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ABSTRACT : In this paper, we propose an integrated image compression method, which contains 
the discrete wavelet transform, scalar guantization and some lossless codings, to gain higher 
compression ratios while maintaining the image fidelity. The discrete wavelet transform has the 
properties of entropy reduction andenergy concentration in high jrequency subimages. An innovative 
approach, called revised run-length coding, is proposed to improve the compression performance. 
The idea of this approach is to represent the appearance of symbols of the run-length code in 
exponential expression,for saving the storage in bits. The dtfjerentialpulse code modulation is used 
to reduce the entropy of the lowest frequency subimage of the discrete wavelet transform and to 
achieve high compression effects losslessl_v. 0 1998 The Franklin Institute. Published by Elsevier 
Science Ltd 

1. Introduction 

A major objective of image compression is to represent an image by as few bits as 
possible while preserving the level of quality. Non-essential information is discarded 
to reduce the storage and transmission time in communication; see page 589 of (1). We 
usually compress an image as a prelude to either image storage or transport. This is 
because both of these operations are sensitive to the amount of data in an image; see 
page 179 of (2). Even though many compression techniques have been developed and 
implemented successfully up to now, there are still many innovative algorithms to be 
proposed based on the discrete wavelet transforms (DWT), which have been applied 
to the domain of image processing during the past ten years (3). 

The fundamental idea behind the DWT is to analyze the signal according to scales 
and has the intention of a multiresolution technique; see page 399 of (4). From the 
application point of view, the DWT is regarded as one kind of the pyramid subband 
coding; see page 213 of (5). Also, the image can be split into different frequency 
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components by the DWT. Each component, with a resolution matched to its scale, is 
considered as the DWT coefficient. The wavelet-based coding has been demonstrated 
to outperform other waveform based codings (6). We also derived the property of 
entropy reduction through the DWT (7). The effect of energy concentration in high 
frequency subimages is also observed; see page 373 of (8). Moreover, the histograms 
of the higher frequency subimages, which are called detailed images of the DWT, can 
be modelled to be generalized Gaussian distributed (9). The application of scalar 
quantization (SQ) extended the detailed images are motivated to obtain better com- 
pression conditions. This inherency of the DWT makes it interesting and useful to 
apply to image compression. 

In this paper, we propose an integrated image compression method, which contains 
the DWT, SQ and some lossless codings, to gain higher compression ratios (CR) while 
maintaining the image fidelity. The (9,7) taps’ wavelet, which belongs to the family of 
a spline variant with less dissimilar lengths, is chosen to be the basis of the DWT (9). 
In SQ, we introduce an optimal SQ (10) to increase the peak signal-to-noise ratio 
(PSNR), which is a performance index of the picture quality. Furthermore, some 
lossless codings, Huffman coding (HC), run-length coding (RLC) and differential pulse 
code modulation (DPCM) are provided to increase the CR without further distortion. 
We also combine the HC and RLC, denoted as HC + RLC, to achieve more com- 
pression effects than HC or RLC, separately. Meanwhile, an innovative approach, 
called revised run-length coding (RRLC), is proposed to lift the CR massively. The idea 
of RRLC is to represent the appearance of symbols of run-length codes in exponential 
expressions of base 2 for saving the storage in bits. It is also one kind of variable- 
length codings. The contribution of this paper is to provide an integrated compression 
technique, including the DWT, SQ, DPCM and lossless codings, to achieve higher 
compression performance and image fidelity. Comparisons of our approach with JPEG 
and other well-known approaches are also presented (1 l-14). 

The organization of this paper is as follows. The flow chart of an integrated image 
compression procedure is portrayed in Section 2. The ideas of the integrated com- 
pression system are also discussed. In Section 3, we address the function of SQ and 
some coding methods individually. The innovative idea of RRLC, which expresses the 
run-length codes exponentially, is mentioned for more details. In Section 4, two testbed 
images, Lena and Mandrill, are considered to verify the increment of CR and PSNR 
performed after the integrated compression method. A concise conclusion is made in 
Section 5. 

ZZ. Image Compression by the D WT 

In this paper, we consider the 3-layer DWT of an image, as shown in Fig. 1. A, 
represents to the lowest frequency subimage functioned after the DWT and D,,, where 
x represents h, u or d, respectively, and i = 1,2,3, denotes the detailed images of each 
layer of the DWT. For A3, the energy and the histogram are almost the same as those 
of the original image, since the energy of the image to be compressed is always 
concentrated in lower frequencies, in general. The coding method DPCM is suggested 
to maintain the image loyalty and to reduce the entropy of AX. Hence, the HC is 
introduced to implement the entropy reduction. Moreover, since the histograms of 
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FIG. 1. The 3-layer DWT. 

FIG. 2. The integrated image compression system. 

detailed images satisfy the generalized Gaussian distributions (9) we introduce the SQ 
to compress the data with little distortion. There needs for some lossless coding methods 
to obtain further compression effects. Our intention is to derive the integrated com- 
pression system, as shown in Fig. 2. The component Coding in Fig. 2 represents one of 
the methods, HC, RLC, RLC+HC or RRLC. 

After the image is transformed by the DWT, the subimages A3 and D,i are obtained 
directly. The information contained in A3 is important so that the lossless coding 
methods behind A, are suggested to prevent any further distortion. Moreover, the 
histogram of A3 and that of the original image are almost the same. It reveals that both 
entropies are approximately equal (7). When the DPCM is adopted, the entropy of A, 
can be reduced apparently. In addition, A:, the output of DPCM, has a largely reduced 
variance compared with Ai; see page 61 of (15). Following that, the function of HC, 
which is a lossless coding method, is adopted to obtain the data YA. 

The histograms of D,i can be modelled as the generalized Gaussian distributions (9). 
Consequently, the 3-level scalar quantizer in Fig. 3, which shows three output levels of 
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FIG. 3. The I/O characteristic of the 34evel scalar. 

the quantizer, is introduced to gain better compression performance at the cost of 
producing some quantization error. The global minimum of quantization error can be 
obtained by using algorithms presented in our previous work (10). Furthermore, lossless 
coding methods are provided to reach higher compression ratios without any loss of 
quality. The output generated by these lossless coding is denoted by D.,i. 

III. Quantization and Lossless Codings 

The fundamental ideas of scalar quantization and lossless codings will be addressed 
in the following discussions. 

3.1. Optimul SQ 
The previous section mentions that every detailed image Dri could be quantized by 

the 3-level scalar quantizer with symmetrical decision levels, since these histograms of 
the detailed images can be modelled as the generalized Gaussian distributions. SQ is 
the only component to introduce error during the whole process of image compression. 
The performance index PSNR is usually used in image coding and defined as follows: 

PSNR = 1Olog,,+&, 

where MSE is the abbreviation of mean squared error. The optimal value of PSNR 
can be obtained for choosing suitable decision level and reconstructed levels of SQ 
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(10). The higher the values of PSNR, the better the fidelities of the reconstructed 
images. Unfortunately, higher values of PSNR usually lead to worse values of CR. 
Hence, we need to deviate the value of decision level from the optimal value to obtain 
better CR. 

3.2. Lossless codings 
3.2.1. DPCM coding. In general, the information contained in the lowest frequency 

component of the 3-layer DWT, A3, is rich enough such that we cannot conduct any 
further distortion by the lossy compression technique. The histogram and entropy of 
A3 are almost the same as those of the original picture. The lossless coding DPCM 
could be introduced, since the histogram of the output of DPCM is highly concentrated 
around zero and resembles the Laplacian distribution (see page 78 of (16)) of the form 

P(x) = &w(-;‘illll4, 

where G’ is the variance of the distribution. In general, the histograms of the output of 
DPCM corresponding to different images have roughly the same shapes but different 
variances (15). Obviously, the entropy and standard deviation are heavily reduced after 
DPCM, as shown in Fig. 4. The entropy and standard deviation of Lena are 7.3039 bpp 
(bits per pixel) and 44.0826, respectively. After DPCM, the entropy and standard 
deviation are 4.9476 bpp and 10.9551, respectively. It implies that we have the oppor- 
tunity to gain the lossless compression ratios of g/4.9476 = 1.6169 instead of 
S/7.3039 = 1.0953. Hence, the DPCM is adopted by the lowest frequency component 
to reach the better compression conditions without generating any more distortion. 
Apparently, the HC will be adopted to perform the entropy reduction after DPCM. 

3.2.2. RRLC. There are three kinds of output levels, m,, m, and m,, when a detailed 
image is quantized by a 3-level scalar quantizer. For convenience, m,, m, and m, are 
represented by 0, - 1 and 1, respectively. A value of the input signal which is less than 
- 6 is mapped to the symbol - 1, a value which lies in the interval of [ - 6,6] is denoted 
by the symbol 0 and a value which is larger than 6 is represented by the symbol 1. 
Actually, the probability of appearance of the symbol 0 is higher than that of each of 

histogram of Lena 
‘A 

o!d 
gray level 

Tome< after ?PCM / 

FIG. 4. The histograms of Lena and Lena+ DPCM. 
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the other symbols since the histograms of the detailed images concentrate at the 
neighborhood around zero. 

The detailed images, which contain the higher frequency components, pick the edge 
in the spatial domain of the original image. An edge in the image is a boundary or 
contour at which a significant change occurs in some physical aspect of the image. 
Hence, the detailed images performed after the DWT have the intent of edge detection 
in image processing. That is, the values which are mapped to the symbol 1 or - 1 
characterize that the change of the image intensities are positive or negative, respec- 
tively, in the spatial domain of the original image. Moreover, the values which are 
symbolized by 0 describe the smoothing parts of the original picture. For example, the 
image of Lena seems to have many connected areas which deal with low spatial 
frequencies. Hence, a lot of symbols 0 will be generated continuously in these detailed 
images. The coding method RLC is helpful to process this situation. 

In RLC process, both the symbol and the number of appearances of the symbol 
should be stored as a code. For example, in the case of D,,, in Lena, the gray levels 
after the 3-level scalar quantizer with decision level equal to 10.6 are as follows: 

30105 

h,...,,l,l,l,-l,-1,-1,-l,.... 

The run-length codes are shown in the sequence 

(0;30105),(1;3),(- 1;4), . 

In each pair of parentheses, the former is for the symbol and the latter is for the number 
of appearances. Since the symbols and the appearance frequencies can be distinguished 
from the location point of view, we encode the symbols 0, 1 and - 1 as 00, 01 and 11, 
respectively. However, the appearance frequencies of symbols are unpredictable in real 
cases. It is troublesome in bit allocations. By the above example, the number of 
appearances should be assigned by 15 bits, which are the minimum bits to encode the 
valueof30105. That is, the binary representation of 30105 is 111,010,110,011,001. It is 
not economical to encode the values of 3 or 4 by 15 bits since they could be encoded 
by 2 bits only, in practice. The total bits we need to represent the three run-length codes 
are (2 + 15) x 3 = 5 1. This is the so-called fixed-length coding. The RRLC method is 
proposed to solve this problem by representing the appearance frequencies expo- 
nentially and is a kind of variable-length codings. 

The idea of RRLC is to depict the appearance rate by exponential codes with base 
2 for saving the bits we need. A group of revised run-length codes include data codes 
(d-code, 2 bits/code), appearance codes (a-code, a bits/code), page codes (p-code, p 
bits/code) and an identification code (id-code, 10). Hence, the revised run-length codes 
are of the form 

d-code a-code d&code a-code 

for the value of appearance rate less than or equal to 22a, or 
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for the value of appearance rate greater than 2*‘, where 0, A and 0 represent the 
data bit, appearance bit and page bit, respectively. For example, we consider the case 
with u = 3 and p = 2. Hence, the pair of (0;30105) can be encoded as 

d-code a-code id-code p-code a-code 
* 

G- Gi (-. -G, lo ,010, 110, 011, OCJI, 

where these 15 bits, which are marked by the underlinings, represent the binary expan- 
sion of 30105. Using this strategy, the run-length code of (0;30105) can be encoded by 
2 1 bits. Moreover, the run-length codes of (1;3) and (- 1;4) are encoded as 0 1,011 and 
11,100, respectively. The total bits we need to encode the three pairs of run-length 
codes are 2 1 + 5 + 5 = 3 1 bits which is less than the 51 bits generated by the fixed-length 
coding. If the changes of the number of appearances are large enough such that we 
cannot code them by fixed numbers of bit allocation efficiently, the RRLC method is 
better than the traditional RLC method. 

IV. Experimental Results 

Two examples of 2-D images, Lena and Mandrill, are provided to illustrate the 
results which have been discussed before. The testbed images are of 512 x 512 pixels 
with g-bit gray levels. The filters for the DWT are (9,7) taps’ filters which belong to the 
family of a spline variant (9). The structure of the DWT follows Mallat’s algorithm 
(3) which deals with the 2-D image problems and which is a kind of pyramid subband 
codings. Here, A, represents the lowest frequency subimage of the first layer (resolution 
l/2) DWT decomposition, and D,,,, D,., and DcI, are the horizontal, vertical and diagonal 
oriented subimages with resolution l/2, respectively. 

4.1. The choice cfS 
The increment of PSNR brings about the decrement of CR. in general. That is a 

trade-off problem. Suppose that we choose the optimal value of decision levels S*, 
which is the value of 6 such that the MSE is minimum; then CR is usually very low. 
To overcome the drawback of lower values of CR, the values of 6 should be altered 
for increasing CR. In our previous work (17) the entropy of the output signal performed 
after a 3-level scalar quantizer has a global maximum log, 3 if the input signals of the 
quantizer, i.e. detailed images, are generalized Gaussian distributed. The entropy can 
be considered as the lowest bound of bpp which has the similar meaning to CR. Hence, 
we can reduce the entropies or raise CR by enlarging the values of 6. See Fig. 5 for 
more details. For the case of Lena in Table 1, the value of 6 increases from 5.403 to 
10.6 to obtain a better CR under the condition that PSNR is still over 30 dB. In order 
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FIG. 5. Entropy vs 6 in Lena. 

TABLEI 

CR and PSNR with different vulues of 6 

Lena Mandrill 
Testbed pictures S”,, = 5.403 6 = 10.6 6,,, = 6.256 6 = 19.7 

CR 20.2721 37.8958 5.6567 17.6439 
PSNR 31.1371 30.0203 25.4446 22.5076 

to maintain the PSNR over 22.5dB for the case of Mandrill, the value of 6 can be 
chosen as 19.7. The relationships of PSNR and CR in Lena and Mandrill with 6 
increase from 3 to 12 and 24, respectively, are shown in Fig. 6. The original pictures 
and reconstructed pictures with different PSNRs of Lena and Mandrill are shown in 
Figs 7 and 8, respectively. 

4.2. Improvement qf A, by DPCM 
In order to reduce the entropy of A3 for further compression, the concept of DPCM, 

which is a lossless compression, is introduced. Figure 9 shows that the energy of A, 
has been concentrated after DPCM. Moreover, the entropy and standard deviation 
reduction of these two testbed pictures are shown in Table 2. By the good characteristic 
of DPCM, the HC is used to increase the CR of A3. Actually, the CR of the overall 
compression system is raised from 33.7439 to 37.8958 in the case of Lena. 

4.3. Compression bq’ HC, RLC, RLCf HC and RRLC 
HC and RLC are the popular lossless codings in image compression, and can behave 

well for the condition of lower entropies and for contiguous symbols in spatial domain, 
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FIG. 6. Curves of PSNR vs CR in Lena and Mandrill. 

(b) 

FIG. 7. (a) Original Lena and the reconstructed pictures with 
PSNR = 30.0203. 

(b) 

(b) PSNR = 31.1371, (cl 

FIG. 8. (a) Original Mandrill and the reconstructed pictures with (b) PSNR = 25.4446, 
PSNR = 22.5076. 

Cc) 
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TABLE II 
Improvement of A, of Lena and Mandrill in CR, Entropy and 

Standard deviation by DPCM and HC 

A,$-DPCM-tHC 

Lena (6 = 10.6, RRLC) 
CR 
Entropy 
Standard deviation 

Mandrill (6 = 19.7, RRLC) 
CR 
Entropy 
Standard deviation 

37.8958 33.7439 
6.3334 7.2091 

27.5101 40.9785 

17.6439 17.0753 
6.2357 7.0217 

20.0737 33.0999 

respectively. Since the DWT has the properties of entropy reduction (7) and subband 
decomposition, the entropies and energy of the detailed images become small and the 
appearance of symbols are continuous. Hence, HC and RLC are useful to encode the 
output of the 3-level SQ performed after the DWT. For the case of Lena, the energy 
of detailed images is smaller than that of Mandrill. It implies that RLC has a better 
compaction in the case of Lena. Additionally, for each detailed image, the entropy 
depends on the sum of the original entropy and the logarithm of the relative energy 
(7). In the case of Mandrill, the entropies of the detailed images are larger than those 
of Lena since the original entropy and relative energy of Mandrill are both greater than 
those of Lena. It implies that HC can do better in the case of Lena than in the case of 
Mandrill. In addition, as 6 increases, the increment of CR in RLC is better than that 
of HC since the contiguous area in spatial domain is expanded. See Fig. 10 for more 
details. Furthermore, the combination of RLC and HC, to obtain the benefit of 
these two methods, is introduced to increase CR. The difference of the CR between 
RLC + HC and RLC is by about 2 and 4 for the cases of Lena and Mandrill, respec- 
tively. RRLC achieves the best CR for both Lena and Mandrill, as illustrated in Fig. 
10. The simulation results by HC, RLC, HC + RLC and RRLC are listed in Table 3 
with the same PSNR. 

4.4. Increasing the decision levels of SQ 
After the 3-level scalar quantizer, the MSEs of these subimages are not the same, in 

general. The MSE of the lowest frequency component A3 is due to the rounding effect. 
In the case of Lena, the differences of these errors, indicated in Table 4, are of the order 
of tens of thousands. We notice that, for the DWT, the MSEs are preserved by the fact 
that the energy conservation is sustained (7). That is, the sum of the mean squared 
errors in the DWT subimages is identical to that of the reconstructed image. Hence, 
we have the idea of increasing the number of decision levels for the subimages which 
yield larger MSE. In other words, we consider the cases of 4 levels or more scalar 
quantizers. In the detailed subimages of Lena, the energy decreases from the lower 
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TABLE III 
CR by using different coding methods in Lena and Mandrill 

Coding method HC RLC RLC+HC RRLC 

Lena (6 = 10.6) 7.3061 26.7245 28.3713 37.8958 
Mandrill (6 = 19.7) 7.0608 10.5625 13.6207 17.6439 

TABLE IV 
Rounding error of A, and MSE of detailed images after a 3-level scalar quantizer 

Lena (6 = 10.6) 
0.083 1 15.1782 7.0310 6.4216 9.2220 4.8282 4.0593 5.6977 3.3646 1.8828 

Mandrill (6 = 19.7) 
0.0841 37.5159 40.7976 27.7218 38.4230 51.7092 32.8934 32.8336 57.7964 24.4659 

frequency to higher frequency components. Hence, we usually increase the numbers of 
decision levels in lower frequency components, e.g. D3, to avoid losing PSNR too 
much. On the other hand, we reduce the rounding levels of A3 since the rounding 
error is always smaller than other MSEs generated by the detailed images. After this 
improvement, the PSNR and CR are obviously lifted by about 1.5 and 2, respectively. 
In the case of Mandrill, the improvement is not clear since the energy of the higher 
frequency almost spreads out equally. That is, the energy of each component in detailed 
images is approximately equal. The PSNR vs CR curves are shown in Fig. 11. 

4.5. Comparisons with other methods 
The performance of several well-known compression techniques are compared with 

our method, as illustrated in Fig. 12. Our integrated compression method using the 
DWT is abbreviated as LDWT. JPEG, which is the standard protocol of image 
compression, is broadly used in real applications. The discrete cosine transform (DCT) 
is adopted as the transformation technique. The quality of reconstructed images reduces 
rapidly when CR increases (13). When CR is over the value of 21, our method performs 
better than JPEG. The approach of vector quantization (VQ) is proposed by Gersho 
and Ramamurthi (12) to diminish the distortion induced by SQ and is indicated for 
comparison. Both PSNR and CR of VQ are not good. The revised method of VQ, 
entropy constrained vector quantization (ECVQ) (11) is also considered for compari- 
son. The quality of decompressed picture is always lower than that of ours. Besides, 
the computation time and blocking effect are problems for implementation and the 
PSNR of ECVQ will descend in high compression ratios. Moreover, there are many 
recent publications on image compression using the idea of fractals, see (14) and page 
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FIG. 12. Comparisons of the reconstructed image quality by several different approaches: inte- 
grated DWT (I_DWT), JPEG, ECVQ, VQ, Fractal, and DWT with variable-length coding 

(DWT + VLC). 

73 of (18). This is performed by continuous contracted mapping to search for the best 
matching blocks from the domain and range pools. Preferable compression levels can 
be reached if the characteristics of the fractals in the original picture are rich enough. 
It needs much more time than the method of VQ to encode an image, and the blocking 
effect also appears if the choice of block size is not appropriate. The outcome of the 
fractal method is not superior to that of I_DWT, in general. Furthermore, there is an 
approach based on the DWT with variable-length coding (DWT+VLC) that can be 
regarded as a reference (13). This method also performs well in the case of low values 
of CR. Consequently, the PSNR vs CR curve of I_DWT is obviously higher than 
those of other methods when the values of CR are over 21. 

V. Conclusion 

We provide an integrated compression method which includes the discrete wavelet 
transform, scalar quantization and some lossless codings. The differential pulse code 
modulation is used to reduce the entropy of the lowest frequency subimage functioned 
after the discrete wavelet transform and to achieve high compression effects. The 
innovative approach, revised run-length coding, is proposed to save more bits for 
storage than the traditional run-length coding. In order to increase the image quality, 
we can increase the number of decision levels of scalar quantization or choose the 
vector quantization for further studies. 
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