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Characterization of Delay-Sensitive Traffic
Tsern-Huei Lee,Member, IEEE, and Kuen-Chu Lai

Abstract—Resource allocation is necessary for a network which
guarantees quality of service (QoS). In this paper we first present
a definition for a traffic stream to be burstier than another
traffic stream. The definition is based on the loss probability
of a bufferless multiplexer and thus is appropriate for delay-
sensitive traffic which cannot tolerate queueing delay caused by
buffering. An optimum quantization algorithm is then derived for
source characterization. The optimally quantized version achieves
minimum loss rate for all possible allocated bandwidths under the
condition that it is burstier than the real traffic. The quantized
source is called a pseudosource and can be used by the network
for resource allocation. Some numerical examples are studied.
Results show that, for a bufferless multiplexer, the allocated
bandwidth based on optimally quantized pseudosources is only
slightly greater than the minimum bandwidth required to meet
the requested QoS.

Index Terms— Bufferless multiplexer, burstiness, delay-
sensitive traffic, optimum quantization, variability ordering.

I. INTRODUCTION

RESOURCE allocation is necessary for a network [such
as the broad-band Integrated Services Digital Network

(ISDN)] which guarantees quality of service (QoS). Of course,
the network would like to avoid overallocating resources to
increase system utilization. To achieve this, traffic sources
must be characterized as accurately as possible.

Burstiness is considered an important aspect of traffic char-
acteristics. One possible definition of“traffic stream
is burstier than traffic stream ” is that the steady-state
queue length of a stable deterministic single-server queue
with arrival process is stochastically larger than the
steady-state queue length of the same queue but with arrival
process [2]. In other words, is burstier than
if for , where and are
the queue-length distributions of the single-server queue when
arrival process is or , respectively. More definitions
of burstiness can be found in [3].

In this paper we provide an alternative definition, based on
the loss probability of a bufferless multiplexer. The definition
is aimed at characterizing delay-sensitive traffic streams which
do not allow delay caused by buffering. This definition is
utilized to characterize (or quantize) traffic streams for net-
works which provide only finitely many bit rates for users to
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Fig. 1. A bufferless multiplexer with link capacityC.

describe their traffic. To guarantee QoS, the quantized version
has to be burstier than the real traffic. We present an optimum
quantization algorithm which yields a quantized version that is
burstier than the real source and achieves minimum loss rate
for all possible allocated bandwidths. The quantized version,
called a pseudosource, is used to represent the real source and
is considered by the network for bandwidth allocation.

In [6] the throughput loss due to bandwidth quantization
was evaluated assuming that peak rate is the only parameter
for traffic description. The results are applicable to multirate
circuit switching networks. For packet switching networks,
system utilization can be significantly reduced without taking
into account statistical multiplexing. The main focus of [6] is
to choose the quantization rates to minimize throughput loss.
Here, we assume that the rates provided by a network are fixed
(which is often the case) and derive an optimum source traffic
quantization.

The rest of this paper is organized as follows. In Section II
we describe the investigated multiplexer system. In Section
III we give a definition of a traffic stream to be burstier
than another traffic stream and prove some properties. In
Section IV an optimum quantization algorithm is presented.
Numerical examples are studied in Section V. Results show
that, for a bufferless multiplexer, the bandwidth allocated
based on pseudosources is only slightly greater than the
minimum bandwidth required to guarantee the requested QoS.
A conclusion is finally drawn in Section VI.

II. THE INVESTIGATED SYSTEM

Fig. 1 shows a multiplexer with link capacity . The
traffic which arrives at the multiplexer is denoted by .
Notice that represents the aggregate traffic generated by
existing sources. In this paper all traffic sources are assumed to
be nonnegative, bounded, stationary, and ergodic. Moreover,
we assume that all sources generate delay-sensitive traffic
independently and that the buffer size in the multiplexer is
small so that its effect can be neglected.

Let denote a random variable whose distribution is
identical to that of for all . For the bufferless multiplexer,
the loss rate in is given by
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where . Since all sources are assumed to
be ergodic, the average loss rate, denoted by , can be
computed as follows:

Furthermore, the loss probability is given by
.

III. B URSTINESS OFTRAFFIC SOURCES

Let and be two traffic streams that are inde-
pendent of . With the assumptions of stationarity and
ergodicity, to study the loss probability of the bufferless mul-
tiplexer, it suffices to use two nonnegative bounded random
variables and to represent and , respectively.

We define “ is burstier than ” as follows.
Definition 1: We say traffic stream is burstier than

traffic stream , denoted by , if and only if (iff)
adding into the bufferless multiplexer with any existing
traffic (which is independent of and ) results in a greater
loss probability than adding .

Mathematically, iff

(1)

for any nonnegative bounded random variablewhich is
independent of and .

We assume for the rest of this paper that all given random
variables are independent. We now state and prove some
properties regarding loss rate and the above definition.

Property 1: If , then
.

Proof: According to Definition 1, we get
for any traffic if . Therefore, we have

This completes the proof of Property 1.
Property 2: If , then and

for all .
Proof: Since , letting

, one gets
for all .

Similarly, letting , one has
, which implies .

Combining the above results, we get
for all . This completes the proof of Property
2.

For convenience, we shall use to denote
for all . Notice that, for and
, the relation is identical to the variabilty (or

convex) ordering, and means that is more variable
than [7].

Property 3: If and , then
.

Proof: This property is proven if one can show that
implies for all

traffic . Since implies
for all , we have

Therefore, and implies .
Property 4: There does not exist a total ordering defi-

nition of burstiness such that is burstier than implies
.

Proof: Since implies , this property is
proven if one can show is not a total ordering. This
can be done with a counterexample. Letand be two-state
sources with probability mass functions

if

if

if

if

respectively. As a result, we have
; however,

. In other words, neither nor
holds. This completes the proof of Property 4.

Property 4 says that any definition of burstiness in terms of
a real number, say, the ratio of peak rate to average rate [3],
may not be appropriate.

Property 5: Suppose , and . If
there exists a , such that ,
then for any increasing strictly convex
function on for which exists and is continuous.

Proof: Let denote the distribution function of
and . It can be shown (see, for example, [7,
proof of Proposition 8.5.1]) that

Similar identity can be obtained for random variable.
Therefore, we have

The fact that is
an increasing strictly convex function implies and

for all . Besides, implies .
As a result, we get

Since for some ,
we conclude that because both

and are continuous. This completes the proof
of Property 5.
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Property 5 implies the commonly used moment-matching
technique [5] in approximating a traffic source may not be ap-
propriate for delay-sensitive traffic. The reason is that

is a twice-differentiable increasing strictly convex
function for and . Since the average rate
is not changed for the moment-matching technique, the loss
probability of the approximating source is not guaranteed to
be an upper bound of that of the approximated source. For
example, suppose we want to approximate a four-state source

with an on–off source . Let and
denote, respectively, the stationary

probability vector and the bit-rate vector of . Also, let
and be those of . Assume

and Mb/s. The conditions
result in and

Mb/s. If Mb/s , then we have
Mb/s Mb/s.

IV. QUANTIZATION OF TRAFFIC SOURCES

A network in the real world is likely to provide only finitely
many bit rates for users to describe their traffic characteristics.
In this case, one has to quantize traffic sources. In this section
we present an optimal quantization algorithm. The quantization
is optimum in the sense of achieving minimum loss rate for
all possible allocated bandwidths, under the condition that the
quantized version is burstier than the real source.

Assume there are quantized bit rates denoted by
, and such that if and

. The quantized source has states. A quantization
is an assignment of the stationary probability vector

to the quantized source. Therefore, for
convenience, we call a probability vectora quantization. Of
course, some entries of can be zero. It should be noted that
quantization does not alter characteristics of the real traffic.
The quantized source is a pseudosource considered by the
network only for resource allocation.

Let denote the traffic generated by the source. We assume
that is nonnegative and . Also,
let represent a quantized pseudosource,
where denotes the quantization and denotes the traffic
generated by the pseudosource. Since the pseudosource is used
for resource allocation, it is required to be burstier than the real
source. Therefore, we define a quantizationto be legal iff
it satisfies

i.e., iff is burstier than . An optimum quantization
could be defined as a legal quantization which satisfies

for any legal quantization .
However, because of the presence of a nonnegative random
variable in (1), it is rather difficult to determine whether
or not an optimum quantization exists under this sense and,
if it does exist, how to determine it. Therefore, we modify
the criterion and say that a legal quantization is optimum if
it achieves for all , where denotes
the set of legal quantizations. The definition is given for all
because the allocated bandwidth may vary in a real network.

For example, the bandwidth allocated to a virtual path in an
asynchronous transfer mode (ATM) network is likely to be
time varying, depending on its carried traffic. It turns out that
the optimum quantization satisfies .
Therefore, according to Property 3, the optimally quantized
version is burstizer than the original source (i.e.,

). Besides, if exists, then (see Theorem 2).
In the following we determine the optimum quantization

of . Since for for any
quantization , to determine the optimum quantization, it
suffices to consider the region .

Lemma 1: Let , then is a decreas-
ing convex function on . Moreover, is linear
on .

Proof: The proof of Lemma 1 is simple and thus
omitted.

The following theorem shows the existence of a unique
optimum quantization and how to determine it.

Theorem 1: Let be determined
by

and . Then is the optimum quantization and
.

Proof: We shall first prove is a quantization (i.e.,
a probability vector) by showing for all

. Let . It is clear that
is a piecewise linear function and is linear

on and for all . Moreover,
the equations used to determine imply
for all . In other words, passes through
the point . For , we have

(2)

which implies that the modulus of the slope of is
. Consider the interval for some

. In this region we have

(3)

On the other hand, for is lin-
ear and passes through the two points and

. Thus, it can be expressed as

(4)

Comparing (3) and (4), we get
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Fig. 2. Mean loss rate versus link capacity.

because, according to Lemma 1, is a decreasing function.
The special case when gives . Similarly,
the modulus of the slope of the line segment of for

is . Since is convex, it

holds that for
all . As a result, we get for all

. Therefore, the determined by

for

is indeed a quantization. By substitution, we have
. Since the line segment

of coincides with [see (2)] for and
lies above for , we
conclude that is a legal quantization.

We now prove that is the unique optimum quantization.
For any legal quantization, we must have
and . Consequently, for

, the line segment of is below the
line segment of if or

, or both. Therefore, is the unique optimum
quantization. This completes the proof of Theorem 1.

Theorem 1 gives the optimum quantization of any bounded
traffic source to an -state source. Notice that the mean
of the real source is equal to the mean of the optimally
quantized version. Fig. 2 shows an example of for

.
Theorem 2: If there exists a legal quantization which

satisfies for any legal quantization , then
.

Proof: Assume that such a exists. According to The-
orem 1, is the unique legal quantization which satisfies

for any legal quantization . Since is
a legal quantization, we have . On the
other hand, implies ,
according to Property 2. Combining the above results, we
get for all .
Consequently, for any legal quantization .
Since is unique, we conclude that . This completes
the proof of Theorem 2.

In the following theorem we consider optimum quantization
of -state sources.

Theorem 3: Consider a -state source described by
. Let be the largest quantization level that

is smaller than or equal to and let be the smallest
quantization level that is larger than or equal to . Let

. The optimum
quantization of the -state source is given by

if

if

Proof: The first equation (i.e., for
) is a direct result of Theorem 1. For example, the

expression for can be derived from
. Therefore, we need only prove the second

equation, i.e., if .
Assuming the set is not empty, we have

for some . From
Theorem 1 (with , , and ), we get

(5)

(6)

(7)

Combining (5) and (6), one has

, which implies

(8)

Similarly, from (6) and (7), one has

(9)

Finally, comparing (8) and (9), we have . This
completes the proof of Theorem 3.

A consequence of Theorem 3 is that the optimally quantized
version of a -state source can have as many as states.
Since the processing complexity in resource allocation may
depend on (or even be proportional to) the number of states
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of the quantized version, one might wish to reduce it with
only a little sacrifice in utilization. The following theorem
states a suboptimum quantization algorithm that results in a
pseudosource which has at most states. The suboptimum
quantization algorithm is optimum if the quantization levels
are restricted to , , , and .

Theorem 4: For a -state source described by
, if the allowed quantization levels are restricted

to , , , and , then the optimum quantization
is determined by

for

If for , then the result is

for

The proof of Theorem 4 is similar to that of Theorem 1 and,
thus, is omitted.

The following two theorems prove that sum of optimum
quantizations remains optimum for the aggregate traffic if each
source is quantized individually. Moreover, the loss probability
evaluated based on pseudosources is an upper bound of that
evaluated based on real sources. Considertraffic sources

and . Let be a legal quantization of and
let be the optimum quantization. In the theorems
denotes the traffic generated by the pseudosource obtained
from quantization . Proofs of Theorems 5 and 6 are omitted
because they are direct applications of variability ordering (see,
for example, [9, Th. 2.2.3]).

Theorem 5: It holds that
for all .

Theorem 6: It holds that
for all and

.

V. NUMERICAL EXAMPLES

In the examples studied in this section we assume
Mb/s. The quantization levels are determined by a unit rate

TABLE I
BANDWIDTH ALLOCATED WHEN THE NUMBER OF TYPE I

SOURCES IS100 (UNIT OF BW � AND BW IS Mb/s)

TABLE II
BANDWIDTH ALLOCATED WHEN THE NUMBER OF TYPE I SOURCES IS500

TABLE III
BANDWIDTH ALLOCATED WHEN THE NUMBER OF TYPE I SOURCES IS1000

TABLE IV
BANDWIDTH ALLOCATED WHEN THE NUMBER OF TYPE I SOURCES IS2000

. For example, if kb/s, then kb/s,
. Also, bandwidth is allocated in multiples

of . Three different values of , i.e., 64, 100, and 200
kb/s, are used in our examples. Two types of traffic sources
are considered. Type I and Type II sources are represented
by and , respectively, where

kb/s, Mb/s,
and . The bufferless multiplexer system
is considered and the desired cell loss probability (QoS) is
restricted to be at most 10. The suboptimum quantization
scheme stated in Theorem 4 is adopted in these examples.

In Tables I–IV we list the allocated bandwidth for various
combinations of Type I and Type II sources. In these tables the
values in the second column (i.e.,BW ) represent the minimum
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bandwidths required to meet the desired QoS, assuming the
bandwidth is not quantized. For the quantized system, the
minimum bandwidth required is denoted by . It can
be verified that the percentage of loss, which is defined as

, is small for all of the investigated cases.
In other words, it is possible to choose a biggerto simplify
the bandwidth allocation process with only a little sacrifice in
utilization.

VI. CONCLUSION

We have presented in this paper one method for characteriz-
ing (or quantizing) delay-sensitive traffic streams. Quantization
does not alter characteristics of the real traffic, it only yields a
pseudosource used by the network for resource allocation. Our
proposed optimum quantization makes the network to reserve
resource conservatively. However, our numerical examples
show that, for a bufferless multiplexer, the bandwidth reserved
based on pseudosources is only slightly greater than the
minimum bandwidth required to meet the requested QoS.
Taking into account buffering effect for a buffered system is
an interesting research topic which can be further studied.

REFERENCES

[1] J. Y. Hui, “Resource allocation for broadband networks,”IEEE J. Select.
Areas Commun., vol. SAC-6, pp. 1598–1608, Dec. 1988.

[2] V. Anantharam and T. Konstantopoulos, “Burst reduction properties
of leaky bucket flow control scheme in ATM networks,”IEEE Trans.
Commun., vol. 42, pp. 3085–3089, 1994.
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