (dashed curve) and with (solid curve) the Raman
effect.
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where the Raman effect contributed by the |u|*u term is
neglected and T’y is the slope of the Raman gain profile at
the carrier frequency. Here we take T, = 3 fs. In Fig.
5 we show the power evolution of pulse shapes, including
the Raman effect. One can see that the pulse shape is
quasi stable and there is a time delay. Figure 6 shows
the peak power and pulse width versus distance for the
conventional soliton and the modified soliton without and
with the Raman effect. For the modified soliton the
pulse width and the peak power do not change when the
Raman effect is not considered. When the Raman effect
is included, the change of the pulse width and peak power
is ~2.2% around 30Lp. However, for the case of the con-
ventional soliton, its pulse width and peak power vary
along the fiber.

5. CONCLUSION

In conclusion, we have shown that soliton exists in a
dispersion-flattened fiber of which third-order dispersion
is nil and fourth-order dispersion exists with linear and
quadratic intensity-dependent refractive-index changes.
We have obtained four soliton solution forms by four pos-
sible sign combinations of the second-order dispersion
and the Kerr coefficient. These solution forms include
two types of bright soliton solutions and two types of dark
soliton solutions. The peak power and the period of the
soliton solution are determined by the magnitude of the
fourth-order dispersion parameter, which is related to the
quadratic intensity-dependent nonlinearity coefficient.
It is found that there are bistable solitons in certain
ranges. We have numerically shown that a soliton in the
anomalous second-order dispersion and positive Kerr co-
efficient regime is stable and becomes quasi stable when
the Raman effect is considered.
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