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Given a series-parallel network (network, for short) N, its dual network N’ is
given by interchanging the series connection and the parallel connection of
network N. We usually use a series-parallel graph to represent a network. Let
G[N]and G[N'] be graph representations of N and N’, respectively. A sequence
of edges ey, e,,..., ¢, is said to form a common trail on (G[N], G[N'] if it is a
trail on both GIN] and G[N']. If a common trail covers all of the edges in G[N]
and G[N'], it is called a double Euler trail. However, there are many different
graph representations for a network. We say that a network N has a double Euler
trail (DET) if there is a common Euler trail for some G[N] and some G[N’].
Finding a DET in a network is essential for optimizing the layout area of a
complementary CMOS functional cell. Maziasz and Hayes (IEEE Trans. Computer-
Aided Design 9 (1990), 708-719) gave a linear time algorithm for solving the layout
problem in fixed G[N] and G[N’'] and an exponential algorithm for finding the
optimal cover in a network without fixing graph representations. In this paper, we
study properties of subnetworks of a DET network. According to these properties,
we propose an algorithm that automatically generates the rules for composition
of trail cover classes. On the basis of these rules, a linear time algorithm
for recognizing DET networks is presented. Furthermore, we also give a necessary
and sufficient condition for the existence of a double Euler circuit in a network.
© 1998 Academic Press
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1. INTRODUCTION

A series-parallel network (network, for short) N of type t € {L, S, P}
(which represent leaf, series, and parallel, respectively) defined on W is
recursively constructed as follows:

(i) N is a network of type L if |[W|= 1.

(i) If [W|>1, N is a network of either type P or type S and
consists of k > 2 networks N,,..., N, as child subnetworks parallel or
series connected together, where each N, is defined on a set W, of type ¢
with ¢; # ¢ and the collection of W;’s forms a partition of W.

A network is often expressed by a tree structure. Networks are useful in
practice since they correspond to Boolean formulas with series connection
(denoted by S) implementing logical-AND and parallel connection (de-
noted by P) implementing logical-OR. For example, the Boolean function
e A(@aVv hb)A(c Vv d)can be represented by the network shown in Figure
1. Moreover, networks can be used as a model for electrical circuits. For
example, we can use the tree structure shown in Figure 1 to represent the
network corresponding to the electrical circuit shown in Figure 2. In the
tree representation of N, every node together with all of its descendants
forms a subnetwork of N. A node together with some children and their
descendants forms a partial subnetwork. The subnetwork of N formed by a
child of the root is called a child subnetwork of N. The leaf node is labeled
by x if it is a subnetwork of type L defined on {x}. Every internal node is
labeled by S or P according to the type of the subnetwork it represents.
Note that the order of the subtrees in the tree representation is immate-
rial, because different orders lead to the same Boolean formula.

On the other hand, every network can be represented by a series-parallel
graph (s.p. graph for short), which is an edge-labeled graph with two given
distinguished vertices denoted by s and ¢. We recursively construct an s.p.

FIG. 1. Tree representation of a series-parallel network.
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FIG. 2. Electrical circuit corresponding to the network shown in Figure 1.

graph to represent a network as described below:

(i) Every network N defined on W = {x} of type L is represented
by an edge-labeled graph G[N] having only one edge labeled x and the
two end points of this edge as distinguished vertices.

(i) Let N be a network having child subnetworks Nj,..., N,, and
let G[N] be an s.p. graph representing N, with the distinguished vertices
s;, t; for every i. For N of type S, we identify ¢, with s,,, for1l <i <k — 1.
The resulting graph G[N] with the distinguished vertices s,, f, represents
the network N. For N of type P, we identify all s,’s to obtain a new vertex
s and identify all ¢,’s to obtain a new vertex ¢. The resulting graph G[N]
with distinguished vertices s, ¢t represents the network N.

The subgraph G; of G induced by the child subnetwork N, of N is
called a child s.p. subgraph of G. We note that a graph representation for
a network is not unique because we can vary the order of the subnetworks
and the order of the two distinguished vertices to obtain different graph
representations. For example, both the nonisomorphic s.p. graphs shown in
Figure 3 represent the network in Figure 1. Although most research has
concentrated on s.p. graphs [2,5,8,13,14,16] rather than on networks
[6,7,9] we believe that studying networks is interesting and practical,
although difficult.

Given a network N on set W, we define its dual network N' on set W by
interchanging the types S or P of each node. For example, the network in
Figure 4a is the dual network of the network in Figure 1. Figures 4b and 4c
show a graph representation and the corresponding circuit, respectively, of
the dual network. Note that the Boolean formula corresponding to N’ is
the dual of the Boolean formula that corresponds to N. It is obvious that
(N'Y = N. If two s.p. graphs G, G’ represent some network N and its dual,
respectively, we say that (G, G’) is an s.p. graph pair.
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FIG. 3. Two nonisomorphic s.p. graphs representing the network in Figure 1.

A walk W =uv4,e,0q,€,,...,€,0, is a finite non-null sequence of
vertices and edges where ¢; = (v;,_,,v;) for 1 <i < k. Furthermore, we
call W a walk from v, to v, or a (v,, v, )-walk. The vertices v, and v, are
called terminals of W, and v,,...,v,_, are called internal vertices. We
sometimes express a walk vy, e, 04, €,,...,€,,U; @S ey, €,,...,¢e, for con-
venience. A section of a walk W is a walk that is a subsequence
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FIG. 4. (a) The dual network of the network in Figure 1. (b) A graph representation
corresponding to the network in (a). (c) Electrical circuit corresponding to the network in (a).
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Uin €41, Vis1y €40y -5 €5, 0; IN W I all edges of walk W are distinct, W is
called a trail.

Given a network N, let GIN] and G[N'] be graph representations for
the network N and its dual network N’, respectively. A sequence of edges
ey,...,e, is said to form a common trail in (GIN],GIN']) if L =
Ugy €1,U1, €5, ..., €, U, and L' = vy, e, v}, e,,...,¢,, U, are trails in G[N]
and G[N'], respectively. We call (L, L) a trail pair. (We always use L' to
denote a trail for the dual network.) We sometimes write (L, L') as L for

short. If v, =v, and vy =v,,, we say that e,,..., e, form a common
circuit. Furthermore, if e, e,, ..., e,, are all of the edges in both G[ N] and
G[N'], we say that e,,...,e, form a common Euler trail (circuit) in

(GIN],GIN'D. A network N has a double Euler circuit (DEC) if there is a
common Euler circuit for both some G[N] of N and some G[N'] of the
dual network N'. A network N has a double Euler trail (DET) if there is a
common Euler trail for both some G[N] of N and some G[N'] of the dual
network N’. We say that (G[N], GIN']) realizes a DET pair (L, L) for N
and N’, where L and L are the corresponding Euler trails in G[N] and
G[N'], respectively. We say that a network N is DET if N possesses a
DET. For example, the s.p. graphs in Figures 3a and 4b do not have a
common Euler trail, but the ones in Figures 3b and 4b have a common
Euler trail abecd. Thus the network in Figure 1 is DET.

The problem of DET networks arises from a more general problem
called DCT(N). Let DCT(GIN], GI[N']D be the minimum number of
disjoint common trails that cover all of the edges in G[N] and G[N']. We
define DCT(N) as the minimum of DCT(G[N], GIN']) among all possi-
ble graph representations G[ N]and G[N']. Uehara and vanCleemput [15]
proposed a solution method for the layout of cells in the style shown in
Figure 5. Assuming the height of each cell is fixed by technological
considerations, the width of the cell, and therefore the area of the cell, can
be minimized by ordering the transistors in the layout so that chains of
transistors can share a common diffusion region. Uehara and vanCleemput
defined a graph model for functional cells on two dual multigraphs
(G[N],GIN')D and proposed a heuristic method for finding a small num-
ber of common trails that cover the given (GIN], G[N']). Maziasz and
Hayes [11] gave a linear time algorithm for solving DCT(G[N], GIN'])
and an exponential algorithm for finding the DCT(N). Several other
papers have also explored the use of graph models to find solutions for
layout [4, 10, 11, 12]. However, using this approach, the choice of graph
model becomes a critical issue. We thus choose to work on networks
instead. Solving DCT(N) is useful but difficult. Therefore, we start by
solving the DET problem on networks with the hope of solving DCT(N)
in the future, since DCT(N) = 1 if and only if N is DET.
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FIG. 5. CMOS functional cell. (a) Gate-level scheme. (b) An electric-level scheme. (c)
Geometric layout corresponding to the scheme in (b). (d) Another electric-level scheme. (e)
Geometric layout corresponding to the scheme in (d).
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In this paper we study the properties of DET networks and give a linear
time algorithm for recognizing DET networks. The paper is organized as
follows. In Section 2, we classify the trail cover classes. In Section 3, we
study properties of subnetworks of DET networks. On the basis of the
analysis in Section 3, we present an algorithm in Section 4 to generate the
rules for trail cover class composition. Using these rules, we give a
necessary and sufficient condition for DEC networks in Section 5. A linear
time algorithm for recognizing DET networks is also presented in Section
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5. An example for illustration of the algorithm is given in Section 6.
Finally, we give concluding remarks in Section 7.

2. COMMON TRAIL COVER CLASSES AND
NETWORK CLASSES

We first informally use an example to introduce our terminology. We
illustrate in Figure 6 a graph representation (G[N], GIN']) for a DET
network N shown in Figure 7. (At this moment, Figure 7 is used only for
its tree representation for network N.) In this graph pair, there are 10
child s.p. subgraph pairs (G,, G}), each corresponding to a child subnet-
work N; of N. N, N,,..., N,, are ordered from left to right of the root
node in Figure 7. The trail L = 1,2,...,46 is a DET trail in (G[N], GIN').
Let the distinguished vertices of G4 be s; and ¢, where s; is on the top of
G,. Let the corresponding distinguished vertices of G be denoted by s’
and ¢. The trail L induces two disjoint common trails L, = 31,32 and
L, =39,40,...,46 that cover all of the edges in (G4, G). We call {L,, L,}
the frail cover induced by (L, L') in (Gg, G3). On the other hand, (L, L)
can be treated as the concatenation of all of the disjoint trail covers
induced by (L, L') in G, for i = 1,2,...,10. To define trail cover types, we
first need to define trail types. For example, the trail L, in G4 begins at s
and terminates at ¢4, whereas L, begins at s’ and terminates at s'. We say
that the trail type of (L,, L) in (Gg, Gy) is (s,s)/(¢,s), where (x,y)/
(z,w) = (the beginning vertex of L,, the beginning vertex of L)/ (the
ending vertex of L,, the ending vertex of L)). All of the subscripts and
superscripts are omitted for simplification. For the same reason, the trail
L, in G4 begins at ¢ and terminates at s, whereas L, in G begins at '
and terminates at an internal vertex of Gj. We say that the trail type
(L,, L,) in (Gg,GY) is (¢,8)/(s, I), where I denotes an internal vertex.
Since the terminal vertex of L, is an internal vertex, L, can only
concatenate with another trail from its beginning vertex. For this reason,
we change the trail type of L, into (¢,¢)/(1, I). The trail cover type of
{L,,L,} in Gy is then determined by the trail types of L, and L, and is
given by {(s, s)/(¢, s) + (¢, 1) /1, I)}.

Now we formally define the term trail cover type. Let N be a network
with graph representation (G[N], G[N']). Let # be a family of disjoint
common trails that cover all of the edges in (G[N], GIN']). Let (L, L) be
a trail pair in & with v,,v, and vg, v, as terminals in L and L',
respectively. If the terminals of both L and L' are distinguished vertices of
(GIN],GIN'D, (L, L) is called a distinguished trail, and a nondistinguished
trail otherwise. To be specific, the #ype of (L,L) in (GIN],GIN'D,
denoted by T(L, L), has the form (T(v,), T(vy))/(T(v,), T(v,)), where
T(v) can be a distinguished vertex (s or ¢) or an internal vertex (denoted
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FIG. 6. Ans.p. graph pair with a DET trail.
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FIG. 7. The tree representation of the network with an s.p. graph pair shown in Figure 6.

by I). The order of the terminals in a trail type is irrelevant; e.g.,
(¢,t)/(I, 1) and (I, I)/(¢,t) are considered to be equivalent. A nondistin-
guished trail can concatenate with at most one other trail. Since we are
considering the concatenation of common trails, types {(z, I), (s, I), (I, t),
(1, )} of (T(vy), T(vy) or (T(v,), T(v,)) can be represented by (I, I); e.g.,
(¢,5)/(¢,I) is denoted by (¢,5)/(1,1), and (I,1)/(¢,I) is denoted by
1, Dy D).

Let ¥={(L,, L), (L,, L,),...,(L,, L,)} be a set of disjoint common
trails that cover all of the edges in (G[N], G[N']) for some network N.
The trail cover type (%) is defined as 7(%¥) ={T(L,, L)) + T(L,, L,)
+ -+ +T(L,, L)}. Throughout this paper, “+" is commutative. We de-
fine dual trail cover type for (%), i.e., a trail cover type for & in
(GIN'],GIND as 7'(¥) ={T(L,, L)) + T(L,,L,) + -+ +T(L,, L)}
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Let M be a network with graph representation (G[M], G[M']) and &
be a set of disjoint common trails that cover all of the edges in
(GIM],GIM']. For a partial subnetwork R of M, we denote by G,[R]
the subgraph of G[M] induced by R. Let N be a partial subnetwork of M
such that G, [N] and G,,[N’] are connected subgraphs of G[M] and
G[M'], respectively. The edges of (G, [N], G,/ [N']D constitute a set of
maximal sections of # that cover edges of (G,[N], G, [N']. Let 75(N, ¥)
denote the trail cover type on (G,[N], G, [N'D derived from . To
classify different types in 75(N,.¥), we note that any common trail is
constructed from {(z, 1) /(s, 5); (¢, s) /(s, )}, which represents the trail cover
type of a leaf, by a sequence of series connection, parallel connection, and
taking the duals. Maziasz and Hayes [10, 11] considered the closure of all
series connection, parallel connection, and taking the duals of the trail
covers generated by {(z,1)/(s, ); (¢, 5)/(s,1)}. They classified 75(N, %)
into 42 types according to the directions of each trail. In their classifica-
tion, there is no common trail that begins and ends at the same distin-
guished vertex in both G[N] and G[N’], e.g., (¢,1)/(z,t). Furthermore,
nondistinguished trails are represented by (¢,1)/ (1, 1), (¢,s)/(I, I), (s, 1)/
1, D, (s,8)/ 1), and (I, 1)/, ).

To simplify the exposition of this 42-type classification, we define an
equivalence relation of trail cover types, which renders the concept of trail
cover class. We use the example of Figure 6 to informally introduce this
concept. A network may have different graph representations. Given a
graph representation of a network, we can obtain other graph representa-
tions by a sequence of interchanging the distinguished vertices of their s.p.
subgraphs. For this reason, the trail type (s, s) /(¢, s) of (L, L) in (Gg, G})
in Figure 6 may change into (s,1)/(t, s), (¢,5)/(s, s), or (¢,¢) /(s, t). All of
these types represent a common trail (L,, L;}) in which L, begins at a
distinguished vertex and terminates at the other distinguished vertex,
whereas L', begins at one distinguished vertex and terminates at the same
vertex. It is observed that the subgraph of G4 induced by 31, 32 has exactly
two vertices of odd degree, namely, the distinguished vertices of G;. We
use 2 to indicate the trail class of L,. Similarly, we use 0 to indicate the
trail class of L’ because none of its distinguished vertices are of odd
degree. We say that the trail class of (L, L) in (G4, G3) is [2, 0]. We use x
to indicate a trail in G in which one end point is a distinguished vertex of
G and the other an internal vertex, and y to indicate a trail in G in which
L begins and terminates at internal vertices. In our example, the trail class
of (L,, L,) is [2, x]. However, since [2, x] can concatenate with another
common trail only at one end, we change trail class [2, x] into [x, x]. In
other words, as (¢, s) /(t, I) is represented by (¢, s) /(I, I), we can write the
trail class of (L,, L) as [x, x] instead of [2, x]. Since {L,, L,} forms a trail
cover of G4, we say the trail cover class of {L,, L,} is [(x, x) + (2,0)].
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To formally define the term trail cover class, we first define an equiva-
lence relation of trail cover types as follows. For a graph representation
(G[M],GIM']) of a network M, a trail cover type 7 in (GIM], G[M']) is
equivalent to 7 if and only if 7 can be obtained from 7 by permuting the
distinguished vertices of 7 in GIM]or G[ M’] or both, i.e., by reversing the
direction of 7 in G[M] or G[M'] or both. This equivalence relation
enables us to define a trail cover class that induces all trail cover types that
are equivalent to each other. To consider the equivalence of trail cover
types, we need to compare the trail sets in primal and dual graphs,
respectively. Now we are motivated to introduce new definitions of trail
classes in an s.p. graph without considering the direction of a trail.

DeriNnITION 2.1. Given an s.p. graph G with distinguished vertices s
and ¢, let L be a trail of G. (Note that this trail does not necessarily
contain all of the edges of G.) We say that L is in class 2 if L begins at a
distinguished vertex and terminates at the other distinguished vertex, in
class 0 if L begins at a distinguished vertex and returns to the same
distinguished vertex, in class x if one end point of L is a distinguished
vertex and the other is an internal vertex, and in class y if L begins and
terminates at internal vertices.

As shown in Figure 6, the trail (23,24,25) of G, is in class 2, the trail
(17,18) of G, in class 0, the trail (40,41, ...,46) of G, in class x, and the
trail (1,2,...,46) of G in class y.

Given an s.p. graph G, let T = {L,, L,} be a set of two disjoint trails in
G. We say that T is in class 6 if both L, and L, are in class 0 and begin
and end at different distinguished vertices. We use 6 to symbolize a trail
cover consisting of two class 0 trails as top and bottom parts. If L, and L,
are in class 2 and begin and end at the same distinguished vertex, T is said
to be in class ¢, which is used to symbolize the left and right parts of T.
Similarly, we define classes 6x and ¢x for the case where L, and L, are
in class x. We say that T is in class 6x if L, and L, begin or terminate at
different distinguished vertices, and in class ¢x if L, and L, begin or
terminate at the same distinguished vertex. Suppose that if L, isin class 0
and L, is in class x, we say that 7 is in class 0 + x. Other trail cover
classes can be similarly defined for trail sets with more than two trails of
other combinations.

Again we use Figure 6 as an example. We can consider a trail set in G;,
which does not necessarily contain all of the edges in G;, but contains all
of the edges in a subgraph of G; that corresponds to a partial subnetwork.
The trail set {(15, 16),(19,20)} in G, is in class ¢, the trail set {(1,2,...,
6),(9,10,...,14)} in G, is in class 6. In the example of Figure 6, we cannot
find a trail set induced by L which is in class 6x or ¢x. Since a graph can
have many different trail sets, for illustration purposes we define other
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trail sets in G; and G,. New trail sets in G; and G, are given by
{(41, 40, 39), (42,43, 44,45, 46)}, and {(3,2,1,7,8),(11, 10,9, 21, 22)}, respec-
tively. The trail set {(41, 40, 39), (42, 43,44, 45,46)} in G is in class 6x, and
{(3,2,1,7,8),(11,10,9, 21,22)} in class ¢x.

Let M be a network that realizes a DET (L, L) in (GIM ], GIM']). For
a partial subnetwork R of M, L induces a trail cover in (G, [R], G\, [R'D,
which is denoted by L;[R]. Using the notation of trail classes 0, 2, x, y, 6,
¢, 0x, and ¢x, we can reclassify the 42 trail cover types proposed by
Maziasz and Hayes [10, 11] into the following 18 trail cover classes:

class a: [2,2] = {(¢,1)/(s, ); (¢, 5) /(s, )}

class b: [2,0] = {(¢,2)/(s,0);(t,5)/(s,5)}

class c¢: [0,2] = {(¢,0) /(t, 5); (s,1) /(s, 8)}

class d: [0, ¢] = {(¢,1)/(t,s) + (s5,1) /(s, 5)}

class e: [, 0] = {(¢,8)/(s,8) + (¢,5)/(s, $)}

class f: [x,x]1={(t,t) /1, 1);(t,s) /I, 1);(s,t) /I, 1);(s,5) /I, I)}

class g: [(x,x) + @Dl ={(t,0)/ (s,8) + (t,9)/ U, D); (t,1)/(s,s)
+ (s,0)/ (L, D); (t,8)/ (s, t) + (t,0)/ (1, 1); (t,5)/ (s, 1) + (s,5)/ (I, 1)}

class h: [(x,x) + (0,21 ={(t,t)/(t,s) + (s,)/ (I, D); (t, )/ (¢,5)
+ (s,9)/ U, D; (s,0)/(s,8) + (t,0)/ U, D) (s,8)/ (s,s) + (¢,5)/ I, D}

class i: [(x,x) + 2,00 ={(t,1)/(s,t) + (t,5)/ (I, D); (t,8)/(s,1) +
(s,8)/ I, D;(t,s)/(s,s)+ &, )/ D);(t,5s)/(s,s)+ (s,0)/ (I D)}

class j: [ox, 0x]1={(t,t)/ U, 1)+ (t,s)/ (L I); (s,8)/ (I, 1I)+ (s,
s)/ I, 1)}

class k: [6x, px]1={(t,t)/ (1, 1) + (s,t)/ (I, 1); (t,5)/ (I, I)+ (s,
s)/ (I, 1}

class I: [0x, 0x]1 ={(t,0)/ (I, I) + (s,58)/ (I, I); (¢,8)/ (I, I) + (s5,8)/
(I, D}

class m: [(0x,0x) + 2,2l ={(¢,8)/ (s, 0) + (¢,0)/ (L, 1) + (s5,5)/
(L D);(t, 1)/ (s,8) + (t,8) /U, T) + (s,6)/ (I, 1)}

class n: [(¢px, 6x) + (0,2] ={(t,0)/ (t,s) + (s, )/ (I, I) + (s,5)/
(I,D; (s,0)/(s,8) + &,0)/ I, T) + (t,5)/ (I, D}

class o: [(8x, ¢px) + 2,01 ={(t, )/ (s,0) + (&,8)/ (L, 1) + (s,5)/
(L, D; 8/ (s,8)+ @, )/ U D+ (s,0)/ I, I}

class p: [y, yl ={U, /U, D}

class q: [3(x, )1 ={(t,t)/ (1, 1) + (t,s)/ (I, 1) + (s,8)/ (I, I); (¢, 1)/
LD+ @)/ D+ (s,8)/UD); (t,0)/ L, T)+ (s,6)/ (I, 1) + (s5,5)/
(I,D;(t,s) /U, 1)+ (s,0)/ I, T) + (s,5)/ (I, 1)}

class r: [4(x, )] ={t, )/ L, 1)+ (t,s)/ (L, 1) + (s,8)/ (I, ) + (s,
s)/ I, D).
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Theorem 1 of [11] states that these 42 trail cover types define a complete
set of trail cover types. Since the nondistinguished trail of type (1, I)/(I, I)
cannot be concatenated with any other trail, it stands in class p itself.
Since the nondistinguished trail with one distinguished vertex as a terminal
in each trail cover can concatenate with at most one other trail, it must be
the beginning or ending section of the trail cover. Therefore, no DET
network can have trail covers that include more than two of such nondis-
tinguished trails. In other words, no DET network can have trail covers in
classes g and r. Thus we eliminate these two classes from our analysis and
focus on the first 16 trail cover classes, a, ..., p only. We restrict all of the
trail covers in the following discussion to be in a subset of {class «,class
b,...,class p}. For simplicity, we write {a, b, ..., p}.

It is necessary to distinguish trail cover classes on series-type networks
from those on parallel-type networks. The dual class of a trail cover class,
say [w, zIg ([z,w]p) in (N, N'), is defined as [z,w], ((w, z]g) in (N', N).
The dual class is obtained by reversing the role of primal and dual
networks. Since the type S or P of a network is given, we can sometimes
omit the subscripts S or P of a trail cover class without ambiguity. We call
[z,w] the dual trail cover class (or simply, dual class) of [w, z]. For
example, the dual class of [(¢x, 6x) + (0,2)] is [(8x, px) + (2,0)], since
the dual of [¢x, 6x] is [0x, ¢x] and the dual of [0, 2] is [2,0]. In Figure 7
we also show the trail cover class and the dual trail cover class associated
with each node derived from L = 1,2,...,46. Note that the trail cover
class and the dual trail cover class notations in Figure 7 are for the
particular graph shown in Figure 6 and the specific DET L. It is possible
to obtain other trail cover classes by rearrangement of subgraphs, i.e.,
different concatenation of s.p. graphs. In other words, a different concate-
nation of s.p. graphs can yield a different concatenation of trail cover
classes. (Later in Lemma 4.1 and Table 2 of Section 4, we will show that
some specific concatenations of s.p. graphs or trail cover classes are
preferred to obtain a DET.)

We define a different concatenation of s.p. graphs as follows. Let G,
and G, be two s.p. graphs having distinguished vertices s, and ¢, for
k = 1,2. (In this paper, we use s to denote the distinguished vertex on the
top of an s.p. graph and ¢ to denote the one on the bottom.) When s, and
te, k=1,2, are specified, we can define a different concatenation of G,
and G,. We use G,0'G, and G,0'G, to denote all possible series
connections of G, and G,, where Gjla"Gj2 represents an s.p. graph with
G, placed on top of G; for ji,j, €{1,2} and j, #j,. To be specific,
G,0'G, denotes the resulting s.p. graph with distinguished vertices s = s,
and ¢ = t,. The remaining three concatenations of G,o'G, for i = 2,3,4
can be similarly defined. Furthermore, we can similarly define G, o ‘G, for



THE RECOGNITION OF DOUBLE EULER TRAILS 229

i=1,234, and parallel connections G,7'G,, G,7'G, as well. We
use G,0G, to denote the set {G,0'G,|i =1,2,3,4 U{G,0'G,|i =1,
2,3,4}, and G,7G, is defined similarly. Note that (G,0G,)0G; #
G,0(G,0G,), but (G,7G,)mG,; = G,w(G,7G,). Given k s.p. graphs
G,,G,,...,Gy, we use G,0'G,c'-- 0'G, to denote the s.p. graph
(((G,0'G)c'Gy) + d'Gy), and Gyw'G,m' -+ 7w'G, to denote the s.p.
graph ((G,7'G,)7'G,) -+ 7'G,). Moreover, we define G,0d G0+ 0 G,
as the union of ((G,0G;)oG,) - 0G,), where iy, i,,...,i, form a
permutation of 1,2,..., k. We define G,7wG,m--- wG, similarly.

For each trail cover class of the series type, it is easy to find a
corresponding dual trail cover class. Therefore, it suffices to consider a
series connection of trail cover classes only. Let TC = {a, b, ..., p} be the
set of all trail cover classes. We define an operation ¢! on k trail cover
classes as a series connection of & trail cover classes, which maps from
TC X -+ X TC to P(TC), the power set of TC, as follows:

x,o0'x,0t -+ a'x, = {y € TC|for every s.p. graph pair (G,, G}) with
i=1,2,...,k having a trail cover 7; in x;, there exists an s.p. graph pair
(G,G), with G € G,0'G,0' -+ ¢'G, and G € G\7w'Gyn* -+ 7G|,
having a trail cover T in vy such that the induced trail cover of T in G; is
T; for all i}.

The operation x,0'x,a' -+ o'x, can be treated as a concatenation
of k trail cover classes x;, x,,..., x, in specific series connection of s.p.
graphs. For X, X,,..., X, € TC, we define X,0'X,0' --- o'X, as the
union of x,o'x,0! -+ o'x, with x; € X, for every i.

We define x,o0x,0 - ox, as we define x;o'x,0! -+ o'x,, except
that G and G’ in the definition are replaced by G € G,0G,0 - oG,
and G' € GG, -+ wG). It can be treated as a series concatenation of
k trail cover classes without restriction of the order of the series connec-
tion of the corresponding k s.p. graphs. It follows that x,o'x,0' ...
olx, Cx,0x,0 -+ ox,. We define X,0X,0 - X, likewise. We are
interested, in particular, in x,ox,. Three examples are given below to
demonstrate the derivation of x,o x,, each also illustrated by a figure with
graph pairs (G,,G!). We use s,, ¢, and s, ¢/ to denote the distinguished

vertices of G; and G, respectively.

ExampLE 2.1. We show here the derivation of [2,2]0[2,2], i.e., aca. It
is known that [2,2] = {(¢, 1) /(s, s); (¢, ) /(s, £)}. Then

[2.2]0(2,2] = {(¢,0) /(5. 0); (2, 5) /(5. 9)}
u{(t.0)/(1 1) + (s,0) /(1 1);
(t,5)/(11) + (s,8)/(1, 1)}
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U0 /(D) + (5,5) /(L 1)
(t.8)/(LI) + (s,1)/(1,1)}
={[2,0],[6x, ¢x],[6x, 6x]}.

Hence aca = {b, k, 1}.

Example 2.1 is illustrated in Figure 8, which contains three graph pairs.
(G,,G)) and (G,, G%) possess trails L, = a and L, = b, respectively, both
in trail cover class a. Up to isomorphism, there is only one graph pair
(G4, GY) with G; € G,0G, and G, € G, 7 G),, as shown in Figure 8c. Let
z be the only nondistinguished vertex in G,. Let M be a DET network
realizing a DET trail (L, L) in (G[M], GIM') that contains (G,, G3) as a
subgraph pair. Suppose that L begins at any vertex u in G[ M] with u # z.
Then L enters G, from s, to 5 (or ¢, to s5), i.e., the trail induced by L in
G, is given by ab. On the other hand, L' enters G either from s’ to s’ or
from ¢ to ¢'. The trail cover induced by (L, L') in (G;, G%) is in class b.
Suppose that L begins at z. Since z is an internal vertex in G, it follows
that deg(z) is even and thus L terminates at z. We assume without loss of
generality that L begins with a and terminates with b. We can also assume
that L' begins at s'. It follows that L' first traverses G% by a and leaves at
t; and reenters G with b. The reentering vertex of L' in G} is either s; or
t;. The trail cover of (L, L) induced in (G GY%) is in class [ if the
reentering vertex is s and in class k otherwise. Thus aca = {b, k, I}.

ExamMPLE 2.2. We show here the derivation of [0, 2][0, 2], i.e., coc. It
is known that [0, 2] = {(¢, 1) /(¢, 5); (s, 1) /(s, s)}. Then

[0,2]0[0,2] = {(¢,0) /(t,s) + (s,8)/(s,8)} V{(L,1)/(1 1)}
={[0,¢].[y.y]}.

Hence coc = {d, p}.

Example 2.2 is illustrated in Figure 9, which contains four graph pairs.
(G,,G?) and (G,, G)) possess trails L, = ab and L, = cd, respectively,
both in trail cover class c¢. Up to isomorphism, there are exactly two graph
pairs (G,,G3) and (G,,G)), with G, € G,0G, and G; e G\7 G, for
i = 3,4, as shown in Figures 9c and 9d. Let z be the only nondistinguished
vertex in G4,(= G,). Let M be a DET network realizing a DET trail
(L, L) in (GIM],GI[M’]) that contains (G5, G3) as a subgraph pair. Sup-
pose that L begins at any vertex u in G[ M ] with u # z. It follows that L
enters G, from either s; or ;. We can assume without loss of generality
that L enters G, at s; with L,. Since L, is in class ¢, L leaves G, at s,
after traversing L, and reenters G, from ¢; with L,. On the other hand,
we can verify that the trail set formed by {(ab), (cd)} in GY% is in class ¢.
Thus the trail cover in (G5, G%) induced by (L, L') is in class d. Suppose
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that L begins at z. We can assume without loss of generality that L begins
with L,. Since the trail cover class of L, is ¢, L, terminates at z and is
immediately followed by L,. Since L, is in ¢, L, terminates at z. Thus
L=L,L, isinclass p.

Let M be a DET network realizing a DET trail (L, L) in (GIM ], G[M'])
that contains (G,, G}) as a subgraph pair. Suppose that L begins at any
vertex u in G[ M ] with u # z. As in the above case, the trail cover class in
G, derived from L can be shown to be in class d. Suppose that L begins at
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z. Similarly, the trail cover in G, derived from L is givenby L = L, L, and

is in class p. Thus coc = {d, p}.

ExAmPLE 2.3.  We show here the derivation of [0, 2]o[x, x], i.e., caf. It
is known that [0, 2] = {(¢,2)/(¢, s); (s,2) /(s, 8)} and [x, x] = {(z, )/ (I, ]);
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(t,8)/ I, D);(s,0)/(1, 1);(s,5)/(1, 1)} Then

[0.2]o[x, x] = {(z,0)/(2,8) + (s.0) /(1. ]);
(t,0)/(t,s) + (s,8)/(1,1);
(s,0)/(s,8) + (1,0) /(1. 1);
(s,8)/(s,8) + (2,5)/(1, 1)}
u{(1, 1)/(1, 1)}
= {[(x.x) +(0.2)]. [y, y]}.

Hence cof = {h, p}.

We illustrate Example 2.3 in Figure 10, which contains four graph pairs.
(G,,G?) possesses a trail L, = ab in class ¢, and (G,, G’,) possesses a
trails L, = cde in class f. Up to isomorphism, there are four graph pairs
(G,G) with G € G,0G, and G' € G,7G’,. We here only show two graph
pairs (G,, G}) with G, € G,0G, and G € G\wG, for i = 3,4. Let z, be
the common vertex of edges e, ¢, and d in G, for i = 3,4. Let M be a DET
network realizing a DET trail (L, L) in (GIM],GIM’']) that contains
(G;,G%) as a subgraph pair. Since deg(z;) = 3, we can assume that L
begins at z;. Thus L begins with L,, which is followed by L,. The trail
cover in G, derived from L isgivenby L = L,L, and is in class p. Let M
be a DET network realizing a DET trail (L, L) in (G[M],G[M']) that
contains (G,,G}) as a subgraph pair. Since deg(z,) = 3, we can assume
that L begins at z, by L, and leaves G, at ¢,. Eventually L must return to
G, at s, (since e has been traversed, ¢, is ruled out), from which it follows
L. After traversing L,, it will leave G, at s,. Thus the trail cover class in
G, derived from L is class 4. We can use similar arguments to discuss the
other two graph pairs (G, G') with G € G,0G, and G’ € G}=G’,. Conse-
quently, we obtain cof = {h, p}.

Using arguments similar to that employed in the above examples, we
construct Table 1 to illustrate the results of o on TC X TC. If a series
connectin of two trail cover classes does not yield a trail cover in TC, we
write aoB = &, which is indicated by a blank entry in Table 1. Obviously,
76(N, %) is in trail cover class a if L isa DET and N is of type L. Note
that Table 1 is closed under series connection, parallel connection, and
taking the duals generated by class a. There are exactly 16 different trail
cover classes needed to form DET.

A network N is possible if there exists a trail cover class in TC for some
(G[N],GIN']D. We use Q to denote the set of all possible networks. For
any network N in Q, Possible(N) = {(G[N], GIN'] | there exists a trail
cover for (G[N],GIN']D, which is in Q}, and Class(N) = {z|z is a trail
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cover class for some (G[N],GI[N']) in Possible(N)}. For example,
Class(N) = {a} for any network N of type L. It follows from Example 2.1
that Class(N) = {b, k, I} for any network N that is a series connection of
two networks of type L. Hence we have Class(N) = {c,j,I} for any
network N that is a parallel connection of two networks of type L.
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TABLE 1
The function ¢ that maps TC X TC to P(TC)
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ExampLE 2.4. Let N be the network in Figure 1, N, be the child
subnetwork of N defined on {e}, N, be the child subnetwork defined on
{a,b}, and N, be the child subnetwork of N defined on {c,d}. Then
Class(N,) = {a}, Class(N,) = Class(N;) = {c, j,1}. It follows from the dis-
cussion in Examples 2.1, 2.2, and 2.3 that Class(N,)o'Class(N,)o*
Class(N,) = {h} and Class(N,)o Class(N,) o Class(N;) = {h, p}. Therefore,
the network in Figure 1 has a DET trail in class p.

Let N be a possible network of type S with child subnetworks N,, N,,
..., N,. It can be observed from the above example that Class(N) =
Class(N,)o Class(N,)o -+ o Class(N,). Thus we need methods to compute
Class(N) from its child subnetworks.

3. PROPERTIES OF DET NETWORKS

Using Table 1, we can derive the generation of classes a, b, c, d, and e.

LEMMA 3.1. The classes a, b, ¢, d and e of type S are constructed as
follows:

() [2,2]5 < {ml2,2],}0{nl2,0],}, where m is odd and m + n > 2.
(i) [2,0]g « {ml2,2]p}0{n[2,0],}, where m is even and m + n > 2.
i) [0,2]5 < [0,2], o{ml ¢, 01}, where m > 1.

(iv) [0, ¢ls < [0,2],000,2],a{ml ¢, 0],}.
[0, dlg < {ml, 01,}a10, dlp, where m > 1.

V) [¢, 0]g « {mlo, 01,}, where m > 2.

In these rules, by “z[—, —1p" we mean a series connection of z[—, —1p’s
where z is a nonnegative integer. The subscript S (P) is used to indicate a trail
cover for some networks of type S (P).

Proof. Every network is recursively constructed from edges and subnet-
works that correspond to leaves and subtrees, respectively. Each edge has
a trail cover [2,2] only of type P or S, depending on the type of its parent.
From Table 1, we know that a =aob, b =aoca or bob, ¢ =coe,
d =doe or coc, and e = ecge. Repeatedly applying these relations, we
obtain the rules as stated in the lemma. |

Examining Lemma 3.1 and its proof, we find that the classes «a, b, c, d,
and e are generated by concatenation of these five classes only, without
involving the remaining 11 trail cover classes. Hence we call classes a, b, c,
d, and e primary trail cover classes, and any trail cover in classes a, b, c, d,
and e a primary trail cover.

LEMMA 3.2, The classes a, b, ¢, d, and e are mutually exclusive. In other
words, let network N have a trail cover in o € {a, b, ¢, d, e}. Then N cannot
have a trail cover B such that B8 € {a, b, c,d, e} and a + B.
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Proof.  According to Lemma 3.1, the generation of a, b, ¢, d, and e are
mutually exclusive. |

To simplify our exposition, we divide the 15 trail cover classes a, b, ..., o,
excluding p, of type S and of type P into five groups:

{[2.2]5.[2,0]5.[2,2]5.[0, 2]}
{[0,2]»,[2,0]s}
{[0.¢]p.[0.0]5)
{

{

[¢.0]0.[0. 015}

[x, x]p [(x. ) + (2,2)]p, [(x, %) + (0,2)] 5. [(x, x) +(2,0)] .,
[x, x]s, [(x, %) + (2,2)]5, [(x, %) +(2,0)] 5, [(x, %) + (0,2)]5,
[dx, 0x]p. [0x, dx]p, [0x, 0x]p, [(0x, 0x) + (2.2)] .

[6x, px]s, [ dx, 0x]s,[0x, 0x]s, [(0x, 6x) + (2,2)]5,

[(dx, 6x) + (0,2)] 5, [(6x, dx) + (2,0)],

[(0x, dx) + (2,0)]5. [(x, 6x) + (0,2)]}.

It follows from Lemma 3.2 that trail covers in 7,, T, T, and Ty are
primary trail cover classes and are mutually exclusive. As shown in Figure
6, the trail cover types of 7,(N;,{L}) for i = 1,10 are in T,.. The trail cover
types of 7,5(N;,{L}) for i =2,3,9 are in T,. The trail cover types of
76(N;, {L}) for i = 4,5,6,7 are in T,. The trail cover type of 7,(Ng, {L}) is
in Tp. In general, let (GIM],G[M'] be any graph representation that
possesses a DET trail L for some network M. Let N be any type S
subnetwork of M. In the following, we will show that those child s.p.
subgraphs of G,,[N] with their derived trail cover classes (from L) in T,
induce at most two connected components. There are at most two child
s.p. subgraphs of G,,[ N]with their derived trail cover classes in .. There
is at most one child s.p. subgraph of G,,[ N] with its derived trail cover
class in T,,. Moreover, if there is a child s.p. subgraph of G,,[N] with its
derived trail cover class in 7., then there is no child s.p. subgraph of
G,,[ N1with its derived trail cover class in Tj;. Those child s.p. subgraphs of
G, [ N1 with their derived trail cover classes in 7 induce at most two
connected components. There are at most two child s.p. subgraphs of
G,,[ N1 with their derived trail cover classes in 7.

Let M be a DET network that possesses a DET (L, L) in (G[M],
G[M']). Let N be a subnetwork of M. Since M is DET, it suffices to
consider properties of trail cover classes of M and of N only, without
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considering M’ and N'. In the following sections, we use a DET L in
G[M]to represent a DET (L, L) in (G[ M ], Gl M’ ]) without ambiguity. We
would like to study the properties of subnetworks of a DET network.

LEMMA 3.3. Let (G,G’) realize a DET L for network M, and let N be a
subnetwork of M.

(i) Let N, be a child subnetwork of N such that L[ N,] is a trail cover
in Tr. Then L must begin or end at an edge in N,.

(i) N has at most two child subnetworks N; such that each L;[N,]is a
trail cover in Ty.

Proof. Each nondistinguished trail contains at least one internal vertex
as a terminal, and therefore one of its termini cannot be concatenated with
a trail cover of another subnetwork. Trail covers in T, contain at least one
nondistinguished trail. Consequently, these nondistinguished trails must be
the beginning section or the ending section of L. Therefore, statement (i)
follows. If N contains more than two child subnetworks N, such that each
L[N, is a trail cover in T, N contains more than two nondistinguished
trails. Since trail covers in TC contain at most two nondistinguished trails,
N cannot have any trail cover in TC. Furthermore, M cannot be DET,
which contradicts the assumption. Hence the lemma follows. |

LeEmMMA 3.4. Let M be a DET network, G| M ] realize a DET L, and N be
a type S subnetwork of M. Then the following statements hold.:

(i) N can contain at most two child subnetworks C; such that each
L,[C;lis a trail cover in T,.

(i) N can contain at most one child subnetwork D such that L[ D] is
a trail cover in T,

(iii) N cannot contain both child subnetworks C; and D, where C; and
D are as defined above.

Proof. To prove statement (i), we assume without loss of generality that
there are exactly three child subnetworks C,, C,, and C; of N such that
each L[C,]is a trail cover in T.. Then G,,[ N] can be written as

Gyl[N] = GM[Nl]UlGM[Cl]UlGM[Nz]U'lGM[Cz]
0'Gy[N;]10'Gy[Cala* Gy [N, ],

where N, can be vacuous for i = 1,2,3,4. Since co'co’c Ccococ =,
it follows that G,,[C,], G,,[C,], and G,,[C,] cannot all be placed consecu-
tively in G[M], i.e., N, and N, cannot both be vacuous. Next, we consider
the case where only two G,[C;] are placed consecutively in G, [N].
Suppose that G,,[C,] and G,,[C,] are connected, i.e., N, is vacuous. The
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possible trail covers of G, [N] are contained in the set =, = (TC —
{HoYcloHc)o (TC — (Do {c}o " (TC — {c}). It follows from Table 1
that

7, < (((TC ~ () o(e}) o)) o (TC = {e))) o} ) o (TC = {c}))
= (((te. .k, fon, pYo(e}) o (TC = (e})) o{e)) o (TC = {e}))
= ({d.h,n, p)or(TC ~ {¢})) o{c} ) (TC — {c}))
— ({d.h, k.1, n}o{c}o (TC — {c})) = D.

Thus there is no trail cover in G,,[N] for GIM] to form a DET, i.e., N
does not have a trail cover in TC. Finally, we consider the case where N,
and N, are not vacuous. In this case, the possible trail covers of G,[N]
are contained in the set 7, = (TC — {c}) o {c}o (TC — {cD o {c}a (TC —
{cHaH{c)a M (TC — {c}). As in the first case, we can show that the set 7, is
empty. Therefore statement (i) follows.

Statements (ii) and (iii) can be proved by arguments similar to those
given for statement (i). |

LEMMA 3.5. Let M be a DET network, GIM] realize a DET L, N be a
type S subnetwork of M, and A,, ..., A, be the only child subnetworks of N
such that each L;[ A;]is in T,. Then in Gy,[N1, A,,..., A, are represented
by at most two connected subgraphs.

Proof. Suppose that in G,,[N], the subnetworks A4,, 4,,..., A, are
represented by three connected components, say, G,[K,], G,,[K,], and
G, K;]. It follows that G,,[ N] can be written as

GM[N] = GM[Nl]‘TlGM[Kl]O'lGM[Nz]UlGM[Kz]
UlGM[Ns]‘TlGM[K3]0'1GM[N4]v

where N; and N, can be vacuous. As in the deduction in Example 2.1, we
have T,o'T, = T,. It follows that each L[K,] is in T, for every i. By
Table 1, 7, can be obtained only by 7,0 7,. It follows that the induced
trail cover in each G,,[N;] is contained in Y = TC — {a, b}. Moreover, N,
and N, cannot be vacuous, since otherwise the A4,’s can be represented by
less than three connected components. Therefore the induced trail cover
in L;[N]is contained in Yo Ya, blo'Yo{a, blo*Yo{a, b}o'Y. It is obvi-
ous that YoYa, blo'Y C Yo{a,bjoY and Yo'YoYa, b} c YoHa, b} C
Yo{a, b}. The trail covers in Yo{a, b} are concatenated with trail covers in
other subnetworks by means of a trail cover in {a, b}, while the trail covers
in Yo {a, b}a'Y are concatenated by means of both trail covers in Y. Since
a and b are primary trail cover classes and Y N {a, b} = &, it follows that



240 HO ET AL.

(Yo¥{a, b}o'Y) N (Yo{a, b}) = &. Therefore, YoYa, b}o'Y c (Yo{a,
b}oY) — (Yo{a, b)) = {j, m,n, 0, p} = W. Moreover, {a, b}oWo'{a, b}
c ({a,by}oW)ola, b} = &, ie., L;IN]= . Therefore, there exists no
trail cover in G, [ N]for G[M]to form a DET, i.e.,, N has no trail cover in
TC. This leads to a contradiction, and hence the lemma follows. ||

LEMMA 3.6. Let M be a DET network, G| M ] realize a DET L, N be a
type S subnetwork of M, and E,, ..., E, be the only child subnetworks of N
such that each LG E]is in T;. Then in Gy,[N1], E,, ..., E, are represented by
at most two connected subgraphs.

Proof. Suppose that in G,[N], the subnetworks E,, E,,..., E, are
represented by three connected components, say, G,,[K,], G,,[K,], and
G, [K;] 1t follows that G,,[ N] can be written as

Gyl[N] = GM[Nl]O'lGM[Kl]‘TlGM[Nz]UlGM[Kz]
UlGM[Ns]UlGM[Ka]U'lGM[N4]v

where N, and N, can be vacuous. Similar to the deduction in Example 2.1,
we have T, o'T, = T,. It follows that each L,[K,]is in T, for every i. By
Table 1, T can be obtained only by T, o T,. It follows that the induced
trail covers in each G,,[ N,] are contained in Y = TC — {e}. Moreover, N,
and N; cannot be vacuous, since otherwise the E;’s can be represented by
less than three connected components. Therefore the induced trail cover
in L;[N]is contained in Yo'{e}o'Yo{e}o Yo {e}a'Y. It is obvious that
Yo'{e}o'Y C Yo{e}oY and Yo'Yo e} C Yo*{e} C Yo{e}. The trail covers
in Yo{e} are concatenated with trail covers in other subnetworks by means
of a trail cover in {e}, while the trail covers in Yo }{e}o'Y are concatenated
by means of both trail covers in Y. Since Y N {e} = & and e is a primary
trail cover class, it follows that (Yo '{e}o'Y) N (Yo{e}) = &. Therefore,
Yo'e}o'Y € (Yo{e}oY) — (Yofe}) = {f, k, I, p} = W. Similarly, we have
{e}o Wol{e} c {e}aW)a{e} = &. Therefore, there exists no trail cover in
G,[N] for G[M] to form a DET, i.e., N has no trail cover in TC. This
leads to a contradiction, and hence the lemma follows. 1

LEMMA 3.7. Let M be a DET network that realizes a DET L in G[M].
Then the following statements hold:

() Al child subnetworks A; of M such that each L[ A,] is in T, are

represented by only one connected component in G[ M ].
(i) M does not contain a child subnetwork N such that L;[N] € Tj,.
Proof. To prove statement (i), suppose that all of the A,’s are repre-

sented by two connected components in G[ M ]. We use arguments similar
to those in the proof of Lemma 3.5 and obtain the result that G[M] can be
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written as follows:
G[M] = GM[Nl]O'lGM[K1]0'1GM[N2]0'1GM[K2]UlGM[Ns]n

where N, and N, can be vacuous, N, cannot be vacuous, L [K;]is in T,
for i = 1,2, and trail covers in each G,,[N;] are contained in Y = TC —
{a,b}. It follows that L is contained in Yo{a, blo'Yo'{a, b}o'Y. It
follows from repeated applications of Table 1 that {a, b}o Y{c, d, e}o*{a, b}
c (a, b}o{c, d, e}ofa, b)) — {a, blo{c, d, e}) = {k, I}, {a, b}o (Y —
{c,d, eDaMa, b} c {a, b}o(Y — {c,d, eDola, b)) — {a, b}a(Y — {c,d, e}))
= (. Therefore, we have {a, b}o*Yo'{a, b}o'Y c {k, l}oY = . This con-
tradicts the existence of L, and hence statement (i) follows.

To prove statement (ii), we suppose that M has a child subnetwork N
such that Lg[N]e T, ={d}. It follows from Table 1 that we have
doTC = {d, h,n}, doTCoTC c {d, h,n}oTC = {d, h, k, I, n}, and
doTCoTCoTC c{d, h,k,l,n}o TC = {d, h, k, [, n}. Therefore, the possi-
ble trail covers in M are contained in d, &, k, [, n and, as a result, M is not
DET. This leads to a contradiction. Hence the lemma follows. |

Remark 3.1. Statement (i) of Lemmas 3.4 and 3.6 also holds for
N = M. In other words, let M be a DET network that realizes a DET L in
G[M]. Then M contains at most two child subnetworks C; such that each
LgIC;1is in T.. All of the child subnetworks E; of M such that each

LGIE;]is in T are represented by at most two connected components in
GIM]

4. RULES FOR TRAIL COVER CLASS COMPOSITION
AND REFINEMENT

In this section we propose an algorithm that generates the rules for the
composition of each trail cover class. These rules are used to find all trail
cover classes of a network in all graph representations. For the rules for
trail cover composition, it suffices to consider series connections of trail
cover classes. For a network of the parallel type, we take the duals of its
child subnetworks and apply the rules for series type. Then we again take
the duals of the resulting trail cover classes to obtain the trail cover classes
for the network.

On the basis of the analysis in Section 3, we use an array A4 of size 8 to
represent all trail cover classes. Elements of A are labeled by a,, a,, ¢,
d,, e, e,, f;, and f,. According to Lemma 3.5, subnetworks with trail
covers in T, are represented by at most two connected components in
G[M], or else they cannot form a trail cover in TC. Therefore, we use a,
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and a, to represent all possible representations of trail covers in 7,; each
element corresponds to a connected component. a; is used to indicate
three possibilities regarding trail covers in T, i.e., none in 7, a trail cover
in class a, and a trail cover in class b. Lemma 3.1 states that class a
consists of an odd number of [2, 2], and some [2,0],, and class b consists
of an even number of [2,2], and some [2,0],. We therefore define a, =
to mean no trail cover in T,, a;, = 1 for an odd number of [2,2],, and
a, = 2 for an even number of [2, 2],. Similarly, we let a, = 0 mean no trail
cover in T, a, = 1 an odd number of [2,2],, and a, = 2 an even number
of [2,2], for the second connected component. When subnetworks with
trail covers in T, are represented by only one connected component in
G[M], we define a, = 0.

By Lemma 3.4, a network can have at most two child subnetworks with
trail covers in T.. We write ¢, = 0 for no trail cover in T, ¢, = 1 for one
in T, and ¢, = 2 for two.

By Lemma 3.4, we define d; = 0 for no trail cover in T,,, d, = 1 for one
in Tp,.

As in the case of trail covers in 7,, each of e¢; and e, corresponds to a
connected component. For the first component, we use e, = 0 to indicate
no trail cover in T; and e, = 1 to indicate at least one in T;. We define e,
similarly.

According to Lemma 3.3, a network contains at most two child subnet-
works with trail covers in T,.. Therefore, we use f, and f, to represent the
trail cover classes in Ty, excluding p, since it cannot be concatenated with
any other trail cover class. Each of f, and f, takes one of 11 possible
values: 0 for no trail cover in T, and 1,2,...,10 for the 10 trail cover
classes in T} (see Table 1).

We consider all of the combinations of trail cover composition in array
A. For each combination, take all permutations to obtain a series connec-
tion of these trail cover classes with different orders of concatenation,
since each permutation corresponds to a fixed order of concatenation of
corresponding graph representations. Since there are only eight elements
and each takes of a small number of different values, there are a finite
number of permutations. Using Table 1, we find all possible trail cover
classes for each permutation and store the results. Finally, we sort these
results to obtain the composition of each trail cover class.

We summarize the above discussion in the following procedure:

Step 1. Set up values for A4 as discussed above. For each combination
of these eight arrays, get all permutations and find the resulting trail cover
classes according to Table 1.

Step 2. Sort these results to obtain the composition for each trail
cover class.
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It can be easily verified that there are at most (8!/
(21212)(32)(31)(21)(22)(11?) permutations in the above procedure. There-
fore, this procedure can be carried out in constant time. Since some
permutations cannot yield a trail cover in classes a to p, the number of
rules can be greatly reduced. In Table 2 we list a total of 156 rules
generated from this procedure. The trail cover classes listed in each rule
are arranged in order from top to bottom in the graph representation, so it
is convenient to check Table 2 to determine the appropriate representa-
tion for each trail cover class. In Table 2, by z[—, —], we mean series
connection of z[—, —],’s, where z is a nonnegative integer.

We note from Table 2 that series connectin of some specific trail cover
classes results in trail covers in more than one class, one in group
T,V T, U T, U T, and the others in T.. For example, suppose that N,
and N, have trail covers in class a. According to Table 1, trail covers for
N,oN, can be in classes b, k,! where b € T, and k,! € T,. We want to
find trail covers of N,o0N,oN; for an arbitrary network N,. We distin-
guish two cases for trail covers of N, N,. In the first case, let {k, /} be the
resulting trail covers in N,o N,. By Table 1, N; must be a network with a
trail cover in T,, say a, otherwise N,o N, o N, cannot have any trail cover
in TC. Furthermore, N,oN,o N, has trail covers in {k, [}. Consider the
second case, where b is the resulting trail cover in N,oN,. Let N; be a
network with a trail cover in class a as in the first case. It follows from
Table 1 that N,oN,oN, has trail covers in {a, k,}. Comparing the
resulting trail covers of N;o N, o N, in both cases, we find that {k, [} in the
first case is contained in {a, k, I} of the second case. Therefore, we can
write aca = b instead of aca = {b, k, [} when considering the composi-
tion of DET or DEC networks. This fact can also be observed from
Example 2.1.

On the other hand, we will show that the trail covers in b resulting from
aoa can be obtained from the trail covers in {k, [} and vice versa. Let M
be a DET network that realizes a DET (L, L) in (G,G’), and let N =
N,oN, be a partial subnetwork of M, where L;[N,] as in a for i = 1,2.
Suppose that L;[N]is in k. Let L, denote the trail in N, induced by L.
We assume without loss of generality that L, is the beginning section of
L, L, is the ending section of L, and L can be written as L = L,QL,.
Obviously, L begins at the vertex that serially connects G,,[N,;] with
G, N,] and terminates at the same vertex. Furthermore, L' begins at one
of the distinguished vertices, which connects G,/ [N;] and G,/ [N;] in
parallel and terminates at the same vertex. It follows that (G,G’) has
another DET trail, namely, L* = QL,L,. Moreover, LY[N] = L,L, isin
b. We can provide a similar proof for the case where L;[N]is in . Now
suppose that L;[N]is in b. By reversing the above operation, we can
derive the trail covers in {k, [} from the trail cover in b that results from
aoa.
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TABLE 2
Rules for trail cover class composition and refinement

o

o

@

oS

LA g

[2,2}s = {u[2,2]p} ¢ {v[2,0]p}, uisoddand u+v > 2.

[2,0]s = {u[2,2]p} o {v[2,0]p}, uiseven andu +v > 2.

[0,2]s = [0,2]p o {u[¢,6]p}, u > 1.

[8,¢]s = [0,2]p o [0,2]p o {u[o,8]p}.
[0,8]s = [6,¢]p o {u[8,0]p}, u> 1.

(6,0]s = {u[¢,0]p}, u > 2.

[Z,z]s
[z,2]s
[1,2:]5
[z,2]s

0
z
0,
0

[ =)

,2lp o {u[$,0]p} o {v[2,2]p or w[2,0]p}, v,w > 1.

1p o {u[2,2]p or v[2,0]p}, u,v > L.

p o {u[¢,0]p} o [(z,2) +(2,2)]p o {v[2,2]p} 0 {w[2,0]p}.
p o {u[$,0]p} o [(z,2) + (2,0)]p o {v[2,2)p} o {w][2,0]p}.

8

’

LML)

s

[(z,2) + (2,2)]s = {u[2,2]p} 0 {v[2,0]p} o {w]0,6)p}, uisodd, w> 1.
[(z,2) +(2,2)]s = {u[2,2]p} ¢ {v[2,0]p} o [(2,2) + (2,0)]p o {w[¢,8]p}, uis odd.
(z,z) +(2,2)]s = {u[2,2]p} o {v[2,0]P} o [(z,2) + (2,2)]p o {w[®,0]p}, uis even.

¢z, 0z
¢z, 0z
bz, 0x
¢z, 0x
¢z, 0%
¢z, O
¢z, 0x
¢z, 0z
¢z, 0T
¢, 0z
¢z, B
Pz, 0z

8z,0z
0z, px
bz, ¢z
0z, 0z
0z,0z
8z,9%
0z, ¢z
8z, 0x
0z, px
8z, ¢z
0z, ¢z

Oz, px

9z, ¢z

(z,2) +(0,2)]s = {u
(zy2) +(0,2)]s = {u
(z,2) +(0,2)]s = {uw
(z,2) +(0,2))5 = {u
(z,2) +(0,2)]s = {u
(z,2) +(0,2)]s = {u|
(z,2) +(0,2)]s = {u|
(z,2) + (0,2)]s = {y|
(z,2) +(0,2)]s = {u'

(®,7) +(2,0))s = {u[2,2
(2,2) + (2,0)]s = {u[2,2lp} o {4[2,01p} o [(,2) + (2,2)lp & {w[$,6]p}, u s odd.
(z,2) +(2,0)]s = {u[2,2

s =

s =
5=
s =
5=
s =
s =
s =
s =
s =
s =
s =

s=

={u

,2]p or v[2,0]p} 0 [0,2]p 0 {w[$,0]p}, u,v>1.

,2]p or v[2,0]p} o [6,¢]p o {w[¢,0]p}, u,v > 1.

,2]p or 0[270]1’} 4 [O’Z]P 4 [072]1’ a {w[¢)0]P}y u,v 2> 1.

y2p} o {v[2,0]p} o [(2,2) + (0,2)]p o {w[¢,8]p}.

12 p} o {v[2,0]p} o [z,2]p 0 [0,2]p o {w(¢,8]r).

,2lp} o {v[2,0]p} o [(z,2) + (2,2)]p 0 [0,2)F ¢ [0,2]p o {w[s,0]p}.
,2lp} o {v[2,0]p} o [(z,2) +(2,0)]p & [0,2]p 0 [0,2]p ¢ {w[s,6]p}.
,2lp} o {v[2,0]p} o [(z,2) +(2,2)|p o [6,9]p o {w[$,0]r}.

y2lp} o {v]2,01p} o [(z,2) + (2,0)]p o [8,¢]p o {w[$,6]r}.

BN N NN NNNN

porv[2,0p} o {w[p,0]p}, uiseven, u,v,w > 1.

p}o{v[2,0]p} o [(z,2) + (2,0)]p o {w][0,0]F}, uis even.

0,2]p o {u[2,2]p} o {v[2,0]p} o {wl¢,6]p}, w > 1.

0,2]p o {u[2,2]p} o {v[2,0]5} o [(z,2) +(2,0)]p o {w[¢,0]p}.

0,2]p o {u[2,2]p} o {2(2,0]p} o [(z,2) +(2,2)]p o {w[¢,0]p}.

0,2)p o {u[¢,6]p} o [(0=,62) + (2,2)].

0,2]p o [(z,2) +(2,0)]r o {u[2,2]p} o {1[2,0]p} 0 [(z,2) + (2,2)]p o {w]¢,0]p}.
0,2]p o [(z,2) +(2,2)]p o {u[2,2]p} o {4]2,0]p} o [(z,2) + (2,2)]p o {w[$,6]p}.
0,2l o [(2,2) + (2,0)]r o {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,0)]p o {w]s,8]p}.

=[0,2]p o {ul¢,0]p} o [(0z,9z) + (2,0)]p.
= z,z]p o {u[2,2]p} o {v[2,0]p} o {w[¢,0]p}, w> 1.

z,z)p o {u[2,2]p} o {v[2,0]p} o [(=, x) +(2,0)]p o {w[¢,0]p}
z,z]p 0 {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,2)]p o {w[¢,0]p}.
{"[¢,9]P} [¢z,0z]p, u > 1.

{u[2,2]p} o {v[2,0]p}, u+v>2.

{u[2,2]p} ¢ {02,005} 7 [0,2]5 7 (w[g,0]p}, utv>2.

{u[2,2]p or ¥[2,0]p} o [z,2]p, u,v > 1.

{u[2,2]p or v[2,0]p} ¢ [0,2]p o {w[¢70]P} o [(z,2) +(2,2)]p, u,v > 1.

{u[2,2]p or ¥[2,0)p} 0 [0,2]p o {w[¢,8]p} ¢ [(z,2) + (2,0)]p, u,v > 1.

{u[2,2]p} o {v[2,0]p} o [0,¢]P o {w[g,0]p}, u+v2>2.

{uf2,2]p} o {v[2,0]p} 0 [0,2]p ¢ [0,2]p o {w[$,8]p}, u+v>2

{u[2,2]p or v[2,0]p} o {w(e,8]p} o [(z,2) + (0,2)]p, u,v > 1.

{u[2,2] or v[2,0]p} & {w[$,0]r} @ (0, 2] o [z,0lp, 4,0 > 1.

{ul2,2]p or ¥[2,0]p} 0 [0,2]p 0 [0,2]p o {w[3,0)p} o [(z )+ (2,2)]p, u,v> 1.

{u[2,2]p or v[2,0]p} o [0,2]p 0 [0,2]F o {w[,6]p} ¢ [(z,2) + (2,0)]p, u,v > 1.
2,2]p or v[2,0]p} o [0,0]p o {w[9,0]p} o [(z,2) + (2,2)]p, u,v > L.

{u[2,2]p or v[2,0]p} o [0, 9] P o {w[¢,0]p} o [(z,2) + (2,0)]p, u,v > 1.
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TABLE 2—Continued

v
v

*

1

LA A

v
v

[0z, ¢z]s = {u[2,2]p} ¢ {v[2,0]p} o {w[0,6]p} o [(z,2) + (2,2)]p, uiseven, u+v > 2.

0z,¢x)s = {u[2,2)p} o {v[2,0]r} o {w[$,0]p} o [(x,2) + (2,0)]p, uisodd, u+v > 2.

0z, ¢xz]s = {u[2,2]p} o {v[2,0]p} o {w(®,0lp}, uisodd, u+v>2, w>1.

0z,9z]s = {u[2,2]p} o {v[2,0]p} o [0x,0z] p, u is odd.

0z, ¢x)s = {uf2,2]p or v[2,0]p} o [0z, ¢x]p, u,v > 1, u is even.

[0z, ¢z]s = {u[2,2]p} o {v[2,0]p} o [z,2]p o [x,2z]p.

62, 02)s = {u[2,2)p} o {v[2,0)p} o [z} @ (0,2]p o {w[#,01p} o [(2,2) + (2,2)]-

0z,¢x)s = {u[2,2]p} o {v[2,0]p} o [®,2]p ¢ [0,2]p o {w[0,0]p} o [(z,2) + (2,0)]p.

0z, ¢z]s = {u[2,2]p} o {v[2,0]p} o [(z,z) + (2,2)]p o {w[e,0]p} ¢ [0,2]p o [0,2]p o [(x,2) + (2,2)]p.
0z, ¢z]s = {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,2)]p o {w[¢,0]p} 6 [0,2]p 0 [0,2]p & [(z,2) + (2,0)]p.
0z, ¢xls = {u[2,2]p} ¢ {v[2,0]p} o [(z,2) + (2,0)]p o {w[¢,8]p} ¢ [0,2]p ¢ [0,2]p o [(z,z) + (2,0)]p.
[0z, ¢z]s = {u[2,2]p} o {v[2,0]p} o [(z,2) +(0,2)]p o {w[0,0]p} o [(z,2) + (2,0)]p.

[0z, 92]s = {u{2,2]p} 0 {v[2,0]p} o [(z,2) + (2,0)]p o {w[6,0]p} o [6,¢]p o [(z,2) +(2,2)]p.

[0z, ¢z)s = {u[2,2]p} ¢ {v[2,0]p} o [(z,2) + (2,0)]p o {w[¢,0]p} o [8,¢)p o [(z,2) + (2,0)]p.
[8z,¢z]s = {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,2)]p ¢ {w[®,0]p} o [(x,2) + (0,2)]p.

[0z, 0z)s = {u[2,2]p} o {¥[2,0]p} o [(z,2) + (2,2)]p o {w{0,8]p} o [6,8]p o [(z,2) + (2,2)]p.

8z, ¢x]s = {u[2,2]p} o {v[2,0]p} o [(z,%) + (2,2)]p o {w(e,08]p} o [(z,z) + (2,0)]p, u is even.
[0z, ¢z]s = {u[2,2]p} o {v[2,0]p} o [(x,2) + (2,0)]p & {w[¢,0]p} ¢ [(z,z) + (2,0)]p, u is odd.

[0z, ¢z]s = {u[2,2]p} o {v(2,0]p} o [(x,2) + (2,2)]p o {w[0,0]P} o [(z,2) + (2,2)]p, u is odd.
[6z,02]s = {u[2,2]p} o {v[2,0]p} u+v > 2

6x,0x)s = {u[2,2]p} o (v[2,0]p} 0 [0,2]p o {w[$,6]p}, u+v>2.

0z,0z]s = {u[2,2]p or v[2,0p} o [z,2]P, u,v > 1.

6z,0z)s = {u[2,2]p or v[2,0]p} ¢ [0,2]p a{w[¢ 0p} o [(z,2)+(2,2)]p, u,v > 1.

0z,0z]s = {u[2,2]p or v[2,0]p} o [0,2]p o {w[e,0]p} o [(z,2) + (2,0)]p, uv,v > 1.

0z,0z)s = {u[2,2]p} o {v[2,0]p} o [0,0]p o {w[¢,0]p}, u+v>2.

9z,0z)s = {u[2,2]p} o {v[2,0]p} 5 [0,2]p ¢ [0,2]p o {w[e,8]p}, u+v>2.

8x,0x)s = {u[2,2]p or v[2,0]p} o {w[®,0]p} o [(x,2) + (0,2)]P, u,v > 1.

0z,0z]s = {u[2,2]p or v[2,0]p} o {w[¢,6]p} 0 [0,2]p 0 [z,2]p, u,v > 1.

0z,0z)s = {u[2,2]p or v[2,0]p} 0 {w(¢,6)p} 0 [0,2]p 0 [0,2]p o [(x,2) + (2,2)]pP, u,v > 1.

6z,0z)s = {u[2,2)p or v[2,0]p} o {w[¢,0]p} ¢ [0,2]p 0 [0,2]p o [(z,2) + (2,0)]p, u,v > 1.

0z,0z)s = {u[2,2]p or v[2,0]p} o {w[¢,0]p} o [0,¢]p o [(z,2) + (2,2)]P, u,v > L.

0z,0z]s = {u[2,2]p or v[2,0]p} o {w[0,8]p} o [8,¢]p o [(z,2) +(2,0)]p, u,v 2> 1.

0xz,0z)s = {u[2,2]p} o {v[2,0]p} o [2,2]p o [z,2]P.

0x,0z)s = {u[2,2)p} o {v[2,0]p} o [(z,2) + (2,2)]p o {w[,0]p} ¢ [0,2]p o [z,2]p.

62,6)s = {u[2,2]p} o {v[20]p} ¢ {(z,7) + (2,0)]p 7 {w[0,8]p} 7 [0, 2] o [&,2]p-

0z,0z)s = {u[2,2]p} 0 {v[2,0)p} 0 [(z,2) + (2,2)]p 0 {w[®,0]p} 0 [0,2]F 0 [0,2]p o [(z,2) + (2,2)]p.
0z,0z)s = {u[2,2]p} o {v[2,0]p} o [(x,2) + (2,2)]p o {w]¢,0]p} 0 [0,2]p ¢ [0,2]p o [(x,z) + (2,0)]p.
0z,0z]s = {u[2,2]p} o {v[2,0]p} o [(x,z) + (2,0)]p o {w[e,0]p} 0 [0,2]p o [0,2]p & [(x,2) + (2,0)]p.
8z,0z)s = {u[2,2]p} o {v[2,0]p} o [(z,z) + (2,0)]p 0 {w[¢,8]p} o [(z,2) +(0,2)]p.

0z,0z]s = {u[2,2]p} o {v[2,0]p} o [(x,z) + (2,0)]p o {w[e,0]p} o [6,d]F o [(z,z) + (2,2)]p.
0z,0z)s = {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,0)]p o {w[0,8]p} o [8,9]p o [(=,2) + (2,0)]p.
0z,0xz)s = {u[2,2]p} o {v[2,0}p} 0 [(z,2) + (2,2)]p o {w[¢,8]p} o (z,z) +(0,2)}p.

0z,0z)s = {u[2,2]p} o {v[2,0]p} o [(x,2) + (2,2)]p o {w[¢,0]p} o [0, 4P o [(z,z) + (2,2)]P.
0z,0z)s = {u[2,2]p} o {v[2,0]p} o {w[s,0]p}, u is even, u,w > 1.

0z,0z)s = {u[2,2]p or v{2,0]p} o {w[¢,0]p} o [(x,2) + (2,0)]p, u,v > 1, u is even.

0z,0z]s = {u[2,2]p} o {v[2,0]p} o {w[0,0]p} o [(x,2) + (2,2)] p, u is odd.

0z,0z)s = {u[2,2]p} o {v[2,0]p} o [0z,92]p, u is odd.

0z,0z)s = {u[2,2]p or v[2,0]p} o [6z,02]p, u,v > 1, u is even.

0z,0z)s = {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,0)]p o {w[¢,8]p} o [(z,2) + (2,0))p, u is even.
[0z,0x]s = {u{2,2]p} o {v[2,0]p} ¢ [(z,2) + (2,2)]p o {w]¢,8]p} o [(z,2) + (2,0)]p, u is odd.
[0z,0z]5 = {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,2)]p o {w]¢,8p} o [(z,2) + (2,2)]p, u is even.
(0z,0z) + (2,2)] = {u[2,2]p} o {v[2,0]p} o {w(e,0]p}, uis odd, w > 2.

(62,02) + (2,2)] = [(2,2) + (2,0 7 {u[2,2]p} & {v[2,0]p} & {w[0, 8]}, u is odd, w > 1.

(6,02) + (2,2)] = [(&,2) + (2] p o (u[2,2]p} o« {v[2,0]p} &« {w(6, 8]p}, uis even, w > 1.

(8z,0z) + (2,2)] = {u[d:, Olp} o [(6x,02) +(2,2)], u>1.

(8z,8z) + (2,2)] = [(z,2) + (2,0)]p o {u[2,2]p} o {v[2,0]p} o [(z, z +(2 2)lp o {w[¢,8)p}, uiseven.
(8z,0z) + (2,2)] = [(=,2) + (2,2)]p 0 {u[2,2]p} o {v[2,0]p} o [(z, z (2,2)]p o {w]¢,8]p}, uis odd.
(00.60) & (3,90 = o1+ (.00 o (12103 0 (2,01 o [mra) 3 (2,00 o Cutordleg wts odd
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TABLE 2—Continued

[(¢z,8z) + (0,2)]
(¢z,0z) + (0,2)
(¢x,0z) + (0,2)
(9z,0z) +(0,2)
(¢z,0z) + (0’2)
(¢z,0z) + (0,2)
[(¢z,82) + (0,2)
[(¢z,6z) + (0,2)
(¢z,0z) + (0,2)
(¢z,0z) + (0,2)
(¢x,0z) + (072)
(¢z,0z) + (0,2)
(¢z,0z) + (0,2)
(¢z,02) + (0,2)
(¢z,0z) +(0,2)
(¢2,02) + (0,2)
(¢z,0z) + (0,2)
(¢z,0z) +(0,2)
(¢z,0z) + (0,2)
(¢z,0z) + (0,2)
(¢z,6z) + (0,2)
(¢z,8z) + (0,2)
(¢z,0z) + (0,2)
(¢z,0z) +(0,2)
(¢z,02) +(0,2)
(¢z,6z) +(0,2)
(¢z,0z) + (0’2)
[(¢z,8z) + (0,2)

(0, ¢z) + (2,0)
[(8z, ¢z) + (2,0)
6z, ¢z) + (2,0)
(6z, ¢x) + (2,0)
(0z, ¢z) + (2,0)
[(0z, ¢z) + (2,0)
[(8z, ¢z) + (2,0)
¥,¥)s = (0,2
y,y]s =[0,2
¥,yls = [0,2
y,4]s = (0,2
y,y)s = (0,2
Y, yls = (0,2
¥,¥s =[0,2
¥, y]s = [0,2
y,4]s =[0,2
y,yls =[0,2
y,yls =10,2

¥ Y)s = (0,2
Vs =

ML huLbbhhhhaoahhhhohhhih’hdhawhugna

0 unntthn

T T T I T T V[ L T 1

L T T I T

po{u2,2]p} o {v[2,0]p} o {w[¢,6]p}, w > 1.

po{u2,2]p} o {v[2,0]p} o [(x,) + (2,0)]p o {w[$,6]r}.

po{u2,2]p} o {v[2,0]p} o [(z,2) + (2,2)]p o {w]$,6]r}.

po[0,2]p o {u2,2]p} o {v[2,0]p} 0 {w[e,8]p}, w>1.

P o (0,2lp o {u[2,2)p} o {v[2,0]p} o [(z,2) + (2,0)]p o {w[s,0]p}.

p o [0,2]p o {u[2,2]p} o {v[2,0]p} 0 [(z,2) + (2,2)]p o {w[s,6]p}.

p o [0,2]p o [(8z,0z) + (2,2)] o {u[,0)p}.

po{0,2]p o [(z,2) +(2,0)]p o {u[2,2]p} o {v[2,0]p} ¢ [(z,2) + (2,2)]p & {wl¢,8]p}.
po[0,2lp o [(z,2} +(2,2)]p o {u[2,2]p} o {v]2,0]p} o [(2,2) +(2,2)]p o {w]¢,6]p}.
P o [0,2]p o [(z,2) +(2,0)lp o {u[2,2]p} o {¥[2,0]p} o [(z,2) +(2,0)]p o {w]¢,8]p}
p o [0,2]p o [(0z,¢x) + (2,0)]p o {u[e,0]p}.

polz,zlp o {ul2,2lp} o {v[2,0]p} ¢ {w([e,0p}, w> 1.

po(zz)p o {u2,2p}o{v2,0pr}a[(z,z)+(20)]p o {w,6p}.

po(z,a)p o {u2,2]p} o {v[2,0pr} e ((z,2) +(2,2)]p o {w[e,0]r}.

p o {u(6,6]p} o [6c,6]p.

PO {u[¢!0]P}7 u21l

Jp 0 {u{2,2]p} o {v[2,0]p} 0 {w[¢,0]p}, w> 1.

lp o {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,0)]p o {w[4,0]p}.

po{u2,2)p} o {v[2,0]7} o [(z,2) + (2,2)]p o {w]6,6]r}

p o [(8z,03) + (2,2)] o {u[é, 6]p}.

p o [(z,2) +(2,0)]p o {ul2,2]p} ¢ {v[2,0]p} o [(z,7)
po[(z,2) +(2,2)]p o {u[2,2]p} ¢ {v[2,0]p} o [(z,5) + (2,2)]p o {w[¢,8]p}.
8p o [(z,2) +(2,0)]p o {u[2,2]P} o {v[2,0]P} o [(z,2) + (2,0)]P o {w[8,6]pF}.
0,¢]p o [(6z,¢z) + (2,0)]p o {u[¢, 0]}

(z,2) +(0,2)]p o {u[2,2]p} ¢ {v[2,0]p} o {w[¢,0]p}, w > 1.

(¢, 0z) + (072)]1’ 4 {u[d’vo]P}r uw2>1 i

(z,2) + (0,2)]p o {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,0)]p o {w]s,0]p}.

[(,2) + (0,2)}p o {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,2)]P o {w]¢,0]p}.

+(2,2)]p o {w(¢,0]p}.
+
+

{u[2,2]p or v{2,0]p} ¢ {w[¢,0]p}, u,v > 1, uiseven, w>2.

[(x,z) + (2:2)]P 4 {u[272]P} 4 {0[27 O]P} o {w[¢ao]P}1 u isodd, w > 1.

{(z,2) + (2,0)]p o {u[2,2]p} o {v[2,0]p} o {w[®, 0P}, uiseven, w>1.

{ul¢,6]p} o [(6z,62) +(2,0)]p, u > 1.

[(z,7) +(2,0)]p o {u[2,2]p} o {v[2,0]p} o [(z,Z) + (2,0)]p o {w[¢,0] P}, u is even.
[(z,2) +(2,2)]p o {u[2,2]p} 0 {v[2,0]p} 0 [(z,2) + (2,0)]p & {w[¢,8]p}, u is odd.
[(,2) + (2,2)]p o {u]2,2]p} o {v[2,0]p} o [(z,2) + (2,2)]p o {w[$,0)p}, uis even.

po{u2,2p} o {v[2,0]p} o {w[¢,0]p} o [0,2]p.

po{u[2,2]p} o {v[2,0]

p o {u[2,2]p} o {v[2,0]p} o [(z,2) + (2,2)]p o {w[¢,6]p} o [0,2]p.

po{u[2,2]p} o {v[2,0]p} o [(z,z) + (2,0)]p o {w[¢,6]p} o [0,2]p.

p o [(6z,0z) + (2,2)] o {u[®,8]p} o [0,2]p.

po[(z,2) +(2,0)]p o {u[2,2]p} o {v[2,0]p} o [(z,2) +(2,2)]p o {w[¢,8]p} o [0,2]p.
po[(z,z)+ (2,2)]p o {u[2,2]p} o {v[2,0lp} o [(z,2) + (2,2)]p & {w[d’ae]P} a[0,2]p.
po((z,2) +(2,0)lp o {u[2,2]p} o {2[2,0]p} o [(x,2) +(2,0)]p o {w]$,b]p} o [0,2]p.

p} o {w[¢,0)p} o [z,2]pP.

p o [(6z,¢z) + (2,0)]p o {u[p,0]p} o [0,2]p.

p o {u[¢,8)p} o ((z,2) +(2,0)]p o {v[2,2]p} o {w[2,0]p} o [z,2]p.
po{u[¢,0lp} o ((z,2) + (2,2)]p o {v[2,2)p} 0 {w[2,0]p} o [z,z]P.
p o {ul$,0]p} o [¢z,0z]p.

z,z]p o {u[2,2]p} o {v[2,0]p} o [x,2]p.

Using similar arguments for ao b, bo b, coc, coe, doe, and ece, we
have the following lemma.

LEMMA 4.1.

Let N, and N, be two networks. If N;o N, results in trail

covers in more than one class, one in group T, U T, U T, U Ty, and the
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others in Ty, then the trail coverin T, U T, U Ty, U Ty is preferred over the
trail covers in Tk.

The rules corresponding to the latter case can be considered redundant.
Those corresponding to the former case are called dominating rules. This
idea can also be extended to the trail cover classes in 7. By the discussion
after Lemma 3.3, a trail cover in T, with fewer nondistinguished trails is
preferred over ones having more nondistinguished trails. For example, we
know from Table 1 that acf = {f, k, [}. Since f contains only one nondis-
tinguished trail, whereas k and [ contain two nondistinguished trails, f is
preferred over {k, /}. To be specific, trail cover classes in T, excluding p
can be distinguished as two sets S; = {f, g, h,i} and S, = {j, k, I, m, n, 0},
based on the number of nondistinguished trails in each trail cover class.
For any two networks N; and N,, if N;o N, results in trail covers all in T,
one in §,;, and the others in S,, then the resulting trail covers in S, are
considered to be redundant.

In Table 2, each redundant rule is marked by a = if its graph topology is
the same as that of the dominating rule, and by a »* otherwise.

5. RECOGNITION OF DEC AND DET NETWORKS

In this section we study the recognition of DEC and DET networks.
First, we partition networks into six groups, A, C, D, E, F, and Z. A
network N is in A, C, D, and E if there exists a graph representation
(GIN1],GIN'] that has a trail cover in group 7, T., T}, and T}, respec-
tively. A network N isiin F ifitis notin A4, C, D, or E, and there exists a
graph representation (G[ N1, G[N’]) that has a trail cover in Ty. All of the
remaining networks are said to be in Z. Since trail cover classes a, b, c, d,
and e are mutually disjoint, as stated in Lemma 3.2, a network N cannot
realize trail covers in class o and in class B8 for «, 8 € {a, b, c,d, e} and
a # B. Therefore, network N cannot be in more than one of the groups
A,C, D, E, F,and Z. For example, if N isin A, N cannot be in C, D, E,
F,or Z

Let M be a DET network with child subnetworks N;, N,,..., N, that
realizes a DET L in G[M]. We assume that M is of type S. To attain
results for M of type P, we need only take the duals of the results for M of
type S.

A DEC network is a DET network that has a DET (L, L') such that
both L and L’ are Euler circuits. It is easy to check that the smallest DEC
network is the network with a graph representation (G,, G%) in Example
2.2. Since there is no trail cover in class [0, 0], the only DEC trail cover
must be in [y, y]. Let M be a DEC network. M does not contain a child
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subnetwork in F, since otherwise L cannot begin and end at the same
vertex. Examining the rules listed in Table 2 for [y, ylg, we note that the
only rule for [y, yl; without containing any internal trail is the first rule
for p, ie, [y, yly < [0, 2], o{ml ¢, 6]1,}000,2],, where m > 0. Since this
rule is the only rule for [y, yl, to be a DEC, it is a necessary and sufficient
condition for DEC networks and we conclude in the following theorem.

THEOREM 5.1.  Let M be a network with type S, and let N, N,, ..., N, be
the child subnetworks of M. Then M is a DEC network if and only if exactly
two N; are in T, and the others are in Tg.

It follows from Lemmas 3.3, 3.4, and Remark 3.1 that at most two N;’s
have L;[N,] € T, at most two N;'s have L [Nl € T., and all of the
other N;s have L[N, € T, U T,. Therefore, we have the following
lemma in terms of network groups.

LEMMA 5.1.  Assume a network M is a DET network with child subnet-
works Ny, N,, ..., N,. Then the following hold:

(i) At most two N; are in F.
(i) At most wo N; are in C.
(iii) Al of the remaining N; are in A U E.

Now we point out some interesting facts about the arrangement of child
subnetworks of M in all graph representations G[M] that realize a DET
(see Fig. 11 for an illustration):

(i) Child subnetworks in C must be placed at the top and bottom
parts of G[M]. This follows from the fact that the child subnetwork in C
has only one distinguished vertex to concatenate with a trail cover in
another child subnetwork.

(ii) The subgraph representing child subnetworks in E must be
connected to the graph representation of a child subnetwork in C. There-
fore, the number of connected components representing child subnetworks
in E is no greater than the number of child subnetworks in C.

(iii) Suppose that M contains two child subnetworks N, and N, in
F. Child subnetworks in E cannot be placed between the subgraphs
representing N, and N, in G, since otherwise no DET can begin and end
with an edge in N, and an edge in N,. Furthermore, if M contains child
subnetworks in A, those child subnetworks must be placed between N,
and N,.

LEMMA 5.2. Let M be a type S network consisting of two child subnet-
works N,, N, in F, two child subnetworks in C, and some child subnetworks

in AU E. Then M possesses a DET if and only if [(x,x) + (2,2)], or
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Network M

Dual Network M’

FIG. 11. General arrangement of the child subnetworks of a DET network M in all graph
representations (G[M], GIM']) that realize a DET.
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[(x,x) + (2,0)], is the trail cover of N, and N,. Furthermore, the resulting
DET trail of M is in class [y, y].

Proof. We can prove the lemma by checking the rules in Table 2. |

With this lemma, we know that the converse of Lemma 5.1 is not true.
Instead of giving a necessary and sufficient condition for DET networks,
we present a linear time algorithm to recognize such networks. To justify
the algorithm, we need the following discussion.

Let X ={N e Q||Class(cN) n{a,b,c,d,e}l =1} and Y={Ne Q|
[Class(N) N {f, g, h, i}l = 1}. We have the following lemma.

LEMMA 5.3. There is no network in X N'Y.

Proof. By Lemma 3.1, for any (G[N], GIN']D of a network N, the
following facts can be proved by induction on the height of the tree
structure for N:

(1) If ais in Class(N), then there are exactly two vertices of odd
degree in G[N] and G[N'], respectively, namely, their two distinguished
vertices.

(2) If b is in Class(N), then there are exactly two vertices of odd
degree in G[N], namely, its two distinguished vertices, and there is no
vertex of odd degree in G[N'].

(3 If ¢ is in Class(N), then there is no vertex of odd degree in
G[N1], and there are exactly two vertices of odd degree in G[N'], namely,
its two distinguished vertices.

(4) 1If d or e isin Class(N), then there is no vertex of odd degree in
either G[N] or G[N'].

It can be observed from the rules in Table 2 that generate f, g, h, and i
that for any network N in Y there is a subnetwork (not necessarily a child
subnetwork) of N or N’ that is a series connection of at least one network
containing a trail cover class in {[2,2],,[2,0],} and at least one network
containing a trail cover class in {[0,2],,[6, ¢1,,[¢, 015} As a result, if
(G[N],GIN') is any graph representation for some network N in Y, then
there exists a nondistinguished vertex which is of odd degree in G[N] or
G[N']. The lemma is proved. |

Using the rules in Table 2, we can develop a linear time algorithm to
recognize DET networks. The algorithm works as follows:

Algorithm: RECOG_DET

Input: A network N in tree representation.

Output: “Yes” and resulting trail cover classes if N possesses a DET, and
“No” otherwise.
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Method: For each nonleaf node x, use N(x) to denote the subnetwork that
it represents and N(x) to denote the dual of N(x). Define M(x) to
be one of the networks N(x) and N(x) that is of type S. Moreover,
M(x) denotes the dual of M(x). To be precise, we define M(x) =
N(x) if N(x) is a type S network, and M(x) = N(x) otherwise. From
leaves to the root, level by level, calculate Class(M(x)) c TC, which
denotes the set of trail cover classes realized on M(x), by the
following steps.

1. If x is a leaf node, Class(M(x)) = {[2, 2],}.

2. If x is a nonleaf node, compute Class(M(x)) using the rules in
Table 2.

3. If none of the rules can be applied, then output “No” and STOP.

4. If x is the root and one of [2, 2], [2, 0], [0, 2], [x, x]g, or [y, y1s
is in Class(M(x)), then output “Yes” and STOP. If x is the root and none
of the above five classes is in Class(M(x)), then output “No” and STOP.

5 If x is a nonleaf node, calculate Class(M(x)) by setting
Class(M(x)) = dual of Class(M(x)), and proceed to next node.

The correctness of RECOG_DET follows from our rules. We observe
that the time spent on Step 2 is crucial in determining the time complexity
of our algorithm. To discuss the time spent on Step 2, we describe the
method used to implement this step.

Assume that M(x) has w child subnetworks M'(x,), M'(x,),..., M'(x,).
Let K be any trail cover in Possible(M(x)). Observe that any trail cover in
{f, g, h, i} contains exactly one distinguished trail, whereas any trail cover
in {j, k, 1, m, n, o} contains exactly two nondistinguished trails. Moreover, a
nondistinguished trail can be concatenated with at most one other trail.
Hence all of the trail covers for M'(x;) induced by K satisfy one of the
following three cases: Case (1) in all M’(x;), every induced trail cover is in
{a, b, c,d, e}; Case (2) in all M'(x,), at most two induced trail covers are in
{f, g, h, i}, and the remaining in {a, b, ¢, d, e}; Case (3) in all M'(x;), only
one induced trail cover is in {j, k, [, m, n, o}, and those remaining are in
{a,b, c,d, e}.

Let a(M(x)) = (i |a € Class(M'(x,)}l. Similarly, we define b(M(x)),
c(M(x)), d(M(x)), and e(M(x)). We can compute a(M(x)), b(M(x)),
c(M(x)), d(M(x)), and e(M(x)) in O(w) time. We first discuss the trail
cover classes in Class(M(x)) for trail covers in Case (1). Since
|Class(M'(x,)) N {a, b, c, d, e}| # 0 for every i, it follows from Lemma 3.2
that each child subnetwork N; has a unique trail cover class in {a, b, ¢, d, e}.
To find all of the trail cover classes for the trail cover of M(x) in Case (1),
we scan all of the rules in Table 2 that are a series connection of a(M(x))
trail covers in class a, b(M(x)) trail covers in class b, c(M(x)) trail covers
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in class ¢, d(M(x)) trail covers in class d, and e(M(x)) trail covers in class
e. Although Table 2 has many rules, the number of rules is still bounded by
a constant. Thus we use additional O(1) time to find all of the trail cover
classes in Case (1) once we have a(M(x)), b(M(x)), c(M(x)), d(M(x)),
and e(M(x)).

Consider Case (2). It follows from Lemma 5.3 that there is no network
in X N'Y. We can easily find all child subnetworks with an induced trail
cover in {f, g, h,i}. Moreover, there are at most two such child subnet-
works. We assume without loss of generality that the induced trail covers
of M'(x,) and M'(x,) are in {f, g, h,i} and the remaining child subnet-
works are in X. Since there are at most four possible trail cover classes in
{f, g, h, i}, we scan the rules 16 times at most to find all trail cover classes
in Case (2). Additional O(1) time will be used to find all of the trail cover
classes for M(x).

Finally, in Case (3), assume that M’(x,) has an induced trail cover K, in
{j, k,1,m, n,o}. It follows that exactly one of the following three state-
ments holds: (i) |Class(M'(x,)) N {a, b,c,d, e}l = 1; (ii) |Class(M'(x,)) N
{f, g h, il =1; or (iii) Class(tM'(x))) C{j, k,1, m, n, o}. When statement
(i) holds, we assume that a € Class(M'(x,)) and K, is in class j. Then any
trail cover K for M(x) that includes K, as an induced trail cover must
induce some trail covers in {a, b, ¢, d, e} for other child subnetworks. That
is, all of the other child subnetworks must be in X. Thus K is a series
connection of a trail cover in class j, a(M(x)) — 1 trail covers in class a,
b(M(x)) trail covers in class b, c(M(x)) trail covers in class ¢, d(M(x))
trail covers in class d, and e(M(x)) trail covers in class e. We can find the
trail cover class for K in O(1) time. Since there are only six trail cover
classes in {j, k,1, m, n, 0}, we may use O(1) time to find all of the trail
cover classes that are a series connection of a trail cover in {j, k, I, m, n, 0}
for M'(x,) and some other trail covers in {a, b, c,d, e} for M'(x,) with
i # 1. Moreover, if a & Class(M'(x,)), exactly one of b, ¢, d, and e can be
in Class(M'(x,)). The discussion for these situations is analogous, so
statements (ii) and (iii) can be treated similarly. Since the possible induced
trail covers in {j, k, 1, m, n, o} may be in M'(x;) for 1 <i < w, we can find
all such trail cover classes in O(w) time.

From leaves to the root and level by level, the time spent on Step 2 for
each node x is bounded by O(d,), where d, is the number of children for
x. Therefore, we have the following theorem.

THEOREM 5.2.  Algorithm RECOG_DET recognizes DET networks in
linear time.

From the above discussion, it is clear that the time complexity of our
algorithm is T(n) = an, where « is a large constant. o can be viewed as
the number of rules in Table 2.
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6. AN EXAMPLE

To illustrate the above algorithm, we use the network given by the
Boolean function (W@ Ab)veoAFvg)vead)Ah vVvkal)
A (V) A (mV n), which has two pairs of graph representations, shown
in Figure 12. The trail covers realized in a parallel type subnetwork are
obtained by taking the duals of the trail covers derived from the rules for
series connection. To obtain the trail covers realized in a series type
subnetwork, we need to take the duals of the trail covers in its child
subnetworks and then apply the rules in Table 2. Figure 13 also illustrates
this procedure. The network has two nonequivalent DET’s dehijklmnabfgc
and abcdefghijklmn, which satisfy the fourth and the ninth rules for
[y, y]s. From this final result, we can determine the trail covers realized in

FIG. 12. Two nonisomorphic graph pairs of a DET network realizing different DETSs.
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each subnetwork, from the root to leaves, that result in DETs. The ones
that lead to the DET satisfying the fourth rule for [y, y]g are marked by a
e, and those leading to the ninth rule are marked by a *.

7. CONCLUSION

In this paper we study the DET problem that arises from VLSI layout.
We build a multivalued function (Table 1) to discuss the concatenation of
these trail cover classes. It is observed that Table 1 is closed under series
connection, parallel connection, and taking the dual. There are exactly 16
trail cover classes. To discuss the possible concatenation of all permuta-
tions of trail cover classes, we study the basic structures of the trail cover
classes of DET networks. Then we use a program to generate rules for
trail cover class composition. Using these rules, we can build a linear time
algorithm to recognize those networks that possesses DET trails. The
approach that uses a program to generate rules is very interesting. We
believe that such an approach can be used in algorithm designs for other
problems, especially those complicated problems using dynamic program-
ming. We also believe that the original problem that computes DCT(N)
for any network N might be a candidate problem using this approach.
Actually, we have tried this approach on DCT(N). However, we need to
reclassify those trail cover classes so that it is closed under series connec-
tion, parallel connection, and taking the dual. We believe that at least 540
trail cover classes should be considered as we analyze the behavior of
DCT(N). Because the problem is so complicated, we still cannot solve the
DCT problem.

We also want to point out that RECOG _DET can be translated into a
parallel algorithm. Tree contraction [1] is a general technique for designing
parallel algorithms for certain problems defined on a tree. The DET
problem is also a problem defined on a tree. It is easy, but not trivial, to
modify the technique of tree contraction to solve the DET problem in
O(log n) time with O(n/log n) processors under EREW PRAM [18].

In VLSI layouts, circuit designers may wish to keep the DETS to pursue
height or floor plan optimization. We have seen in Figure 12 that a DET
network may realize various DETSs in different pairs of graph representa-
tions. Figure 14 shows the corresponding geometric layouts. The layout
designers may prefer the layout with the smaller height or the layout that
fits his floor plan. For this reason, it is usful to design a data structure that
keeps the DETSs in all graph representations for any network [14].
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FIG. 14. Two different geometric layouts for the DET network in Figure 13.
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