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The Relaxation Phenomena of Positive
Charges in Thin Gate Oxide During
Fowler—Nordheim Tunneling Stress

Kow-Ming Chang,Member, IEEE Chii-Horng Li, Shih-Wei Wang, Ta-Hsun Yeh, Ji-Yi Yang, and Tzyh-Cheang Lee

Abstract—n this study, new relaxation phenomena of positive 9.36
charges in gate oxide with Fowler—Nordheim (FN) constant cur-
rent injections have been investigated and characterized. It was 935 I
found that the magnitudes of applied gate voltage shift§ AVin) - >
during FN injections, after positive charges relaxed or discharged, 934 F
have a logarithmic dependence with the relaxation time for both S rdgion]  region IT
injection polarities. The results can derive the relationship of = |
transient discharging currents, that flow through the oxides after g 933
removal of the stress voltage, with the relaxation time. We have S
shown that the current has al/t dependence for both injection g 932 7
polarities which can be also derived from the tunneling front ©
model. The effects of oxide fields (lower than the necessary voltage 9.31
for FN tunneling) and wafer temperatures (373 and 423 K) for
the relaxation of positive charges are also studied. 93 | <

Index Terms—Fowler—Nordheim tunneling, gate oxide, positive 9.29 . e amund})omt
charges, stress. )
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HE application of high electrical field to gate oxide, as. - , _ ,
. . . ig. 1. The variation of gate voltage with stress time during constant

used for Fowler—Nordheim (FN) tunneling, induces 8y mascn? EN stress of substrate injection.
degradation of this oxide film due to the generation of interface
states, positive and negative charges in the oxide. It is obserf@dlemonstrate the discharging effect. It is also found [6] that
that the magnitude of applied gate voltage, during constdhtthe first stress current of constant FN tunneling is larger
current stress of FN tunneling, decreases at lower injectigfi@n the following second stress current, the magnitude of
electron fluences and then begins to increase when the voltagelied gate voltage during the second FN stress will increase.
goes through a minimum point [1]-[4]. A typical exampldiowever, the magnitude of the applied gate voltage shifts
of the variation of applied gate voltage during constant FRNd their relationship with positive charges, after different
tunneling current stress is shown in Fig. 1. Positive charg@laxation times, are still not observed.
trapping dominates during the initial period of current stressing In this paper, we use the magnitude of applied gate voltage
which is denoted as region | in Fig. 1. Followed by the regioshifts (AVrx) during different constant FN current stresses,
I, the region Il is dominated by the negative charge trappingfter positive charges generated and discharged, to demonstrate
The positive charges in the oxide films of MOS capacitot§e relaxation phenomena. The positive charges formation and
have been largely studied [5]-[13] and have been found thigtaxation (discharging) are studied for two injection polarities
they can be charged/discharged [10], [14]-[16]. To discharfe-, injections from the gate and from the substrate). We find
(or relax) the positive charges without any applied voltaggat there is also a logarithmic dependence betweern\tiey
takes several minutes or more [17], [18]. and the relaxation time. Moreover, the logarithmic dependence

The charging/discharging phenomena can be explained ¢8n derive the relationship of transient discharging currents,
the flow of electrons in and out of traps generated by the hidffiat flow through the oxides after removal of the stress voltage,
field stress [14]. It is also found that the flat-band voltag#ith the relaxation time and would be proportional 1@t
recovery shows a logarithmic dependence in the time regim@ich can be also derived from the tunneling front model.
[10]. In previous studies [6], [10], [14], [16], the flat-bandThe effects of oxide fields (lower than the necessary voltage
voltage shift and midgap voltage variations are usually usé& FN tunneling) and wafer temperatures (373 and 423 K) for
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(8-11%2-cm) wafers using standard LOCOS isolation, with a K7 Cr T r—
field oxide of 400-nm thickness. A 25-nm sacrificial oxide was eeffatonsananoarenn
then grown and stripped. The gate oxides of 8 nm thickness 74

were grown in diluted dry @ (N2/O, = 6/1) at 900°C.

A 300 nm thickness polysilicon film was deposited by low
pressure chemical vapor deposition (LPCVD), and dopéd n
at 875°C from POC} source for 30 min. Then, a 500 nm
thickness Al film was deposited by thermal evaporation and
patterned. The backsides of wafers were also deposited 500 hm
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thickness Al films. It has been shown that tié-related ottt ,..--.-.-.-..-.--
species degrade gate oxide film [19], therefore, the post metal- 732 F "..,....--- A
lization annealing (PMA) was done inoNambient at 400C ot

for 30 min to minimize hydrogen incorporation into gate oxide. 73

The capacitor areas weilex 10~2 cn? with circular shapes. o . ) , . S ] ;

All devices were tested in accumulation regions. This means .
that substrate injection was performed on n-type wafers and Electron Fluence (x10™ cm™)
gate injection was performed on p-type wafers to avoid the

. . . . o Without first stress
effect of white lights which were needed when the devices o Afier 10 sec. relax.
were tested at inversion regions. The gate oxide thicknesses 0.03 *  After 100 sec. relax. .o
. . . ese
were determined from ellipsometric measurements and were ;,< +  After 1000 sec. relax. o
. . g v After 10000 sec. relax. .o
consistent with the C-V measurements. ~ T
T 002 T .
H . LX)
. E
B. Electrical Measurements @ ois k R
5 O
E] . .o
First, the samples were stressed at larger FN tunnel- £ oo1 t ,*° """
. . . e
ing constant current density, which was denoted Igs, § 7 .-... e aa raaan
(100 mA/cnt), to the turn-around point (0.1 C/&hto ensure R A PPURPRE
more positive charges generated and less negative chargesg 0 ‘:D‘uguuu' I N A 2 LR R R
generated in the oxide. The injections were performed either maesem oo
from the gate or from the substrate. Then the stressed samples ~ *0:003 AR
were stressed again with smaller constant current FN tunneling 0,01 :
density, which was denoted &,..s (0.1 or 10 mA/cm) 0 . ) 3 4 5 . ;

after the relaxation of 10, #0 10%, and 10 s, to reveal the
properties of traps generated Wy.,. During the period of
relaxation, there is no gate voltage applied. On the other haftg; 2. (a) The variations of applied gate voltage in stress time regime during

K . -as (0.1 mA/cn?) stress of substrate injections. The curves are withgut
different temperatures (373 and 423 K) were used during 0 mA/cnt from substrate) stress, with.. stress but relaxed of 10, 10

stress and relaxation periods to investigate the temperatuif@ 10 s after thel,.., stress. The value akVy is defined in the figure. (b)
effects. The applied gate voltage shift&Vi-n) during I,,.,s  The variations of applied gate voltage shift in stress time regime during:

stress were used to demonstrate the relaxation (dischargiﬁ)g]) mA/cn?) stress of substrate injections. The data are from Fig. 2(a).
phenomena.

After .., stresses, for both injection polarities, we appliegAV;y) used in our study is defined as the difference of
+4 MV/cm constant field (no FN tunneling injection hapgate voltage at the end df,..s Stress, in which the gate
pened) for 20 s. Then the samples were stressed,Ry; voltage seems to saturate, and at the start point of the stress.
to investigate the effect of oxide field for positive chargg the investigation is from the viewpoint of applied gate
relaxation. voltage shift, as shown in Fig. 2(b), a trend of the shifts

The applied gate voltage shifts\Vrx) and the transient can be observed. The arrow line in Fig. 2(b) indicates this
current were measured using a HP 4145B semiconduct@$nd which is from positive to negative when relaxation
parameter analyzer and a HP 4140B pA meter, respectivelyme increases. If thepeas Stress (0.1 mA/cr) is quickly

performed, the gate voltagé/f..s) shift is positive which
lll. RESULTS AND DISCUSSION means some injected electrons are trapped in the oxide [6].
However, if thel,.,s are performed after a longer relaxation
A. The Relationship BetweekVrn and Relaxation Time  time passed, the gate voltage shift becomes negative. This

After the generation of positive charges by,., indicates that some positive charges are compensated in
(100 mA/cnt) stressing and waiting for 10, ip 10°, relaxation period.
and 10 s to relax the positive charge$,e.s (0.1 mA/cnt) It is believed that if the stress voltage is removed and
was performed to investigate the relaxation phenomendhere is no other applications of gate voltage to oxide film,
Fig. 2(a) shows the variation of applied gate voltage fdhe positive charges can be compensated (discharged) by the
substrate injection durind,,.... Stress. The gate voltage shiftelectrons tunneling from the electrode into the charged sites

Enjected electron fluence (x10% cm?)
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[10], [14]. The amount of compensated positive charges is
increased with relaxation time. Hence, the gate voltage shifts
are from positive to negative and close to the value which is
without the 4., Stress.

The variations ofAVpx with relaxation time for gate and
substrate injections are plotted in Fig. 3. It can be found that
AVgn has a logarithmic dependence in the relaxation time
regime. The relation can be written as

AVFN(t) =+Ry X log <Ti>,t >0 Q)

0

in which AVgy, t, and1; are the applied gate voltage shift,
the relaxation time, and the time constant whAf®Fty is
zero, respectivelyRy is the slope of the curve which reveals
the relaxation rate of positive charges. Positive sign is for
gate injection and negative sign is for substrate injection. Thg 5
values of R, for gate injection (p-type wafers) and substrate
injection (n-type wafers) are 0.013 and 0.01, respectively. The
relaxation rate of gate injection stress is slightly larger than
that of substrate injection stress. Injection of electrons from
poly-Si may cause more damage than from the Si substrate
[21]. Hence, the energy levels, centroid or density of positive
traps for gate injection are different from those for substrateg
injection, and different relaxation properties are revealed.

The shifts of Vgny can be written in terms of the charge
densities and their locations in the following way [1]:

«(®) Q)

=—_x(t),
AVin(t) = —

Current (Amj

AVp for substrate injection (2a)

Q)

where Q(t), ¢, dox, andz(t) are the positive charge density
per unit area, oxide permitivity, oxide thickness and the charge

(dox — T(¢)), for gate injection (2b)

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 8, AUGUST 1998

0.04

0.02

-0.02

Applied Gate Voltage Shift (V)

-0.04 —&— Substrate Inject. ]

—— Gate Inject.

100 1000 10*
Relaxation Time (sec)

The variation ofAVy.n in the relaxation time regime.

1 ()—1 1
®  Experimental Results
12 Simulated Results
107° ¢
1 0—1 3 L
10
10 100 1000
Time (sec)

location, respectively. Equations (1)—(2) yield

£

Fig. 4. The transient current through 8 nm thick oxide after 100 mA/cm
stress. The current simulated by (4b) is well fitted with the experimental

Q)= — =0 Ry x log <Ti0>’ for substrate injection results.
(3a)
€ t o voltage shift has a logarithmic dependence with discharging
Q) = — mRO x log <70)v for gate injection  {ime [10] and, if interface states are assumed constant in the

(3b) relaxation period, a similar equation as (4) can be also derived.

If z(¢) is about constant, then we can find the discharging The Characteristics of\Vix Under Differentl,,.,. Stress
current R 1 In previous study [6], as thé,.c.s < Igen, the applied gate
|J(¢)| = =Ro x =, for substrate injection (4a) voltage duringIneas Stress increased. This was attributed
z . ¢ 1 to that the electrons injected bi..s recombined with the
|.1(8)| = — Ry x —, for gate injection (4b) positive charges. However, in our study, we find that the gate
dox — T ¢ voltage, foric.s < Igen, does not always increase during the
The discharge current haslg dependence which is the saméollowing I,,,... stress. Fig. 5 shows thaVyy variation with
as the results derived from tunneling front model [22]. In othestress time when thé..s is 10 or 100 mA/ci injected
words, the variation ofpx, as seen in Fig. 2(b), is due to thefrom substrate. From this figure, Whei.e.s is 10 mA/cn?
discharging of trapped charges in oxide film. We have taken (@hich is smaller that/y., (100 mA/cnt), AVry is negative
to simulate the transient discharging current. This chosen and is different from the observation of the earlier study [6].
as 5 nm for gate injection and oxide dielectric constant is 3.Mowever, as seen in Fig. 2(b), Whép.. is 0.1 mA/cnt, a
Fig. 4 shows the transient current of MOS capacitors dfigr positive gate voltage shift variation is observed. These results
(100 mA/cnt) stress and the simulated results from (4b). It isuggest that, except the stress current, the oxide field during
found that the simulated results and the experimental resusteess, the centroid of positive charges and their energy levels
are matched well. Moreover, it is known that the flat-banchay also affect the results df,..s stress.
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Fig. 7. (a) The curves during 0.1 mA/énstress at room temperature, at 373
and 423 K. The stress polarity is substrate injection. (b) The curves during
Imeas = 0.1 mA/cm? stress at room temperature, at 373 and 423 K. The
stress polarity is gate injection.

oxide conduction band can be trapped into the positively
charged sites. For largef,.,s Measurement, the trapped
electrons can easily escape from these traps by tunneling out
or by crossing the trap barrier height due to the larger oxide
field as shown in curve (b). Hence, the positive charges are not
relaxed. However, for smallef,.... stress, the field in oxide
film is smaller and the trapped electrons hardly escape from
the traps. Then the positive charges are compensated by the
trapped electrons. Fig. 6(b) is the relaxation of positive charges
without any gate voltage applied. It is known that the centroid
of positive charges is near the electrodes [1], [4], [6], [19], [20]
and can be easily discharged by the electrons tunneling from
electrodes [10], [14]. Hence, the amount of relaxed positive
charges become larger for longer discharging time passed.

Fig. 6. (a) The schematic process of positive charge compensation during

Iimeas Stress. Curve (a) is for smalléf.c.s stress and (b) is for larg€ineas

stress. (b) The schematic process of positive charge relaxation without @by The Effects of Temperature and Electric Fields

voltage application (see [23, Fig. 2]).

Fig. 7(a) shows thd,,..,s Stress curve at room temperature,

Fig. 6(a) shows the schematic processes of positive char§@8 and 423 K after 10s relaxation for substrate injection
relaxation during/,,,..s- Curve (a) is for smaller,.,s stress stress. Fig. 7(b) is under the same conditions of Fig. 7(a) but
and curve (b) is for largef,,.. stress. The electrons in thefor gate injection stress. It can be found tidlr-x is shifted to
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Fig. 9. The variation of gate voltage shift duridg,cas Stress after applica-
tion of 5 MV/cm for 20 Syen is —100 mA/en? andlineas is —0.1 mA/cnt.

field do not form FN tunneling) to the stressed samples for
20 s. Then we applyleas (0.1 mA/cn?) to observe the
variation of AVpy. After I, stress, the centroid of positive
charges are near the anodes [1], [6]. If the applied voltage
is with the same polarity of,.,, the relaxation of positive
charges is expected to be retarded. On the other hand, if the
polarity of the constant voltage is opposite to thatigf,,

the relaxation is expected to be enhanced. We find that the
increase of the positive charges relaxation rateffdrMV/cm
applied is higher than that of the case fo4 MV/cm. Similar
results can be also observed on the samples with substrate
injection polarity. This observation is similar to the results of
Lakshmanneet al. [10] and Scottet al. [14], [15].

IV. CONCLUSION

In conclusion, new relaxation phenomena of positive
charges in gate oxide with FN constant current injections have
been investigated and characterized. There is a logarithmic
relationship between the shifts of applied FN voltage and
the relaxation time. We have correlatedVey with the
transient discharging current and have derived the relationship
of transient current with relaxation time which is proportional
to 1/t. This means that the variation @V is due to the
discharge of trapped charges. The result is consistent with
that derived from the tunneling front model. On the other
hand, under larger oxide field, electrons injected By
which are trapped with positive charged sites can escape these
positive traps, and the variation dkVpy is different with
that under smaller oxide field. At higher temperature, negative
charges are more easily generated than the positive charges.
Moreover, the applied oxide field during charge relaxation can
affect AVry. If the applied voltage is with the same polarity
of I..n, the relaxation of positive charges is expected to be
retarded. On the other hand, if the polarity of the constant
voltage is opposite to that dfe,, the relaxation is expected
to be enhanced.
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