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Abstract—In this study, new relaxation phenomena of positive
charges in gate oxide with Fowler–Nordheim (FN) constant cur-
rent injections have been investigated and characterized. It was
found that the magnitudes of applied gate voltage shifts(�VFN)
during FN injections, after positive charges relaxed or discharged,
have a logarithmic dependence with the relaxation time for both
injection polarities. The results can derive the relationship of
transient discharging currents, that flow through the oxides after
removal of the stress voltage, with the relaxation time. We have
shown that the current has a1=t dependence for both injection
polarities which can be also derived from the tunneling front
model. The effects of oxide fields (lower than the necessary voltage
for FN tunneling) and wafer temperatures (373 and 423 K) for
the relaxation of positive charges are also studied.

Index Terms—Fowler–Nordheim tunneling, gate oxide, positive
charges, stress.

I. INTRODUCTION

T HE application of high electrical field to gate oxide, as
used for Fowler–Nordheim (FN) tunneling, induces a

degradation of this oxide film due to the generation of interface
states, positive and negative charges in the oxide. It is observed
that the magnitude of applied gate voltage, during constant
current stress of FN tunneling, decreases at lower injection
electron fluences and then begins to increase when the voltage
goes through a minimum point [1]–[4]. A typical example
of the variation of applied gate voltage during constant FN
tunneling current stress is shown in Fig. 1. Positive charge
trapping dominates during the initial period of current stressing
which is denoted as region I in Fig. 1. Followed by the region
I, the region II is dominated by the negative charge trapping.
The positive charges in the oxide films of MOS capacitors
have been largely studied [5]–[13] and have been found that
they can be charged/discharged [10], [14]–[16]. To discharge
(or relax) the positive charges without any applied voltage
takes several minutes or more [17], [18].

The charging/discharging phenomena can be explained by
the flow of electrons in and out of traps generated by the high
field stress [14]. It is also found that the flat-band voltage
recovery shows a logarithmic dependence in the time regime
[10]. In previous studies [6], [10], [14], [16], the flat-band
voltage shift and midgap voltage variations are usually used
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Fig. 1. The variation of gate voltage with stress time during constant
60 mA/cm2 FN stress of substrate injection.

to demonstrate the discharging effect. It is also found [6] that
if the first stress current of constant FN tunneling is larger
than the following second stress current, the magnitude of
applied gate voltage during the second FN stress will increase.
However, the magnitude of the applied gate voltage shifts
and their relationship with positive charges, after different
relaxation times, are still not observed.

In this paper, we use the magnitude of applied gate voltage
shifts during different constant FN current stresses,
after positive charges generated and discharged, to demonstrate
the relaxation phenomena. The positive charges formation and
relaxation (discharging) are studied for two injection polarities
(i.e., injections from the gate and from the substrate). We find
that there is also a logarithmic dependence between the
and the relaxation time. Moreover, the logarithmic dependence
can derive the relationship of transient discharging currents,
that flow through the oxides after removal of the stress voltage,
with the relaxation time and would be proportional to
which can be also derived from the tunneling front model.
The effects of oxide fields (lower than the necessary voltage
for FN tunneling) and wafer temperatures (373 and 423 K) for
the relaxation of positive charges are also studied.

II. EXPERIMENTS

A. Device Fabrication

The devices used in this study were npolysilicon gate
MOS capacitors fabricated on n-type (3–5-cm) and p-type
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(8–11 -cm) wafers using standard LOCOS isolation, with a
field oxide of 400-nm thickness. A 25-nm sacrificial oxide was
then grown and stripped. The gate oxides of 8 nm thickness
were grown in diluted dry O N O at 900 C
A 300 nm thickness polysilicon film was deposited by low
pressure chemical vapor deposition (LPCVD), and doped n
at 875 C from POCl source for 30 min. Then, a 500 nm
thickness Al film was deposited by thermal evaporation and
patterned. The backsides of wafers were also deposited 500 nm
thickness Al films. It has been shown that the-related
species degrade gate oxide film [19], therefore, the post metal-
lization annealing (PMA) was done in Nambient at 400 C
for 30 min to minimize hydrogen incorporation into gate oxide.
The capacitor areas were cm with circular shapes.
All devices were tested in accumulation regions. This means
that substrate injection was performed on n-type wafers and
gate injection was performed on p-type wafers to avoid the
effect of white lights which were needed when the devices
were tested at inversion regions. The gate oxide thicknesses
were determined from ellipsometric measurements and were
consistent with the C-V measurements.

B. Electrical Measurements

First, the samples were stressed at larger FN tunnel-
ing constant current density, which was denoted as
(100 mA/cm ), to the turn-around point (0.1 C/cm) to ensure
more positive charges generated and less negative charges
generated in the oxide. The injections were performed either
from the gate or from the substrate. Then the stressed samples
were stressed again with smaller constant current FN tunneling
density, which was denoted as (0.1 or 10 mA/cm)
after the relaxation of 10, 10, 10 , and 10 s, to reveal the
properties of traps generated by During the period of
relaxation, there is no gate voltage applied. On the other hand,
different temperatures (373 and 423 K) were used during FN
stress and relaxation periods to investigate the temperature
effects. The applied gate voltage shifts during
stress were used to demonstrate the relaxation (discharging)
phenomena.

After stresses, for both injection polarities, we applied
4 MV/cm constant field (no FN tunneling injection hap-

pened) for 20 s. Then the samples were stressed by
to investigate the effect of oxide field for positive charge
relaxation.

The applied gate voltage shifts and the transient
current were measured using a HP 4145B semiconductor
parameter analyzer and a HP 4140B pA meter, respectively.

III. RESULTS AND DISCUSSION

A. The Relationship Between and Relaxation Time

After the generation of positive charges by
(100 mA/cm ) stressing and waiting for 10, 10, 10 ,
and 10 s to relax the positive charges, (0.1 mA/cm )
was performed to investigate the relaxation phenomenon.
Fig. 2(a) shows the variation of applied gate voltage for
substrate injection during stress. The gate voltage shift

Fig. 2. (a) The variations of applied gate voltage in stress time regime during
Imeas (0.1 mA/cm2) stress of substrate injections. The curves are withoutIgen

(100 mA/cm2 from substrate) stress, withIgen stress but relaxed of 10, 103,
and 104 s after theIgen stress. The value of�VFN is defined in the figure. (b)
The variations of applied gate voltage shift in stress time regime duringImeas

(0.1 mA/cm2) stress of substrate injections. The data are from Fig. 2(a).

used in our study is defined as the difference of
gate voltage at the end of stress, in which the gate
voltage seems to saturate, and at the start point of the stress.
If the investigation is from the viewpoint of applied gate
voltage shift, as shown in Fig. 2(b), a trend of the shifts
can be observed. The arrow line in Fig. 2(b) indicates this
trend which is from positive to negative when relaxation
time increases. If the stress (0.1 mA/cm) is quickly
performed, the gate voltage ( ) shift is positive which
means some injected electrons are trapped in the oxide [6].
However, if the are performed after a longer relaxation
time passed, the gate voltage shift becomes negative. This
indicates that some positive charges are compensated in
relaxation period.

It is believed that if the stress voltage is removed and
there is no other applications of gate voltage to oxide film,
the positive charges can be compensated (discharged) by the
electrons tunneling from the electrode into the charged sites
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[10], [14]. The amount of compensated positive charges is
increased with relaxation time. Hence, the gate voltage shifts
are from positive to negative and close to the value which is
without the stress.

The variations of with relaxation time for gate and
substrate injections are plotted in Fig. 3. It can be found that

has a logarithmic dependence in the relaxation time
regime. The relation can be written as

(1)

in which , , and are the applied gate voltage shift,
the relaxation time, and the time constant when is
zero, respectively. is the slope of the curve which reveals
the relaxation rate of positive charges. Positive sign is for
gate injection and negative sign is for substrate injection. The
values of for gate injection (p-type wafers) and substrate
injection (n-type wafers) are 0.013 and 0.01, respectively. The
relaxation rate of gate injection stress is slightly larger than
that of substrate injection stress. Injection of electrons from
poly-Si may cause more damage than from the Si substrate
[21]. Hence, the energy levels, centroid or density of positive
traps for gate injection are different from those for substrate
injection, and different relaxation properties are revealed.

The shifts of can be written in terms of the charge
densities and their locations in the following way [1]:

for substrate injection (2a)

for gate injection (2b)

where , and are the positive charge density
per unit area, oxide permitivity, oxide thickness and the charge
location, respectively. Equations (1)–(2) yield

for substrate injection

(3a)

for gate injection

(3b)

If is about constant, then we can find the discharging
current

for substrate injection (4a)

for gate injection (4b)

The discharge current has a dependence which is the same
as the results derived from tunneling front model [22]. In other
words, the variation of , as seen in Fig. 2(b), is due to the
discharging of trapped charges in oxide film. We have taken (4)
to simulate the transient discharging current. Theis chosen
as 5 nm for gate injection and oxide dielectric constant is 3.9.
Fig. 4 shows the transient current of MOS capacitors after
(100 mA/cm ) stress and the simulated results from (4b). It is
found that the simulated results and the experimental results
are matched well. Moreover, it is known that the flat-band

Fig. 3. The variation of�VFN in the relaxation time regime.

Fig. 4. The transient current through 8 nm thick oxide after 100 mA/cm2

stress. The current simulated by (4b) is well fitted with the experimental
results.

voltage shift has a logarithmic dependence with discharging
time [10] and, if interface states are assumed constant in the
relaxation period, a similar equation as (4) can be also derived.

B. The Characteristics of Under Different Stress

In previous study [6], as the , the applied gate
voltage during stress increased. This was attributed
to that the electrons injected by recombined with the
positive charges. However, in our study, we find that the gate
voltage, for , does not always increase during the
following stress. Fig. 5 shows the variation with
stress time when the is 10 or 100 mA/cm injected
from substrate. From this figure, when is 10 mA/cm
which is smaller that 100 mA/cm is negative
and is different from the observation of the earlier study [6].
However, as seen in Fig. 2(b), when is 0.1 mA/cm , a
positive gate voltage shift variation is observed. These results
suggest that, except the stress current, the oxide field during
stress, the centroid of positive charges and their energy levels
may also affect the results of stress.
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Fig. 5. The variation of gate voltage shift whenImeas is 10 mA/cm2 or
100 mA/cm2: The Igen is 100 mA/cm2:

(a)

(b)

Fig. 6. (a) The schematic process of positive charge compensation during
Imeas stress. Curve (a) is for smallerImeas stress and (b) is for largerImeas

stress. (b) The schematic process of positive charge relaxation without any
voltage application (see [23, Fig. 2]).

Fig. 6(a) shows the schematic processes of positive charges
relaxation during Curve (a) is for smaller stress
and curve (b) is for larger stress. The electrons in the

(a)

(b)

Fig. 7. (a) The curves during 0.1 mA/cm2 stress at room temperature, at 373
and 423 K. The stress polarity is substrate injection. (b) The curves during
Imeas = 0:1 mA/cm2 stress at room temperature, at 373 and 423 K. The
stress polarity is gate injection.

oxide conduction band can be trapped into the positively
charged sites. For larger measurement, the trapped
electrons can easily escape from these traps by tunneling out
or by crossing the trap barrier height due to the larger oxide
field as shown in curve (b). Hence, the positive charges are not
relaxed. However, for smaller stress, the field in oxide
film is smaller and the trapped electrons hardly escape from
the traps. Then the positive charges are compensated by the
trapped electrons. Fig. 6(b) is the relaxation of positive charges
without any gate voltage applied. It is known that the centroid
of positive charges is near the electrodes [1], [4], [6], [19], [20]
and can be easily discharged by the electrons tunneling from
electrodes [10], [14]. Hence, the amount of relaxed positive
charges become larger for longer discharging time passed.

C. The Effects of Temperature and Electric Fields

Fig. 7(a) shows the stress curve at room temperature,
373 and 423 K after 10s relaxation for substrate injection
stress. Fig. 7(b) is under the same conditions of Fig. 7(a) but
for gate injection stress. It can be found that is shifted to
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Fig. 8. The curves duringIgen = 100 mA/cm2 at room temperature and
at 423 K.

Fig. 9. The variation of gate voltage shift duringImeas stress after applica-
tion of 5 MV/cm for 20 s.Igen is�100 mA/cm2 andImeas is�0.1 mA/cm2:

negative at higher temperature while it is positive at room tem-
perature. A turn-around phenomenon reveals in Fig. 7 at 373
and at 423 K. We find that, at higher temperatures, negative
charge generation process is more significant than the creation
of positive charages in oxide film. Similar results at higher
temperatures can be seen from the curves, in Fig. 8, during

stress at different temperatures. The injection polarity in
Fig. 8 is from substrate. Negative charge generation region
(region II as shown in Fig. 1) has been seen at 423 K while
positive charge creation (region I) is still dominated at room
temperature. Turn-around point is also shifted to lower electron
fluence at higher temperature. Hence, the phenomena in Fig. 7
may be due to the enhanced negative charge generation ar
higher temperature. Similar results can be also observed on
the gate injection stressed samples.

The effects of oxide field during positive charge relaxation
are shown in Fig. 9. The injection polarity is from gate. Curve
(a) is without any voltage applied, curve (b) is for4 MV/cm
applied, and curve (c) is for 4 MV/cm applied. After
(100 mA/cm ) stress, we applied a field of4 MV/cm (this

field do not form FN tunneling) to the stressed samples for
20 s. Then we apply (0.1 mA/cm ) to observe the
variation of After stress, the centroid of positive
charges are near the anodes [1], [6]. If the applied voltage
is with the same polarity of , the relaxation of positive
charges is expected to be retarded. On the other hand, if the
polarity of the constant voltage is opposite to that of ,
the relaxation is expected to be enhanced. We find that the
increase of the positive charges relaxation rate for4 MV/cm
applied is higher than that of the case for4 MV/cm. Similar
results can be also observed on the samples with substrate
injection polarity. This observation is similar to the results of
Lakshmannaet al. [10] and Scottet al. [14], [15].

IV. CONCLUSION

In conclusion, new relaxation phenomena of positive
charges in gate oxide with FN constant current injections have
been investigated and characterized. There is a logarithmic
relationship between the shifts of applied FN voltage and
the relaxation time. We have correlated with the
transient discharging current and have derived the relationship
of transient current with relaxation time which is proportional
to This means that the variation of is due to the
discharge of trapped charges. The result is consistent with
that derived from the tunneling front model. On the other
hand, under larger oxide field, electrons injected by
which are trapped with positive charged sites can escape these
positive traps, and the variation of is different with
that under smaller oxide field. At higher temperature, negative
charges are more easily generated than the positive charges.
Moreover, the applied oxide field during charge relaxation can
affect If the applied voltage is with the same polarity
of , the relaxation of positive charges is expected to be
retarded. On the other hand, if the polarity of the constant
voltage is opposite to that of , the relaxation is expected
to be enhanced.
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