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Characterization of Delay-Sensitive Traffic

Tsern-Huei LeeMember, IEEE and Kuen-Chu Lai

Abstract—Resource allocation is necessary for a network which
guarantees quality of service (Qo0S). In this paper we first present
a definition for a traffic stream to be burstier than another S(t
traffic stream. The definition is based on the loss probability
of a bufferless multiplexer and thus is appropriate for delay-
sensitive traffic which cannot tolerate queueing delay caused by
buffering. An optimum quantization algorithm is then derived for ~ Fig. 1. A bufferless multiplexer with link capacit§'.
source characterization. The optimally quantized version achieves
minimum loss rate for all possible allocated bandwidths under the describe their traffic. To guarantee QoS, the quantized version

conditio_n that it is burstier than the real traffic. The quantized has to be burstier than the real traffic. We present an optimum
source is called a pseudosource and can be used by the networky antization algorithm which yields a quantized version that is

for resource allocation. Some numerical examples are studied. . . -
Results show that, for a bufferless multiplexer, the allocated burstier than the real source and achieves minimum loss rate

bandwidth based on optimally quantized pseudosources is only for all possible allocated bandwidths. The quantized version,
slightly greater than the minimum bandwidth required to meet called a pseudosource, is used to represent the real source and

the requested QoS. is considered by the network for bandwidth allocation.
Index Terms— Bufferless multiplexer, burstiness, delay-  In [6] the throughput loss due to bandwidth quantization
sensitive traffic, optimum quantization, variability ordering. was evaluated assuming that peak rate is the only parameter

for traffic description. The results are applicable to multirate
circuit switching networks. For packet switching networks,
system utilization can be significantly reduced without taking
ESOURCE allocation is necessary for a network [sudhto account statistical multiplexing. The main focus of [6] is
as the broad-band Integrated Services Digital Netwotl choose the quantization rates to minimize throughput loss.
(ISDN)] which guarantees quality of service (QoS). Of courseiere, we assume that the rates provided by a network are fixed

the network would like to avoid overallocating resources t@vhich is often the case) and derive an optimum source traffic
increase system utilization. To achieve this, traffic sourcgsantization.

I. INTRODUCTION

must be_ chargcterized as accqrate|y as possible. _ The rest of this paper is organized as follows. In Section |
Bu_rst_mess IS con3|d_ered an_lr_n_portant a_spect of traffic chafe describe the investigated multiplexer system. In Section
acteristics. One possible definition ¢fraffic stream X () 11 we give a definition of a traffic stream to be burstier

is burstier than traffic streanY (¢)” is that the steady-statethan another traffic stream and prove some properties. In
queue length of a stable deterministic single-server quegection IV an optimum quantization algorithm is presented.
with arrival processX(t) is stochastically larger than theNumerical examples are studied in Section V. Results show
steady-state queue length of the same queue but with arrig@dt, for a bufferless multiplexer, the bandwidth allocated
processY (¢) [2]. In other words, X (¢) is burstier thanY'(t) based on pseudosources is only slightly greater than the
if Fx(z) < Fy(x) for » > 0, where Fx(x) and Fy(z) are  minimum bandwidth required to guarantee the requested QoS.
the queue-length distributions of the single-server queue wharnconclusion is finally drawn in Section VI.
arrival process isX (¢) or Y (¢), respectively. More definitions
of burstiness can be found in [3]. II. THE INVESTIGATED SYSTEM

In this paper we provide an alternative definition, based on

o . - .. Fig. 1 shows a multiplexer with link capacitg’. The
the loss probability of a bufferless multiplexer. The deﬂmtlo%ﬁfﬁc which arrives at the multiplexer is denoted 5¢).

is aimed at characterizing delay-sensitive traffic streams which .. .

do not allow delay caused by buffering. This definition i O.t'c.e that5(t) repregents the aggre_gate traffic generated by

utilized to characterize (or quantize) traffic streams for n ?_X|st|ng Sources. In this paper a]l traffic sources are assumed to

works which provide only finitely many bit rates for users t e nonnegative, bounded, stationary, and ergodic. .I\./Ioreove'r,
we assume that all sources generate delay-sensitive traffic
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where (z)* = max{0,z}. Since all sources are assumed to  Proof: This property is proven if one can show that
be ergodic, the average loss rate, denoted pyC), can be X >r Y implies E[S + X — C]* > E[S+Y — C]* for all

computed as follows: traffic S. SinceX >x Y implies (X — )t > E(Y — ¢)*
Ls(C) = Thln Loss(T) = E(S — O)*. for all ¢, ¢ < C, we have
Furthermore, the loss probability is given byE(S — E(S+X - O)" = B{E[(S+ X - )" | 5]}
CYH)/(E(S))- > E{E[(S+Y - O)T | 5]}
=E(S+Y-C)*.

Ill. BURSTINESS OFTRAFFIC SOURCES . .
} ] ] Therefore,E(X) = E(Y) and X >r Y implies X >5 Y. O
Let X(#) and Y'(¢) be two traffic streams that are inde-  property 4: There does not exist a total ordering defi-

pendent of5(¢). With the assumptions of stationarity andyition of burstiness such that is burstier thany” implies
ergodicity, to study the loss probability of the bufferless muly >5 Y.

tiplexer, it suffices to use two nonnegative bounded random ~pyqof: SinceX >5 Y impliesX > Y, this property is
variablesX andY to represenfX(¢) andY (¢), respectively. proven if one can showX >z Y is not a total ordering. This

We define X is burstier thant™ as follows. can be done with a counterexample. B&andY” be two-state
Definition 1: We say traffic streamX is burstier than ¢qrces with probability mass functions

traffic streamY’, denoted byX >y Y, if and only if (iff) _ o
adding X into the bufferless multiplexer with any existing Pe(d) {0-0, ifi=0
x (1) =

traffic .S (which is independent ak andY’) results in a greater 0.5 if = §C
loss probability than adding’. ’ 4
Mathematically,X >g Y iff 4 1
E(S+X—-C) _ E(S+Y —O)* )y M=
z 1) Py (i) = -
E(S+ X) E(5+Y) 1 it = 20
for any nonnegative bounded random variaslewhich is 0 4
independent ofX andY. respectively. As a result, we hawg(X — iC)Jr = %C >

We assume for the rest of this paper that all given randof(Y — C)* = £C; however, E(X — C)* = 0 < E(Y -
variables are independent. We now state and prove sofig” = 5;C. In other words, neitheX >z Y norY >z X

properties regarding loss rate and the above definition.  holds. This completes the proof of Property 4. O
Property 1: If X, > Y, ¢ = 1,2,---,N, then Property 4 says that any definition of burstiness in terms of
SNX > YN Y a real number, say, the ratio of peak rate to average rate [3],
Proof: According to Definition 1, we gef + W > may not be appropriate.
Y + W for any trafficW if X >g Y. Therefore, we have Property 5: SupposeX >p Y, X < C,andY < C. If
~ N there exists &y, 0 < Cy < C, such thatl x (Cop) > Ly (Cp),
then E(f(X)) > E(f(Y)) for any increasing strictly convex
L > .
X+ ;XZ zp Vi ; Xi function f on [0, oc) for which f”(x) exists and is continuous.

Proof: Let F(x) denote the distribution function ok

N N _
SpYi4+Yo+> Xy >p---> Y, andF'(z) =1 — F(x). It can be shown (see, for example, [7,
=P ? ; =R ; proof of Proposition 8.5.1]) that
This completes the proof of Property 1. O EIf(X :/Oo anys de+ £(0) - £(0) L+ (0
Property 2: If X >5 Y, then E(X) > E(Y) and 0] 0 QL (e)de+ J0) + 7(0)Lx (0)

Lx(c) > Ly(c) forall ¢, 0 < e < C. c . ,
Proof: Since X >p Y, letting § = C — :/0 S () Lx(c)de+ f(0) + f(0)Lx (0).
¢, one gets ((E(X-—-oN)/(E(X)+C—c) > o ] _ _
(BE(Y —co)H))/(E(Y)+C —¢)) for all ¢, 0 < ¢ < C. Similar identity can be obtained for random variakie
Similarly, letting S = C, one has((E(X))/(E(X +C))) > Therefore, we havet[f(X)] — E[f(Y)] = f(O)[Lx(0) —
(E(Y))/(E(Y +C))), which implies E(X) > E). Lv(0l+ [y f"(c)[Lx(c) — Ly(c)] de. The fact thatf(x) is
Combining the above results, we gtX —c)* > E(Y —c)* an increasing strictly convex function implig®(x) > 0 and
for all ¢, 0 < ¢ < C. This completes the proof of Property/”(z) > 0 for all z. Besides,X >p Y implies X > Y.
2. 0 As a result, we get
For convenience, we shall usé > Y to denotel x(c) > c
Ly(c) for all ¢, 0 < ¢ < C. Notice that, forX < C and E[f(X)] - E[f(Y)] 2/ "(e)[Lx(c) — Ly(c)] de.
Y < C, the relation>p is identical to the variabilty (or 0
convex) ordering, an& >pr Y means thal is more variable Since Lx(Cy) > Ly (Cyh) for someCy, 0 < Cy < C,
thanY [7]. we conclude thatE[f(X)] — E[f(Y)] > 0 because both
Property 3: If E(X) = E(Y) and X >g Y, then Lx(c) and Ly(c) are continuous. This completes the proof
X >2pY. of Property 5. O
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Property 5 implies the commonly used moment-matchirgpr example, the bandwidth allocated to a virtual path in an
technique [5] in approximating a traffic source may not be apsynchronous transfer mode (ATM) network is likely to be
propriate for delay-sensitive traffic. The reason is thigt) = time varying, depending on its carried traffic. It turns out that
2™ n > 2 is a twice-differentiable increasing strictly convexhe optimum quantizatiorp* satisfiesE(Z(p*)) = E(Y).
function for z > 0 and f(0) = 0. Since the average rateTherefore, according to Property 3, the optimally quantized
is not changed for the moment-matching technique, the logarsion is burstizer than the original source (i8(p*) >5
probability of the approximating source is not guaranteed 16). Besides, ifp exists, thenp = p* (see Theorem 2).
be an upper bound of that of the approximated source. Forn the following we determine the optimum quantization
example, suppose we want to approximate a four-state souofeY. Since E(Z(p) — ¢)t = 0 for ¢ > My for any
Y with an on—off sourceX. Let q = [¢1 ¢ ¢3 ¢u] and quantizationp, to determine the optimum quantization, it
m = [m; mz mg my] denote, respectively, the stationansuffices to consider the regiane (—oo, My].
probability vector and the bit-rate vector af. Also, let Lemma 1: Lety(c) = E[Y —c|*, theny(c) is a decreas-

p = [p1 p2] andM = [0 M] be those ofX. Assumeq = ing convex function orn(—oc, My]. Moreover,y(c) is linear

[0.4 0.3 0.2 0.1 andm = [1 2 3 4] Mb/s. The conditions on (—o0,0].

E(X™ = E(Y™),1 <n < 2resultinp =[0.2 0.8] and Proof: The proof of Lemma 1 is simple and thus

M = [0 2.5] Mb/s. If ¢ = 2.2 Mb/s < C, then we have omitted. O

Lx(2.2) =0.24 Mb/s < Ly(2.2) = 0.34 Mb/s. The following theorem shows the existence of a unique
optimum quantization and how to determine it.

IV. QUANTIZATION OF TRAFFIC SOURCES Theorem 1:Letp™ = [p; pf p; -~ py]be determined

b

A network in the real world is likely to provide only finitely
many bit rates for users to describe their traffic characteristics. " . + + )
In this case, one has to quantize traffic sources. In this section 2_ Px(Mx — Mi)™ = E[Y — M;]", 0<i< N -1
we present an optimal quantization algorithm. The quantization ¥=0
is optimum in the sense of achieving minimum loss rate fQf, s~V _« _ | Thenp* is the optimum quantization and
all possible allocated bandwidths, under the condition that t%e[Z(Zpij]oi E[Y.] p p q
quantized version is burstier than the real source. '

Assume there areéV + 1 quantized bit ra.tes denoted bya probability vector) by showing: > 0 for all 4, 0 <
%07&45’.{% aﬂgnﬁgdssgfrggi%ilztﬁs Il;\'t uén{izzrt]igni S N Letyle) = E[Y — d". It is clear thatfp. (c) =
is Oa; a.ssi n?nent of the stationar robal.)ilitq vector= ZQ:Opi(M’“_C)+ 's a piecewise linear function and is linear

9 ary p y veco on(—o0,0] and[M;, M; ;] forall ¢,0 < ¢ < N—1. Moreover,

[po p1 p2 --- pn] to the quantized source. Therefore, fo[he equations used to determipé imply f,. (M) = y(M,)
convenience, we call a probability vectpra quantization. Of [or alli 0<i<AN.Inother words fp*(g pa;ses thro:Jgh

course, some entries @f can be zero. It should be noted tha . .
. L he point(M;, y(M;)), 0 <i < N. For —0, 0], we have
guantization does not alter characteristics of the real traffic. point(M;, y(M;)), 0 < i < ¢ € (=00,0]

Proof: We shall first provep* is a quantization (i.e.,

The quantized source is a pseudosource considered by the N N
network only for resource allocation. for() =D piMi —c Y pi
Let Y denote the traffic generated by the source. We assume k=0 k=0
that Y is nonnegative and®rob(Y > My) = 0. Also, = fp+ (Mo) — c=y(Mo) — ¢ = y(c) )

let {p,M, Z(p),N + 1} represent a quantized pseudosource,

wherep denotes the quantization adtip) denotes the traffic Wh'f:h implies that. the mo.dulus of the slope gf.(c) is
generated by the pseudosource. Since the pseudosource is dseeh P+ = 1. Consider the intervat € [M;, M| for some

for resource allocation, it is required to be burstier than the réaf> 0- In this region we have

source. Therefore, we define a quantizatprio be legal iff N N N
it satisfies forl= > My —c)=—c > pi+ > piMy.
k=i+1 k=i+1 k=i+1
Z(p)>pY 3

i.e., iff Z(p) is burstier thanY". An optimum quantization o, the other hand,fp-(c) for ¢ € [M;, M1, is lin-
could be defined as a legal quantizatiph which satisfies gar and passes through the two poirftsl;, y(M;)) and

Z(p) zp Z(p") 2p Y for any legal quantizationp. (a7, w(M; 1)) Thus, it can be expressed as
However, because of the presence of a nonnegative random

variable S in (1), it is rather difficult to determine whether 2V y(M;) — y(Mit1) ‘

or not an optimum quantization exists under this sense and,fp*(c) = (Mia =) M1 — M; T (M) (4)
if it does exist, how to determine it. Therefore, we modi
the criterion and say that a legal quantization is optimum |
it achievesming,eq F(Z(p) — ¢)* for all ¢, wheref2 denotes
the set of legal quantizations. The definition is given forcall
because the allocated bandwidth may vary in a real network.

omparing (3) and (4), we get

N
M) — y(M;
Z pzzy( ) y( +1) >0
- M1 — M;
k=i1+1
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In the following theorem we consider optimum quantization
; : : of J-state sources.
N | L | Theorem 3: Consider a./-state source described by
S EZpyel {q,m,Y,J}. Let m; be the largest quantization level that

| | | is smaller than or equal ten; and letm; be the smallest

quantization level that is larger than or equal /o. Let
Q = {m07m07m17m17"'7 mJ—lvafl}' The Optimum
quantizationp* of the J-state source is given by

mean loss rate

: J—1
. ? 1
.. C * ) o +
M3 L Vg v li_: @ = M)
N
Fig. 2. Mean loss rate versus link capacity. - Z pi (Mk - Mn—l)] )
k=n-+1
because, according to Lemmayl¢) is a decreasing function. ifne{j>0:M; @}
The special case when= N — 1 givesp}, > 0. Similarly, pr =0, ifne{j>0:M; Q}
the modulus of the slope of the line segment fgf (c) for
¢ € [Miy1, Miys] is Yo ZJr2pk Since y(c) is convex, it po=1- ZPZ-
holds thatl = >V  pf > Zk-z-i—lpk 2 Zk-z+2pk for -
all i, 0 <4 < N —2. As aresult, we gep; > 0 for all ¢, Proof: The first equation (i.e.p* for n € {j > 0 :
0 <@ < N. Therefore, thep™ determined by M; € Q}) is a direct result of Theorem 1. For example, the

‘ expression fop?, can be derived fronE[Z(p*) — M,, 1]T =
ZpZ(Mk—Mi)"' = E[Y - M;]T, for0<i<N-—-1 E[Y — M, 1]*. Therefore, we need only prove the second
equation, i.e.,py = 0if n € {j > 0 : M; ¢ Q}.
Assuming the se{;j > 0: M, ¢ @} is not empty, we have
Zp;“' =1 mj1 < Mp_y < M, < Myy; < m; for some ;. From
Theorem 1 (withi = n — 1, n, andn + 1), we get
is indeed a quantization. By substitution, we h&fg/(p*)] =
Jp-(0) = fp- (Mo) = y(My) = E[Y]. Since the line segment Z ai(my — Mp_1) = pr(My, — Mp_1)
of fu-(c) coincides withy(c) [see (2)] forc € (—o0,0] and ;

lies abovey(c) for ¢ € [M;,M;11], 0 < ¢ < N —1, we N
conclude thatp* is a legal quantization. + Z pi(My — M,_1) (5)
We now prove thap* is the unique optimum quantization. —

For any legal quantizatiop, we must havef, (M;) > y(M;) J—1 N

and f,(Mi11) > y(M;41). Consequently, foe € [M;, Mi1], Z q(my — M) = Z (M, — M,,) (6)
0 < i < N —1, the line segment off,-(c) is below the k=j k=n+1

line segment off,(¢) if fp(M;) > y(M;) or fp(Miy1) > J—1 N

y(M;41), or both. Thereforep* is the unique optimum qu(mk—Mn_H) = Z DMy, — Mpgq). @)
gquantization. This completes the proof of Theorem 1. O k= k=n+1

Theorem 1 gives the optimum quantization of any bounded J1
traffic source to ari/V + 1)-state source. Notice that the meaf®ombining (5) and (6), one has’;—; qi(M, — M, 1) =
of the real source is equal to the mean of the optimally,(M,, — M, _ 1)+Ek_n+1pk(M — M, _1), which implies
quantized version. Fig. 2 shows an example fgf (¢) for
N =3

Theorem 2: If there exists a legal quantizatigh which Z T = Z P | =0 (8)
satlsflesZ( ) >r Z(p) for any legal quantizatiorp, then K h=ntl
p = p*. Similarly, from (6) and (7), one has
Proof: Assume that such é exists. According to The-
orem 1, p* is the unique legal quantization which satisfies al
Z(p) >r Z(p*) for any legal quantizatiorp. Sincep is qu - z;lpk )

a legal quantization, we hav&(p) >gr Z(p*). On the
other hand,Z(p*) =5 Z(p) implies Z(p*) >r Z(p), Finally, comparing (8) and (9), we have;, = 0. This
according to Property 2. Combining the above results, ve®mpletes the proof of Theorem 3. O
get E[Z(p) — t = E[Z(p*) — ]t forall ¢, 0 < ¢ < C. A consequence of Theorem 3 is that the optimally quantized
ConsequentlyZ(p) >r Z(p) for any legal quantizatiorp. version of aJ-state source can have as many2dst 1 states.
Sincep* is unique, we conclude thgt = p*. This completes Since the processing complexity in resource allocation may
the proof of Theorem 2. OO depend on (or even be proportional to) the number of states
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of the quantized version, one might wish to reduce it with

only a little sacrifice in utilization. The following theorem

states a suboptimum quantization algorithm that results in a
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TABLE |
BANDWIDTH ALLOCATED WHEN THE NUMBER OF TYPE |
SoURCES 1s100 (WNiIT oF BW™ anp BW Is Mb/s)

pseudosource which has at mdst 1 states. The suboptimum N,‘Iﬂmb“;f 64 Kbps | 100 Kbps | 200 Kbps
ot ; ; ; ; ot ype
quantization algorlth[n |siopt|mum if Ehe guantization levels Sources BW* BW BW BW
are restricted tavly, mq, m1, -+, andmy_;. 0 2.5 295 2.25 5 9E
Theorem. 4:For a J—state' source described ' by 10 3775 37.92 3701 38.17
{q,m, Y J}, if the allowed quantization levels are restricted 20 6047 | 60.77 60.56 60.67
to Mg, mo, M1, - -, andm _1, then the optimum quantization 30 80.84 81.23 81.01 81.11
p* is determined by 40 100.39 | 100.88 100.60 100.68
J—1 J—1
= = 1+ _ = 1+
> phalmw —milt =7 i — mi] ¥, TABLE Il
k=0 k=0 . BANDWIDTH ALLOCATED WHEN THE NUMBER OF TYPE | SOURCES 1s500
for0<i<J-2
Jo1 J1 N;mberﬂof 64 Kbps | 100 Kbps | 200 Kbps
S~ + _ + ype
Zp;'f'l[mk - MO] - Z Tk [mk o MO] Sources BW* BW BW BW
k=0 ’“=0J . 0 11.24 | 11.24 11.24 11.24
o . 10 46.88 47.08 47.25 48.10
Po =17 Zpi' 20 69.36 | 69.66 69.64 70.21
i=1 30 89.78 | 90.17 90.08 90.56
If m; # m; for i # j, then the result is 40 109.33 | 109.82 109.66 110.08
. Mj_1—Mmj_2
Py= ————4i-1
mj—_1 —Mj—_o TABLE Il
1 J—1 BANDWIDTH ALLOCATED WHEN THE NUMBER OF TYPE | SOURCES 1s1000
pp=—— [ Z qr(my — M 2) Number of 64 Kbps { 100 Kbps | 200 Kbps
Mi—1 —Mi—2 |, =
k=i—1 Type 11
J—1 Sources BW* BW BW BW
= Pipalme—misg)|,  fori=2,...,J—1 0 22.48 | 2248 22.48 22.48
k=i 10 58.27 58.46 58.85 60.38
L [ N 20 80.58 80.87 81.06 82.17
pi=— Z Qe — szﬂmk 30 100.99 | 101.39 101.47 102.40
mo |20 ot 40 120.55 | 121.04 121.02 121.84
J
] *
po =1 ZPZ' TABLE IV
=1 BANDWIDTH ALLOCATED WHEN THE NUMBER OF TYPE | SOURCES 1s2000
The p_roof of Theorem 4 is similar to that of Theorem 1 and, Number of 64 Kbps | 100 Kbps | 200 Kbps
thus, is omitted. Type 11
The following two theorems prove that sum of optimum Sources BW* BW BW BW
guantizations remains optimum for the aggregate traffic if each 0 44.97 44.97 44.97 44.97
source is quantized individually. Moreover, the loss probability 10 81.01 81.21 82.09 84.88
evaluated based on pseudosources is an upper bound of that 20 103.14 | 103.43 103.99 106.11
evaluated based on real sources. Considetraffic sources 30 123.50 | 123.90 124.29 126.09

X1, X5, --- and X k. Let p; be a legal quantization of; and
let pi be the optimum quantization. In the theoreigp;)

denotes the traffic generated by the pseudosource obtaiffe

from quantizationp;. Proofs of Theorems 5 and 6 are omitted ! ;
& . Three different values of, i.e., 64, 100, and 200

because they are direct applications of variability ordering (s
for example, [9, Th. 2.2.3]).

Theorem 5:1t holds that E(>1%, Zi(ps) — o)t >
E(CR X, — o)F for all c. ’
Theorem 6:1t holds that E(3)* | Zi(pi*) — o)F

1A

E(Y, Zi(ps) — oF for all ¢ and E(Y/L, Zi(pi*))
E(Y LX)

V. NUMERICAL EXAMPLES
In the examples studied in this section we assine 150

dror example, ifu = 100 kb/s, thenM; = i x 100 kb/s,
< ¢ < 1500. Also, bandwidth is allocated in multiples

kb/s, are used in our examples. Two types of traffic sources

are considered. Type | and Type Il sources are represented

by {q1,m1,Y7,2} and {q2, m2, Y3, 3}, respectively, where

m; = [0 64] kb/s,qy = [0.65 0.35], mz = [1 1.53 4] Mb/s,

andqz = [0.4 0.5 0.1]. The bufferless multiplexer system

is considered and the desired cell loss probability (QoS) is

restricted to be at most 8. The suboptimum quantization

scheme stated in Theorem 4 is adopted in these examples.
In Tables -1V we list the allocated bandwidth for various

combinations of Type | and Type Il sources. In these tables the

Mb/s. The quantization levels are determined by a unit ratalues in the second column (i.BW*) represent the minimum
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. idth . . 352-360, June 1995.
minimum bandwidth required is denoted bYW. It can |71 s M. Ross,Stochastic Processeblew York: Wiley, 1983.

be verified that the percentage of loss, which is defined d8] M. Shaked and J. G. Shanthikum&tochastic Orders and Their Appli-

* * ; ; cations New York: Academic, 1994.
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