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Ž . XGiven a series-parallel network network, for short N, its dual network N is
given by interchanging the series connection and the parallel connection of
network N. We usually use a series-parallel graph to represent a network. Let

w x w X x XG N and G N be graph representations of N and N , respectively. A sequence
Ž w x w X x.of edges e , e , . . . , e is said to form a common trail on G N , G N if it is a1 2 k

w x w X x w xtrail on both G N and G N . If a common trail covers all of the edges in G N
w X xand G N , it is called a double Euler trail. However, there are many different

graph representations for a network. We say that a network N has a double Euler
Ž . w x w X xtrail DET if there is a common Euler trail for some G N and some G N .

Finding a DET in a network is essential for optimizing the layout area of a
Žcomplementary CMOS functional cell. Maziasz and Hayes IEEE Trans. Computer-

Ž . .Aided Design 9 1990 , 708]719 gave a linear time algorithm for solving the layout
w x w X xproblem in fixed G N and G N and an exponential algorithm for finding the

optimal cover in a network without fixing graph representations. In this paper, we
study properties of subnetworks of a DET network. According to these properties,
we propose an algorithm that automatically generates the rules for composition
of trail cover classes. On the basis of these rules, a linear time algorithm
for recognizing DET networks is presented. Furthermore, we also give a necessary
and sufficient condition for the existence of a double Euler circuit in a network.
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1. INTRODUCTION

Ž . � 4A series-parallel network network, for short N of type t g L, S, P
Ž .which represent leaf, series, and parallel, respectively defined on W is
recursively constructed as follows:

Ž . < <i N is a network of type L if W s 1.
Ž . < <ii If W ) 1, N is a network of either type P or type S and

consists of k G 2 networks N , . . . , N as child subnetworks parallel or1 k
series connected together, where each N is defined on a set W of type ti i i
with t / t and the collection of W ’s forms a partition of W.i i

A network is often expressed by a tree structure. Networks are useful in
practice since they correspond to Boolean formulas with series connection
Ž . Ždenoted by S implementing logical-AND and parallel connection de-

.noted by P implementing logical-OR. For example, the Boolean function
Ž . Ž .e n a k b n c k d can be represented by the network shown in Figure

1. Moreover, networks can be used as a model for electrical circuits. For
example, we can use the tree structure shown in Figure 1 to represent the
network corresponding to the electrical circuit shown in Figure 2. In the
tree representation of N, every node together with all of its descendants
forms a subnetwork of N. A node together with some children and their
descendants forms a partial subnetwork. The subnetwork of N formed by a
child of the root is called a child subnetwork of N. The leaf node is labeled

� 4by x if it is a subnetwork of type L defined on x . Every internal node is
labeled by S or P according to the type of the subnetwork it represents.
Note that the order of the subtrees in the tree representation is immate-
rial, because different orders lead to the same Boolean formula.

On the other hand, every network can be represented by a series-parallel
Ž .graph s. p. graph for short , which is an edge-labeled graph with two given

distinguished vertices denoted by s and t. We recursively construct an s.p.

FIG. 1. Tree representation of a series-parallel network.
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FIG. 2. Electrical circuit corresponding to the network shown in Figure 1.

graph to represent a network as described below:

Ž . � 4i Every network N defined on W s x of type L is represented
w xby an edge-labeled graph G N having only one edge labeled x and the

two end points of this edge as distinguished vertices.

Ž .ii Let N be a network having child subnetworks N , . . . , N , and1 k
w xlet G N be an s.p. graph representing N with the distinguished verticesi i

s , t for every i. For N of type S, we identify t with s for 1 F i F k y 1.i i i iq1
w xThe resulting graph G N with the distinguished vertices s , t represents1 k

the network N. For N of type P, we identify all s ’s to obtain a new vertexi
w xs and identify all t ’s to obtain a new vertex t. The resulting graph G Ni

with distinguished vertices s, t represents the network N.

The subgraph G of G induced by the child subnetwork N of N isi i
called a child s. p. subgraph of G. We note that a graph representation for
a network is not unique because we can vary the order of the subnetworks
and the order of the two distinguished vertices to obtain different graph
representations. For example, both the nonisomorphic s.p. graphs shown in
Figure 3 represent the network in Figure 1. Although most research has

w xconcentrated on s.p. graphs 2, 5, 8, 13, 14, 16 rather than on networks
w x6, 7, 9 we believe that studying networks is interesting and practical,
although difficult.

Given a network N on set W, we define its dual network N X on set W by
interchanging the types S or P of each node. For example, the network in
Figure 4a is the dual network of the network in Figure 1. Figures 4b and 4c
show a graph representation and the corresponding circuit, respectively, of
the dual network. Note that the Boolean formula corresponding to N X is
the dual of the Boolean formula that corresponds to N. It is obvious that
Ž X.X XN s N. If two s.p. graphs G, G represent some network N and its dual,

Ž X.respectively, we say that G, G is an s. p. graph pair.
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FIG. 3. Two nonisomorphic s.p. graphs representing the network in Figure 1.

A walk W s ¨ , e , ¨ , e , . . . , e , ¨ is a finite non-null sequence of0 1 1 2 k k
Ž .vertices and edges where e s ¨ , ¨ for 1 F i F k. Furthermore, wei iy1 i
Ž .call W a walk from ¨ to ¨ or a ¨ , ¨ -walk. The vertices ¨ and ¨ are0 k 0 k 0 k

called terminals of W, and ¨ , . . . , ¨ are called internal ¨ertices. We1 ky1
sometimes express a walk ¨ , e , ¨ , e , . . . , e , ¨ as e , e , . . . , e for con-0 1 1 2 k k 1 2 k
venience. A section of a walk W is a walk that is a subsequence

Ž . Ž .FIG. 4. a The dual network of the network in Figure 1. b A graph representation
Ž . Ž . Ž .corresponding to the network in a . c Electrical circuit corresponding to the network in a .
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¨ , e , ¨ , e , . . . , e , ¨ in W. If all edges of walk W are distinct, W isi iq1 iq1 iq2 j j
called a trail.

w x w X xGiven a network N, let G N and G N be graph representations for
the network N and its dual network N X, respectively. A sequence of edges

Ž w x w X x.e , . . . , e is said to form a common trail in G N , G N if L s1 m
X X X X w x¨ , e , ¨ , e , . . . , e , ¨ and L s ¨ , e , ¨ , e , . . . , e , ¨ are trails in G N0 1 1 2 m m 0 1 1 2 m m

w X x Ž X. Ž Xand G N , respectively. We call L, L a trail pair. We always use L to
. Ž X.denote a trail for the dual network. We sometimes write L, L as L for

short. If ¨ s ¨ and ¨ X s ¨ X , we say that e , . . . , e form a common0 m 0 m 1 m
w xcircuit. Furthermore, if e , e , . . . , e are all of the edges in both G N and1 2 m

w X x Ž .G N , we say that e , . . . , e form a common Euler trail circuit in1 m
Ž w x w X x. Ž .G N ,G N . A network N has a double Euler circuit DEC if there is a

w x w X xcommon Euler circuit for both some G N of N and some G N of the
X Ž .dual network N . A network N has a double Euler trail DET if there is a

w x w X xcommon Euler trail for both some G N of N and some G N of the dual
X Ž w x w X x. Ž X.network N . We say that G N , G N realizes a DET pair L, L for N

X X w xand N , where L and L are the corresponding Euler trails in G N and
w X xG N , respectively. We say that a network N is DET if N possesses a

DET. For example, the s.p. graphs in Figures 3a and 4b do not have a
common Euler trail, but the ones in Figures 3b and 4b have a common
Euler trail abecd. Thus the network in Figure 1 is DET.

The problem of DET networks arises from a more general problem
Ž . Ž w x w X x.called DCT N . Let DCT G N , G N be the minimum number of

w x w X xdisjoint common trails that cover all of the edges in G N and G N . We
Ž . Ž w x w X x.define DCT N as the minimum of DCT G N , G N among all possi-

w x w X x w xble graph representations G N and G N . Uehara and vanCleemput 15
proposed a solution method for the layout of cells in the style shown in
Figure 5. Assuming the height of each cell is fixed by technological
considerations, the width of the cell, and therefore the area of the cell, can
be minimized by ordering the transistors in the layout so that chains of
transistors can share a common diffusion region. Uehara and vanCleemput
defined a graph model for functional cells on two dual multigraphs
Ž w x w X x.G N , G N and proposed a heuristic method for finding a small num-

Ž w x w X x.ber of common trails that cover the given G N , G N . Maziasz and
w x Ž w x w X x.Hayes 11 gave a linear time algorithm for solving DCT G N , G N

Ž .and an exponential algorithm for finding the DCT N . Several other
papers have also explored the use of graph models to find solutions for

w xlayout 4, 10, 11, 12 . However, using this approach, the choice of graph
model becomes a critical issue. We thus choose to work on networks

Ž .instead. Solving DCT N is useful but difficult. Therefore, we start by
Ž .solving the DET problem on networks with the hope of solving DCT N

Ž .in the future, since DCT N s 1 if and only if N is DET.
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Ž . Ž . Ž .FIG. 5. CMOS functional cell. a Gate-level scheme. b An electric-level scheme. c
Ž . Ž . Ž .Geometric layout corresponding to the scheme in b . d Another electric-level scheme. e
Ž .Geometric layout corresponding to the scheme in d .

In this paper we study the properties of DET networks and give a linear
time algorithm for recognizing DET networks. The paper is organized as
follows. In Section 2, we classify the trail cover classes. In Section 3, we
study properties of subnetworks of DET networks. On the basis of the
analysis in Section 3, we present an algorithm in Section 4 to generate the
rules for trail cover class composition. Using these rules, we give a
necessary and sufficient condition for DEC networks in Section 5. A linear
time algorithm for recognizing DET networks is also presented in Section
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5. An example for illustration of the algorithm is given in Section 6.
Finally, we give concluding remarks in Section 7.

2. COMMON TRAIL COVER CLASSES AND
NETWORK CLASSES

We first informally use an example to introduce our terminology. We
Ž w x w X x.illustrate in Figure 6 a graph representation G N , G N for a DET

Žnetwork N shown in Figure 7. At this moment, Figure 7 is used only for
.its tree representation for network N. In this graph pair, there are 10

Ž X.child s.p. subgraph pairs G , G , each corresponding to a child subnet-i i
work N of N. N , N , . . . , N are ordered from left to right of the rooti 1 2 10

Ž w x w X x.node in Figure 7. The trail L s 1, 2, . . . , 46 is a DET trail in G N , G N .
Let the distinguished vertices of G be s and t , where s is on the top of8 8 8 8
G . Let the corresponding distinguished vertices of GX be denoted by sX

8 8
and tX. The trail L induces two disjoint common trails L s 31, 32 and1

Ž X . � 4L s 39, 40, . . . , 46 that cover all of the edges in G , G . We call L , L2 8 8 1 2
Ž X. Ž X . Ž X.the trail co¨er induced by L, L in G , G . On the other hand, L, L8 8

can be treated as the concatenation of all of the disjoint trail covers
Ž X.induced by L, L in G for i s 1, 2, . . . , 10. To define trail cover types, wei

first need to define trail types. For example, the trail L in G begins at s1 8 8
and terminates at t , whereas LX begins at sX and terminates at sX. We say8 1

Ž X . Ž X . Ž . Ž . Ž .that the trail type of L , L in G , G is s, s r t, s , where x, y r1 1 8 8
Ž . Ž X . Žz, w s the beginning vertex of L , the beginning vertex of L r the1 1

X .ending vertex of L , the ending vertex of L . All of the subscripts and1 1
superscripts are omitted for simplification. For the same reason, the trail
L in G begins at t and terminates at s, whereas LX in GX begins at tX

2 8 2 8
and terminates at an internal vertex of GX . We say that the trail type8
Ž X . Ž X . Ž . Ž .L , L in G , G is t, t r s, I , where I denotes an internal vertex.2 2 8 8
Since the terminal vertex of LX is an internal vertex, L can only2 2
concatenate with another trail from its beginning vertex. For this reason,

Ž . Ž .we change the trail type of L into t, t r I, I . The trail cover type of2
� 4L ,L in G is then determined by the trail types of L and L and is1 2 8 1 2

�Ž . Ž . Ž . Ž .4given by s, s r t, s q t, t r I, I .
Now we formally define the term trail co¨er type. Let N be a network

Ž w x w X x.with graph representation G N , G N . Let LL be a family of disjoint
Ž w x w X x. Ž X.common trails that cover all of the edges in G N , G N . Let L, L be

a trail pair in LL with ¨ , ¨ and ¨ X , ¨ X as terminals in L and LX,0 n 0 n
respectively. If the terminals of both L and LX are distinguished vertices of
Ž w x w X x. Ž X.G N , G N , L, L is called a distinguished trail, and a nondistinguished

Ž X. Ž w x w X x.trail otherwise. To be specific, the type of L, L in G N , G N ,
Ž X . Ž Ž . Ž X .. Ž Ž . Ž X ..denoted by T L, L , has the form T ¨ , T ¨ r T ¨ , T ¨ , where0 0 n n

Ž . Ž . ŽT ¨ can be a distinguished vertex s or t or an internal vertex denoted
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FIG. 6. An s.p. graph pair with a DET trail.
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FIG. 7. The tree representation of the network with an s.p. graph pair shown in Figure 6.

.by I . The order of the terminals in a trail type is irrelevant; e.g.,
Ž . Ž . Ž . Ž .t, t r I, I and I, I r t, t are considered to be equivalent. A nondistin-
guished trail can concatenate with at most one other trail. Since we are

�Ž . Ž . Ž .considering the concatenation of common trails, types t, I , s, I , I, t ,
Ž .4 Ž Ž . Ž X .. Ž Ž . Ž X .. Ž .I, s of T ¨ , T ¨ or T ¨ , T ¨ can be represented by I, I ; e.g.,0 0 n n
Ž . Ž . Ž . Ž . Ž . Ž .t, s r t, I is denoted by t, s r I, I , and I, t r t, I is denoted by
Ž . Ž .I, I r I, I .

�Ž X . Ž X . Ž X .4Let LL s L , L , L , L , . . . , L , L be a set of disjoint common1 1 2 2 k k
Ž w x w X x.trails that cover all of the edges in G N , G N for some network N.

Ž . Ž . � Ž X . Ž X .The trail co¨er type t LL is defined as t LL s T L , L q T L , L1 1 2 2
Ž X .4q ??? qT L , L . Throughout this paper, ‘‘q’’ is commutative. We de-k k

Ž . Xfine dual trail co¨er type for t LL , i.e., a trail cover type for LL in
Ž w X x w x. XŽ . � Ž X . Ž X . Ž X .4G N , G N as t LL s T L , L q T L , L q ??? qT L , L .1 1 2 2 k k
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Ž w x w X x.Let M be a network with graph representation G M , G M and LL

be a set of disjoint common trails that cover all of the edges in
Ž w x w X x. w xG M , G M . For a partial subnetwork R of M, we denote by G RM

w xthe subgraph of G M induced by R. Let N be a partial subnetwork of M
w x w X x w xXsuch that G N and G N are connected subgraphs of G M andM M

w X x Ž w x w X x.XG M , respectively. The edges of G N , G N constitute a set ofM M
Ž w x w X x. Ž .Xmaximal sections of LL that cover edges of G N , G N . Let t N, LLM M G

Ž w x w X x.Xdenote the trail cover type on G N , G N derived from LL . ToM M
Ž .classify different types in t N, LL , we note that any common trail isG

�Ž . Ž . Ž . Ž .4constructed from t, t r s, s ; t, s r s, t , which represents the trail cover
type of a leaf, by a sequence of series connection, parallel connection, and

w xtaking the duals. Maziasz and Hayes 10, 11 considered the closure of all
series connection, parallel connection, and taking the duals of the trail

�Ž . Ž . Ž . Ž .4 Ž .covers generated by t, t r s, s ; t, s r s, t . They classified t N, LLG
into 42 types according to the directions of each trail. In their classifica-
tion, there is no common trail that begins and ends at the same distin-

w x w X x Ž . Ž .guished vertex in both G N and G N , e.g., t, t r t, t . Furthermore,
Ž . Ž . Ž . Ž . Ž .nondistinguished trails are represented by t, t r I, I , t, s r I, I , s, t r

Ž . Ž . Ž . Ž . Ž .I, I , s, s r I, I , and I, I r I, I .
To simplify the exposition of this 42-type classification, we define an

equivalence relation of trail cover types, which renders the concept of trail
co¨er class. We use the example of Figure 6 to informally introduce this
concept. A network may have different graph representations. Given a
graph representation of a network, we can obtain other graph representa-
tions by a sequence of interchanging the distinguished vertices of their s.p.

Ž . Ž . Ž X . Ž X .subgraphs. For this reason, the trail type s, s r t, s of L , L in G , G1 1 8 8
Ž . Ž . Ž . Ž . Ž . Ž .in Figure 6 may change into s, t r t, s , t, s r s, s , or t, t r s, t . All of

Ž X .these types represent a common trail L , L in which L begins at a1 1 1
distinguished vertex and terminates at the other distinguished vertex,
whereas LX begins at one distinguished vertex and terminates at the same1
vertex. It is observed that the subgraph of G induced by 31, 32 has exactly8
two vertices of odd degree, namely, the distinguished vertices of G . We8
use 2 to indicate the trail class of L . Similarly, we use 0 to indicate the1
trail class of LX because none of its distinguished vertices are of odd1

Ž X . Ž X . w xdegree. We say that the trail class of L , L in G , G is 2, 0 . We use x1 1 8 8
to indicate a trail in G in which one end point is a distinguished vertex of
G and the other an internal vertex, and y to indicate a trail in G in which
L begins and terminates at internal vertices. In our example, the trail class

Ž X . w x w xof L , L is 2, x . However, since 2, x can concatenate with another2 2
w x w xcommon trail only at one end, we change trail class 2, x into x, x . In

Ž . Ž . Ž . Ž .other words, as t, s r t, I is represented by t, s r I, I , we can write the
Ž X . w x w x � 4trail class of L , L as x, x instead of 2, x . Since L , L forms a trail2 2 1 2

� 4 wŽ . Ž .xcover of G , we say the trail cover class of L , L is x, x q 2, 0 .8 1 2
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To formally define the term trail co¨er class, we first define an equiva-
lence relation of trail cover types as follows. For a graph representation
Ž w x w X x. Ž w x w X x.G M , G M of a network M, a trail cover type t in G M , G M is
equivalent to t if and only if t can be obtained from t by permuting the

Xw x w xdistinguished vertices of t in G M or G M or both, i.e., by reversing the
Xw x w xdirection of t in G M or G M or both. This equivalence relation

enables us to define a trail cover class that induces all trail cover types that
are equivalent to each other. To consider the equivalence of trail cover
types, we need to compare the trail sets in primal and dual graphs,
respectively. Now we are motivated to introduce new definitions of trail
classes in an s.p. graph without considering the direction of a trail.

DEFINITION 2.1. Given an s.p. graph G with distinguished vertices s
Žand t, let L be a trail of G. Note that this trail does not necessarily

.contain all of the edges of G. We say that L is in class 2 if L begins at a
distinguished vertex and terminates at the other distinguished vertex, in
class 0 if L begins at a distinguished vertex and returns to the same
distinguished vertex, in class x if one end point of L is a distinguished
vertex and the other is an internal vertex, and in class y if L begins and
terminates at internal vertices.

Ž .As shown in Figure 6, the trail 23, 24, 25 of G is in class 2, the trail4
Ž . Ž .17, 18 of G in class 0, the trail 40, 41, . . . , 46 of G in class x, and the1 8

Ž .trail 1, 2, . . . , 46 of G in class y.
� 4Given an s.p. graph G, let T s L , L be a set of two disjoint trails in1 2

G. We say that T is in class u if both L and L are in class 0 and begin1 2
and end at different distinguished vertices. We use u to symbolize a trail
cover consisting of two class 0 trails as top and bottom parts. If L and L1 2
are in class 2 and begin and end at the same distinguished vertex, T is said
to be in class f, which is used to symbolize the left and right parts of T.
Similarly, we define classes u x and f x for the case where L and L are1 2
in class x. We say that T is in class u x if L and L begin or terminate at1 2
different distinguished vertices, and in class f x if L and L begin or1 2
terminate at the same distinguished vertex. Suppose that if L is in class 01
and L is in class x, we say that T is in class 0 q x. Other trail cover2
classes can be similarly defined for trail sets with more than two trails of
other combinations.

Again we use Figure 6 as an example. We can consider a trail set in G ,i
which does not necessarily contain all of the edges in G , but contains alli
of the edges in a subgraph of G that corresponds to a partial subnetwork.i

�Ž . Ž .4 �ŽThe trail set 15, 16 , 19, 20 in G is in class f, the trail set 1, 2, . . . ,2
. Ž .46 , 9, 10, . . . , 14 in G is in class u . In the example of Figure 6, we cannot3

find a trail set induced by L which is in class u x or f x. Since a graph can
have many different trail sets, for illustration purposes we define other



THE RECOGNITION OF DOUBLE EULER TRAILS 227

trail sets in G and G . New trail sets in G and G are given by8 3 8 3
�Ž . Ž .4 �Ž . Ž .441, 40, 39 , 42, 43, 44, 45, 46 , and 3, 2, 1, 7, 8 , 11, 10, 9, 21, 22 , respec-

�Ž . Ž .4tively. The trail set 41, 40, 39 , 42, 43, 44, 45, 46 in G is in class u x, and8
�Ž . Ž .43, 2, 1, 7, 8 , 11, 10, 9, 21, 22 in class f x.

Ž X. Ž w x w X x.Let M be a network that realizes a DET L, L in G M , G M . For
Ž w x w X x.Xa partial subnetwork R of M, L induces a trail cover in G R , G R ,M M

w xwhich is denoted by L R . Using the notation of trail classes 0, 2, x, y, u ,G
f, u x, and f x, we can reclassify the 42 trail cover types proposed by

w xMaziasz and Hayes 10, 11 into the following 18 trail cover classes:

w x �Ž . Ž . Ž . Ž .4class a: 2, 2 s t, t r s, s ; t, s r s, t
w x �Ž . Ž . Ž . Ž .4class b: 2, 0 s t, t r s, t ; t, s r s, s
w x �Ž . Ž . Ž . Ž .4class c: 0, 2 s t, t r t, s ; s, t r s, s
w x �Ž . Ž . Ž . Ž .4class d: u , f s t, t r t, s q s, t r s, s
w x �Ž . Ž . Ž . Ž .4class e: f, u s t, t r s, t q t, s r s, s
w x �Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4class f : x, x s t, t r I, I ; t, s r I, I ; s, t r I, I ; s, s r I, I

wŽ . Ž .x �Ž . Ž . Ž . Ž . Ž . Ž .class g : x, x q 2, 2 s t, t r s, s q t, s r I, I ; t, t r s, s
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4q s, t r I, I ; t, s r s, t q t, t r I, I ; t, s r s, t q s, s r I, I

wŽ . Ž .x �Ž . Ž . Ž . Ž . Ž . Ž .class h: x, x q 0, 2 s t, t r t, s q s, t r I, I ; t, t r t, s
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4q s, s r I, I ; s, t r s, s q t, t r I, I ; s, t r s, s q t, s r I, I

wŽ . Ž .x �Ž . Ž . Ž . Ž . Ž . Ž .class i: x, x q 2, 0 s t, t r s, t q t, s r I, I ; t, t r s, t q
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4s, s r I, I ; t, s r s, s q t, t r I, I ; t, s r s, s q s, t r I, I

w x �Ž . Ž . Ž . Ž . Ž . Ž . Žclass j: f x, u x s t, t r I, I q t, s r I, I ; s, t r I, I q s,
. Ž .4s r I, I

w x �Ž . Ž . Ž . Ž . Ž . Ž . Žclass k: u x, f x s t, t r I, I q s, t r I, I ; t, s r I, I q s,
. Ž .4s r I, I

w x �Ž . Ž . Ž . Ž . Ž . Ž . Ž .class l: u x, u x s t, t r I, I q s, s r I, I ; t, s r I, I q s, t r
Ž .4I, I

wŽ . Ž .x �Ž . Ž . Ž . Ž . Ž .class m: u x, u x q 2, 2 s t, s r s, t q t, t r I, I q s, s r
Ž . Ž . Ž . Ž . Ž . Ž . Ž .4I, I ; t, t r s, s q t, s r I, I q s, t r I, I

wŽ . Ž .x �Ž . Ž . Ž . Ž . Ž .class n: f x, u x q 0, 2 s t, t r t, s q s, t r I, I q s, s r
Ž . Ž . Ž . Ž . Ž . Ž . Ž .4I, I ; s, t r s, s q t, t r I, I q t, s r I, I

wŽ . Ž .x �Ž . Ž . Ž . Ž . Ž .class o: u x, f x q 2, 0 s t, t r s, t q t, s r I, I q s, s r
Ž . Ž . Ž . Ž . Ž . Ž . Ž .4I, I ; t, s r s, s q t, t r I, I q s, t r I, I

w x �Ž . Ž .4class p: y, y s I, I r I, I
w Ž .x �Ž . Ž . Ž . Ž . Ž . Ž . Ž .class q: 3 x, x s t, t r I, I q t, s r I, I q s, t r I, I ; t, t r

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .I, I q t, s r I, I q s, s r I, I ; t, t r I, I q s, t r I, I q s, s r
Ž . Ž . Ž . Ž . Ž . Ž . Ž .4I, I ; t, s r I, I q s, t r I, I q s, s r I, I

w Ž .x �Ž . Ž . Ž . Ž . Ž . Ž . Žclass r : 4 x, x s t, t r I, I q t, s r I, I q s, t r I, I q s,
. Ž .4s r I, I .
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w xTheorem 1 of 11 states that these 42 trail cover types define a complete
Ž . Ž .set of trail cover types. Since the nondistinguished trail of type I, I r I, I

cannot be concatenated with any other trail, it stands in class p itself.
Since the nondistinguished trail with one distinguished vertex as a terminal
in each trail cover can concatenate with at most one other trail, it must be
the beginning or ending section of the trail cover. Therefore, no DET
network can have trail covers that include more than two of such nondis-
tinguished trails. In other words, no DET network can have trail covers in
classes q and r. Thus we eliminate these two classes from our analysis and
focus on the first 16 trail cover classes, a, . . . , p only. We restrict all of the

�trail covers in the following discussion to be in a subset of class a, class
4 � 4b, . . . , class p . For simplicity, we write a, b, . . . , p .

It is necessary to distinguish trail cover classes on series-type networks
from those on parallel-type networks. The dual class of a trail cover class,

w x Žw x . Ž X. w x Žw x . Ž X .say w, z z, w in N, N , is defined as z, w w, z in N , N .S P P S
The dual class is obtained by reversing the role of primal and dual
networks. Since the type S or P of a network is given, we can sometimes
omit the subscripts S or P of a trail cover class without ambiguity. We call
w x Ž . w xz, w the dual trail cover class or simply, dual class of w, z . For

wŽ . Ž .x wŽ . Ž .xexample, the dual class of f x, u x q 0, 2 is u x, f x q 2, 0 , since
w x w x w x w xthe dual of f x, u x is u x, f x and the dual of 0, 2 is 2, 0 . In Figure 7

we also show the trail cover class and the dual trail cover class associated
with each node derived from L s 1, 2, . . . , 46. Note that the trail cover
class and the dual trail cover class notations in Figure 7 are for the
particular graph shown in Figure 6 and the specific DET L. It is possible
to obtain other trail cover classes by rearrangement of subgraphs, i.e.,
different concatenation of s.p. graphs. In other words, a different concate-
nation of s.p. graphs can yield a different concatenation of trail cover

Žclasses. Later in Lemma 4.1 and Table 2 of Section 4, we will show that
some specific concatenations of s.p. graphs or trail cover classes are

.preferred to obtain a DET.
We define a different concatenation of s.p. graphs as follows. Let G1

and G be two s.p. graphs having distinguished vertices s and t for2 k k
Žk s 1, 2. In this paper, we use s to denote the distinguished vertex on the

.top of an s.p. graph and t to denote the one on the bottom. When s andk
t , k s 1, 2, are specified, we can define a different concatenation of Gk 1
and G . We use G s iG and G s iG to denote all possible series2 1 2 2 1
connections of G and G , where G s iG represents an s.p. graph with1 2 j j1 2

� 4G placed on top of G for j , j g 1, 2 and j / j . To be specific,j j 1 2 1 21 2

G s 1G denotes the resulting s.p. graph with distinguished vertices s s s1 2 1
and t s t . The remaining three concatenations of G s iG for i s 2, 3, 42 1 2
can be similarly defined. Furthermore, we can similarly define G s iG for2 1
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i s 1, 2, 3, 4, and parallel connections G p iG , G p iG as well. We1 2 2 1
� i 4 � iuse G s G to denote the set G s G ¬ i s 1, 2, 3, 4 j G s G ¬ i s 1,1 2 1 2 2 1

4 Ž .2, 3, 4 , and G p G is defined similarly. Note that G s G s G /1 2 1 2 3
Ž . Ž . Ž .G s G s G , but G p G p G s G p G p G . Given k s.p. graphs1 2 3 1 2 3 1 2 3

G , G , . . . , G , we use G s iG s i ??? s iG to denote the s.p. graph1 2 k 1 2 k

ŽŽŽ i . i . i . i i iG s G s G ??? s G , and G p G p ??? p G to denote the s.p.1 2 3 k 1 2 k

ŽŽŽ i . i . i .graph G p G p G ??? p G . Moreover, we define G s G s ??? s G1 2 3 k 1 2 k
ŽŽŽ . . .as the union of G s G s G ??? s G , where i , i , . . . , i form ai i i i 1 2 k1 2 3 k

permutation of 1, 2, . . . , k. We define G p G p ??? p G similarly.1 2 k
For each trail cover class of the series type, it is easy to find a

corresponding dual trail cover class. Therefore, it suffices to consider a
� 4series connection of trail cover classes only. Let TC s a, b, . . . , p be the

set of all trail cover classes. We define an operation s 1 on k trail cover
classes as a series connection of k trail cover classes, which maps from

Ž .TC = ??? = TC to P TC , the power set of TC, as follows:
1 1 1 � Ž X.x s x s ??? s x s g g TC ¬ for every s.p. graph pair G , G with1 2 k i i

i s 1, 2, . . . , k having a trail cover T in x , there exists an s.p. graph pairi i
Ž X . 1 1 1 X X 1 X 1 1 XG, G , with G g G s G s ??? s G and G g G p G p ??? p G ,1 2 k 1 2 k
having a trail cover T in g such that the induced trail cover of T in G isi

4T for all i .i

The operation x s 1 x s 1 ??? s 1 x can be treated as a concatenation1 2 k
of k trail cover classes x , x , . . . , x in specific series connection of s.p.1 2 k
graphs. For X , X , . . . , X : TC, we define X s 1X s 1 ??? s 1X as the1 2 k 1 2 k

union of x s 1 x s 1 ??? s 1 x with x g X for every i.1 2 k i i

We define x s x s ??? s x as we define x s 1 x s 1 ??? s 1 x , except1 2 k 1 2 k
that G and GX in the definition are replaced by G g G s G s ??? s G1 2 k
and GX g GX p GX p ??? p GX . It can be treated as a series concatenation of1 2 k
k trail cover classes without restriction of the order of the series connec-
tion of the corresponding k s.p. graphs. It follows that x s 1 x s 1 . . .1 2
s 1 x : x s x s ??? s x . We define X s X s ??? s X likewise. We arek 1 2 k 1 2 k
interested, in particular, in x s x . Three examples are given below to1 2
demonstrate the derivation of x s x , each also illustrated by a figure with1 2

Ž X. X Xgraph pairs G , G . We use s , t and s , t to denote the distinguishedi i i i i i
vertices of G and GX, respectively.i i

w x w xEXAMPLE 2.1. We show here the derivation of 2, 2 s 2, 2 , i.e., as a. It
w x �Ž . Ž . Ž . Ž .4is known that 2, 2 s t, t r s, s ; t, s r s, t . Then

w x w x2, 2 s 2, 2 s t , t r s, t ; t , s r s, s� 4Ž . Ž . Ž . Ž .
j t , t r I , I q s, t r I , I ;� Ž . Ž . Ž . Ž .

t , s r I , I q s, s r I , I 4Ž . Ž . Ž . Ž .
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j t , t r I , I q s, s r I , I ;� Ž . Ž . Ž . Ž .
t , s r I , I q s, t r I , I 4Ž . Ž . Ž . Ž .

w x w x w xs 2, 0 , u x , f x , u x , u x .� 4

� 4Hence as a s b, k, l .
Example 2.1 is illustrated in Figure 8, which contains three graph pairs.

Ž X . Ž X .G , G and G , G possess trails L s a and L s b, respectively, both1 1 2 2 1 2
in trail cover class a. Up to isomorphism, there is only one graph pair
Ž X . X X XG , G with G g G s G and G g G p G , as shown in Figure 8c. Let3 3 3 1 2 3 1 2
z be the only nondistinguished vertex in G . Let M be a DET network3

Ž X. Ž w x w X x. Ž X .realizing a DET trail L, L in G M , G M that contains G , G as a3 3
w xsubgraph pair. Suppose that L begins at any vertex u in G M with u / z.

Ž .Then L enters G from s to t or t to s , i.e., the trail induced by L in3 3 3 3 3
G is given by ab. On the other hand, LX enters GX either from sX to sX or3 3

X X Ž X . Ž X .from t to t . The trail cover induced by L, L in G , G is in class b.3 3
Suppose that L begins at z. Since z is an internal vertex in G , it follows3

Ž .that deg z is even and thus L terminates at z. We assume without loss of
generality that L begins with a and terminates with b. We can also assume
that LX begins at sX. It follows that LX first traverses GX by a and leaves at3
tX and reenters GX with b. The reentering vertex of LX in GX is either sX or3 3 3 3
X Ž X . Ž X .t . The trail cover of L, L induced in G , G is in class l if the3 3 3

X � 4reentering vertex is s and in class k otherwise. Thus as a s b, k, l .3

w x w xEXAMPLE 2.2. We show here the derivation of 0, 2 s 0, 2 , i.e., cs c. It
w x �Ž . Ž . Ž . Ž .4is known that 0, 2 s t, t r t, s ; s, t r s, s . Then

w x w x0, 2 s 0, 2 s t , t r t , s q s, t r s, s j I , I r I , I� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .
w x w xs u , f , y , y .� 4

� 4Hence cs c s d, p .
Example 2.2 is illustrated in Figure 9, which contains four graph pairs.

Ž X . Ž X .G , G and G , G possess trails L s ab and L s cd, respectively,1 1 2 2 1 2
both in trail cover class c. Up to isomorphism, there are exactly two graph

Ž X . Ž X . X X Xpairs G , G and G , G , with G g G s G and G g G p G for3 3 4 4 i 1 2 i 1 2
i s 3, 4, as shown in Figures 9c and 9d. Let z be the only nondistinguished

Ž .vertex in G s G . Let M be a DET network realizing a DET trail3 4
Ž X. Ž w x w X x. Ž X .L, L in G M , G M that contains G , G as a subgraph pair. Sup-3 3

w xpose that L begins at any vertex u in G M with u / z. It follows that L
enters G from either s or t . We can assume without loss of generality3 3 3
that L enters G at s with L . Since L is in class c, L leaves G at s3 3 1 1 3 3
after traversing L and reenters G from t with L . On the other hand,1 3 3 2

�Ž . Ž .4 Xwe can verify that the trail set formed by ab , cd in G is in class f.3
Ž X . Ž X.Thus the trail cover in G , G induced by L, L is in class d. Suppose3 3
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� 4FIG. 8. Illustration of as a s b, k, l .

that L begins at z. We can assume without loss of generality that L begins
with L . Since the trail cover class of L is c, L terminates at z and is1 1 1
immediately followed by L . Since L is in c, L terminates at z. Thus2 2 2
L s L L is in class p.1 2

Ž X. Ž w x w X x.Let M be a DET network realizing a DET trail L, L in G M , G M
Ž X .that contains G , G as a subgraph pair. Suppose that L begins at any4 4
w xvertex u in G M with u / z. As in the above case, the trail cover class in

G derived from L can be shown to be in class d. Suppose that L begins at4
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� 4FIG. 9. Illustration of cs c s d, p .

z. Similarly, the trail cover in G derived from L is given by L s L L and4 1 2
� 4is in class p. Thus cs c s d, p .

w x w xEXAMPLE 2.3. We show here the derivation of 0, 2 s x, x , i.e., cs f. It
w x �Ž . Ž . Ž . Ž .4 w x �Ž . Ž .is known that 0, 2 s t, t r t, s ; s, t r s, s and x, x s t, t r I, I ;
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Ž . Ž . Ž . Ž . Ž . Ž .4t, s r I, I ; s, t r I, I ; s, s r I, I . Then

w x w x0, 2 s x , x s t , t r t , s q s, t r I , I ;� Ž . Ž . Ž . Ž .
t , t r t , s q s, s r I , I ;Ž . Ž . Ž . Ž .
s, t r s, s q t , t r I , I ;Ž . Ž . Ž . Ž .
s, t r s, s q t , s r I , I 4Ž . Ž . Ž . Ž .

j I , I r I , I� 4Ž . Ž .
w xs x , x q 0, 2 , y , y .� 4Ž . Ž .

� 4Hence cs f s h, p .
We illustrate Example 2.3 in Figure 10, which contains four graph pairs.

Ž X . Ž X .G , G possesses a trail L s ab in class c, and G , G possesses a1 1 1 2 2
trails L s cde in class f. Up to isomorphism, there are four graph pairs2
Ž X . X X XG, G with G g G s G and G g G p G . We here only show two graph1 2 1 2

Ž X. X X Xpairs G , G with G g G s G and G g G p G for i s 3, 4. Let z bei i i 1 2 i 1 2 i
the common vertex of edges e, c, and d in G for i s 3, 4. Let M be a DETi

Ž X . Ž w x w X x.network realizing a DET trail L, L in G M , G M that contains
Ž X . Ž .G , G as a subgraph pair. Since deg z s 3, we can assume that L3 3 3
begins at z . Thus L begins with L , which is followed by L . The trail3 2 1
cover in G derived from L is given by L s L L and is in class p. Let M3 1 2

Ž X. Ž w x w X x.be a DET network realizing a DET trail L, L in G M , G M that
Ž X . Ž .contains G , G as a subgraph pair. Since deg z s 3, we can assume4 4 4

that L begins at z by L and leaves G at t . Eventually L must return to4 2 4 4
Ž .G at s since e has been traversed, t is ruled out , from which it follows4 4 4

L . After traversing L , it will leave G at s . Thus the trail cover class in1 1 4 4
G derived from L is class h. We can use similar arguments to discuss the4

Ž X. X X Xother two graph pairs G, G with G g G s G and G g G p G . Conse-1 2 1 2
� 4quently, we obtain cs f s h, p .

Using arguments similar to that employed in the above examples, we
construct Table 1 to illustrate the results of s on TC = TC. If a series
connectin of two trail cover classes does not yield a trail cover in TC, we
write asb s B, which is indicated by a blank entry in Table 1. Obviously,

Ž .t N, LL is in trail cover class a if L is a DET and N is of type L. NoteG
that Table 1 is closed under series connection, parallel connection, and
taking the duals generated by class a. There are exactly 16 different trail
cover classes needed to form DET.

A network N is possible if there exists a trail cover class in TC for some
Ž w x w X x.G N , G N . We use Q to denote the set of all possible networks. For

Ž . �Ž w x w X x.any network N in Q, Possible N s G N , G N ¬ there exists a trail
Ž w x w X x. 4 Ž . �cover for G N , G N , which is in Q , and Class N s z ¬ z is a trail
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� 4FIG. 10. Illustration of cs f s h, p .

Ž w x w X x. Ž .4cover class for some G N , G N in Possible N . For example,
Ž . � 4Class N s a for any network N of type L. It follows from Example 2.1

Ž . � 4that Class N s b, k, l for any network N that is a series connection of
Ž . � 4two networks of type L. Hence we have Class N s c, j, l for any

network N that is a parallel connection of two networks of type L.
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TABLE 1
Ž .The function s that maps TC = TC to P TC
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EXAMPLE 2.4. Let N be the network in Figure 1, N be the child1
� 4subnetwork of N defined on e , N be the child subnetwork defined on2

� 4 � 4a, b , and N be the child subnetwork of N defined on c, d . Then3
Ž . � 4 Ž . Ž . � 4Class N s a , Class N s Class N s c, j, l . It follows from the dis-1 2 3

Ž . 1 Ž . 1cussion in Examples 2.1, 2.2, and 2.3 that Class N s Class N s1 2
Ž . � 4 Ž . Ž . Ž . � 4Class N s h and Class N s Class N s Class N s h, p . Therefore,3 1 2 3

the network in Figure 1 has a DET trail in class p.
Let N be a possible network of type S with child subnetworks N , N ,1 2

Ž .. . . , N . It can be observed from the above example that Class N sk
Ž . Ž . Ž .Class N s Class N s ??? s Class N . Thus we need methods to compute1 2 k
Ž .Class N from its child subnetworks.

3. PROPERTIES OF DET NETWORKS

Using Table 1, we can derive the generation of classes a, b, c, d, and e.

LEMMA 3.1. The classes a, b, c, d and e of type S are constructed as
follows:

Ž . w x � w x 4 � w x 4i 2, 2 ¤ m 2, 2 s n 2, 0 , where m is odd and m q n G 2.S P P

Ž . w x � w x 4 � w x 4ii 2, 0 ¤ m 2, 2 s n 2, 0 , where m is e¨en and m q n G 2.S P P

Ž . w x w x � w x 4iii 0, 2 ¤ 0, 2 s m f, u , where m G 1.S P P

Ž . w x w x w x � w x 4iv u , f ¤ 0, 2 s 0, 2 s m f, u .S P P P

w x � w x 4 w xu , f ¤ m f, u s u , f , where m G 1.S P P

Ž . w x � w x 4v f, u ¤ m f, u , where m G 2.S P

w x w xIn these rules, by ‘‘z y, y ’’ we mean a series connection of z y, y ’sP P
Ž .where z is a nonnegatï e integer. The subscript S P is used to indicate a trail

Ž .co¨er for some networks of type S P .

Proof. Every network is recursively constructed from edges and subnet-
works that correspond to leaves and subtrees, respectively. Each edge has

w xa trail cover 2, 2 only of type P or S, depending on the type of its parent.
From Table 1, we know that a s as b, b s as a or bs b, c s cs e,
d s ds e or cs c, and e s es e. Repeatedly applying these relations, we
obtain the rules as stated in the lemma.

Examining Lemma 3.1 and its proof, we find that the classes a, b, c, d,
and e are generated by concatenation of these five classes only, without
involving the remaining 11 trail cover classes. Hence we call classes a, b, c,
d, and e primary trail co¨er classes, and any trail cover in classes a, b, c, d,
and e a primary trail co¨er.

LEMMA 3.2. The classes a, b, c, d, and e are mutually exclusï e. In other
� 4words, let network N ha¨e a trail co¨er in a g a, b, c, d, e . Then N cannot

� 4ha¨e a trail co¨er b such that b g a, b, c, d, e and a / b.
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Proof. According to Lemma 3.1, the generation of a, b, c, d, and e are
mutually exclusive.

To simplify our exposition, we divide the 15 trail cover classes a, b, . . . , o,
excluding p, of type S and of type P into five groups:

w x w x w x w xT s 2, 2 , 2, 0 , 2, 2 , 0, 2� 4P P S SA

w x w xT s 0, 2 , 2, 0� 4P SC

w x w xT s u , f , f , u� 4P SD

w x w xT s f , u , u , f� 4P SE

w xT s x , x , x , x q 2, 2 , x , x q 0, 2 , x , x q 2, 0 ,� Ž . Ž . Ž . Ž . Ž . Ž .PF P P P

w xx , x , x , x q 2, 2 , x , x q 2, 0 , x , x q 0, 2 ,Ž . Ž . Ž . Ž . Ž . Ž .S S S S

w x w x w xf x , u x , u x , f x , u x , u x , u x , u x q 2, 2 ,Ž . Ž .P P P P

w x w x w xu x , f x , f x , u x , u x , u x , u x , u x q 2, 2 ,Ž . Ž .S S S S

f x , u x q 0, 2 , u x , f x q 2, 0 ,Ž . Ž . Ž . Ž .P P

u x , f x q 2, 0 , f x , u x q 0, 2 .4Ž . Ž . Ž . Ž .S S

It follows from Lemma 3.2 that trail covers in T , T , T , and T areA C D E
primary trail cover classes and are mutually exclusive. As shown in Figure

Ž � 4.6, the trail cover types of t N , L for i s 1, 10 are in T . The trail coverG i C
Ž � 4.types of t N , L for i s 2, 3, 9 are in T . The trail cover types ofG i E

Ž � 4. Ž � 4.t N , L for i s 4, 5, 6, 7 are in T . The trail cover type of t N , L isG i A G 8
Ž w x w X x.in T . In general, let G M , G M be any graph representation thatF

possesses a DET trail L for some network M. Let N be any type S
subnetwork of M. In the following, we will show that those child s.p.

w x Ž .subgraphs of G N with their derived trail cover classes from L in TM A
induce at most two connected components. There are at most two child

w xs.p. subgraphs of G N with their derived trail cover classes in T . ThereM C
w xis at most one child s.p. subgraph of G N with its derived trail coverM

w xclass in T . Moreover, if there is a child s.p. subgraph of G N with itsD M
derived trail cover class in T , then there is no child s.p. subgraph ofC

w xG N with its derived trail cover class in T . Those child s.p. subgraphs ofM E
w xG N with their derived trail cover classes in T induce at most twoM E

connected components. There are at most two child s.p. subgraphs of
w xG N with their derived trail cover classes in T .M F

Ž X. Ž w xLet M be a DET network that possesses a DET L, L in G M ,
w X x.G M . Let N be a subnetwork of M. Since M is DET, it suffices to

consider properties of trail cover classes of M and of N only, without
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considering M X and N X. In the following sections, we use a DET L in
w x Ž X. Ž w x w X x.G M to represent a DET L, L in G M , G M without ambiguity. We

would like to study the properties of subnetworks of a DET network.

Ž X.LEMMA 3.3. Let G, G realize a DET L for network M, and let N be a
subnetwork of M.

Ž . w xi Let N be a child subnetwork of N such that L N is a trail co¨er1 G 1
in T . Then L must begin or end at an edge in N .F 1

Ž . w xii N has at most two child subnetworks N such that each L N is ai G i
trail co¨er in T .F

Proof. Each nondistinguished trail contains at least one internal vertex
as a terminal, and therefore one of its termini cannot be concatenated with
a trail cover of another subnetwork. Trail covers in T contain at least oneF
nondistinguished trail. Consequently, these nondistinguished trails must be

Ž .the beginning section or the ending section of L. Therefore, statement i
follows. If N contains more than two child subnetworks N such that eachi

w xL N is a trail cover in T , N contains more than two nondistinguishedG i F
trails. Since trail covers in TC contain at most two nondistinguished trails,
N cannot have any trail cover in TC. Furthermore, M cannot be DET,
which contradicts the assumption. Hence the lemma follows.

w xLEMMA 3.4. Let M be a DET network, G M realize a DET L, and N be
a type S subnetwork of M. Then the following statements hold:

Ž .i N can contain at most two child subnetworks C such that eachi
w xL C is a trail co¨er in T .M i C

Ž . w xii N can contain at most one child subnetwork D such that L D isM
a trail co¨er in T .D

Ž .iii N cannot contain both child subnetworks C and D, where C andi i
D are as defined abo¨e.

Ž .Proof. To prove statement i , we assume without loss of generality that
there are exactly three child subnetworks C , C , and C of N such that1 2 3

w x w xeach L C is a trail cover in T . Then G N can be written asG i C M

w x w x 1 w x 1 w x 1 w xG N s G N s G C s G N s G CM M 1 M 1 M 2 M 2

1 w x 1 w x 1 w xs G N s G C s G N ,M 3 M 3 M 4

where N can be vacuous for i s 1, 2, 3, 4. Since cs 1cs 1c : cs cs c s B,i
w x w x w xit follows that G C , G C , and G C cannot all be placed consecu-M 1 M 2 M 3

w xtively in G M , i.e., N and N cannot both be vacuous. Next, we consider2 3
w x w xthe case where only two G C are placed consecutively in G N .M i M

w x w xSuppose that G C and G C are connected, i.e., N is vacuous. TheM 1 M 2 2
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w x Žpossible trail covers of G N are contained in the set t s TC yM 1
� 4. 1� 4 1� 4 1Ž � 4. 1� 4 1Ž � 4.c s c s c s TC y c s c s TC y c . It follows from Table 1
that

� 4 � 4 � 4 � 4 � 4 � 4t : TC y c s c s c s TC y c s c s TC y cŽ . Ž . Ž .Ž .Ž .Ž .Ž .Ž .1

� 4 � 4 � 4 � 4 � 4s c, f , h , j, n , p s c s TC y c s c s TC y cŽ . Ž . Ž .Ž .Ž .Ž .
� 4 � 4 � 4 � 4s d , h , n , p s TC y c s c s TC y cŽ . Ž .Ž .Ž .Ž .

� 4 � 4 � 4s d , h , k , l , n s c s TC y c s B.Ž .Ž .

w x w xThus there is no trail cover in G N for G M to form a DET, i.e., NM
does not have a trail cover in TC. Finally, we consider the case where N2

w xand N are not vacuous. In this case, the possible trail covers of G N3 M
Ž � 4. 1� 4 1Ž � 4. 1� 4 1Žare contained in the set t s TC y c s c s TC y c s c s TC y2

� 4. 1� 4 1Ž � 4.c s c s TC y c . As in the first case, we can show that the set t is2
Ž .empty. Therefore statement i follows.

Ž . Ž .Statements ii and iii can be proved by arguments similar to those
Ž .given for statement i .

w xLEMMA 3.5. Let M be a DET network, G M realize a DET L, N be a
type S subnetwork of M, and A , . . . , A be the only child subnetworks of N1 n

w x w xsuch that each L A is in T . Then in G N , A , . . . , A are representedG i A M 1 n
by at most two connected subgraphs.

w xProof. Suppose that in G N , the subnetworks A , A , . . . , A areM 1 2 n
w x w xrepresented by three connected components, say, G K , G K , andM 1 M 2

w x w xG K . It follows that G N can be written asM 3 M

w x w x 1 w x 1 w x 1 w xG N s G N s G K s G N s G KM M 1 M 1 M 2 M 2

1 w x 1 w x 1 w xs G N s G K s G N ,M 3 M 3 M 4

where N and N can be vacuous. As in the deduction in Example 2.1, we1 4
1 w xhave T s T s T . It follows that each L K is in T for every i. ByA A A G i A

Table 1, T can be obtained only by T s T . It follows that the inducedA A A
w x � 4trail cover in each G N is contained in Y s TC y a, b . Moreover, NM i 2

and N cannot be vacuous, since otherwise the A ’s can be represented by3 i
less than three connected components. Therefore the induced trail cover

w x 1� 4 1 1� 4 1 1� 4 1in L N is contained in Ys a, b s Ys a, b s Ys a, b s Y. It is obvi-G
1� 4 1 � 4 1 1� 4 1� 4ous that Ys a, b s Y : Ys a, b s Y and Ys Ys a, b : Ys a, b :

� 4 � 4Ys a, b . The trail covers in Ys a, b are concatenated with trail covers in
� 4other subnetworks by means of a trail cover in a, b , while the trail covers

1� 4 1in Ys a, b s Y are concatenated by means of both trail covers in Y. Since
� 4a and b are primary trail cover classes and Y l a, b s B, it follows that
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Ž 1� 4 1 . Ž � 4. 1� 4 1 Ž �Ys a, b s Y l Ys a, b s B. Therefore, Ys a, b s Y : Ys a,
4 . Ž � 4. � 4 � 4 1 1� 4b s Y y Ys a, b s j, m, n, o, p s W. Moreover, a, b s Ws a, b
Ž� 4 . � 4 w x: a, b s W s a, b s B, i.e., L N s B. Therefore, there exists noG

w x w xtrail cover in G N for G M to form a DET, i.e., N has no trail cover inM
TC. This leads to a contradiction, and hence the lemma follows.

w xLEMMA 3.6. Let M be a DET network, G M realize a DET L, N be a
type S subnetwork of M, and E , . . . , E be the only child subnetworks of N1 n

w x w xsuch that each L E is in T . Then in G N , E , . . . , E are represented byG i E M 1 n
at most two connected subgraphs.

w xProof. Suppose that in G N , the subnetworks E , E , . . . , E areM 1 2 n
w x w xrepresented by three connected components, say, G K , G K , andM 1 M 2

w x w xG K . It follows that G N can be written asM 3 M

w x w x 1 w x 1 w x 1 w xG N s G N s G K s G N s G KM M 1 M 1 M 2 M 2

1 w x 1 w x 1 w xs G N s G K s G N ,M 3 M 3 M 4

where N and N can be vacuous. Similar to the deduction in Example 2.1,1 4
1 w xwe have T s T s T . It follows that each L K is in T for every i. ByE E E G i E

Table 1, T can be obtained only by T s T . It follows that the inducedE E E
w x � 4trail covers in each G N are contained in Y s TC y e . Moreover, NM i 2

and N cannot be vacuous, since otherwise the E ’s can be represented by3 i
less than three connected components. Therefore the induced trail cover

w x 1� 4 1 1� 4 1 1� 4 1in L N is contained in Ys e s Ys e s Ys e s Y. It is obvious thatG
1� 4 1 � 4 1 1� 4 1� 4 � 4Ys e s Y : Ys e s Y and Ys Ys e : Ys e : Ys e . The trail covers

� 4in Ys e are concatenated with trail covers in other subnetworks by means
� 4 1� 4 1of a trail cover in e , while the trail covers in Ys e s Y are concatenated

� 4by means of both trail covers in Y. Since Y l e s B and e is a primary
Ž 1� 4 1 . Ž � 4.trail cover class, it follows that Ys e s Y l Ys e s B. Therefore,

1� 4 1 Ž � 4 . Ž � 4. � 4Ys e s Y : Ys e s Y y Ys e s f , k, l, p s W. Similarly, we have
� 4 1 1� 4 Ž� 4 . � 4e s Ws e : e s W s e s B. Therefore, there exists no trail cover in

w x w xG N for G M to form a DET, i.e., N has no trail cover in TC. ThisM
leads to a contradiction, and hence the lemma follows.

w xLEMMA 3.7. Let M be a DET network that realizes a DET L in G M .
Then the following statements hold:

Ž . w xi All child subnetworks A of M such that each L A is in T arei G i A
w xrepresented by only one connected component in G M .

Ž . w xii M does not contain a child subnetwork N such that L N g T .G D

Ž .Proof. To prove statement i , suppose that all of the A ’s are repre-i
w xsented by two connected components in G M . We use arguments similar

w xto those in the proof of Lemma 3.5 and obtain the result that G M can be
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written as follows:

w x w x 1 w x 1 w x 1 w x 1 w xG M s G N s G K s G N s G K s G N ,M 1 M 1 M 2 M 2 M 3

w xwhere N and N can be vacuous, N cannot be vacuous, L K is in T1 3 2 G i A
w xfor i s 1, 2, and trail covers in each G N are contained in Y s TC yM i

� 4 1� 4 1 1� 4 1a, b . It follows that L is contained in Ys a, b s Ys a, b s Y. It
� 4 1� 4 1� 4follows from repeated applications of Table 1 that a, b s c, d, e s a, b

Ž� 4 � 4 � 4. Ž� 4 � 4. � 4 � 4 1Ž: a, b s c, d, e s a, b y a, b s c, d, e s k, l , a, b s Y y
� 4. 1� 4 Ž� 4 Ž � 4. � 4. Ž� 4 Ž � 4..c, d, e s a, b : a, b s Y y c, d, e s a, b y a, b s Y y c, d, e

� 4 1 1� 4 1 � 4s B. Therefore, we have a, b s Ys a, b s Y : k, l s Y s B. This con-
Ž .tradicts the existence of L, and hence statement i follows.

Ž .To prove statement ii , we suppose that M has a child subnetwork N
w x � 4such that L N g T s d . It follows from Table 1 that we haveG D

� 4 � 4 � 4ds TC s d, h, n , ds TCs TC : d, h, n s TC s d, h, k, l, n , and
� 4 � 4ds TCs TCs TC : d, h, k, l, n s TC s d, h, k, l, n . Therefore, the possi-

ble trail covers in M are contained in d, h, k, l, n and, as a result, M is not
DET. This leads to a contradiction. Hence the lemma follows.

Ž .Remark 3.1. Statement i of Lemmas 3.4 and 3.6 also holds for
N s M. In other words, let M be a DET network that realizes a DET L in

w xG M . Then M contains at most two child subnetworks C such that eachi
w xL C is in T . All of the child subnetworks E of M such that eachG i C i
w xL E is in T are represented by at most two connected components inG i E

w xG M .

4. RULES FOR TRAIL COVER CLASS COMPOSITION
AND REFINEMENT

In this section we propose an algorithm that generates the rules for the
composition of each trail cover class. These rules are used to find all trail
cover classes of a network in all graph representations. For the rules for
trail cover composition, it suffices to consider series connections of trail
cover classes. For a network of the parallel type, we take the duals of its
child subnetworks and apply the rules for series type. Then we again take
the duals of the resulting trail cover classes to obtain the trail cover classes
for the network.

On the basis of the analysis in Section 3, we use an array A of size 8 to
represent all trail cover classes. Elements of A are labeled by a , a , c ,1 2 1
d , e , e , f , and f . According to Lemma 3.5, subnetworks with trail1 1 2 1 2
covers in T are represented by at most two connected components inA

w xG M , or else they cannot form a trail cover in TC. Therefore, we use a1
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and a to represent all possible representations of trail covers in T ; each2 A
element corresponds to a connected component. a is used to indicate1
three possibilities regarding trail covers in T , i.e., none in T , a trail coverA A
in class a, and a trail cover in class b. Lemma 3.1 states that class a

w x w xconsists of an odd number of 2, 2 and some 2, 0 , and class b consistsP P
w x w xof an even number of 2, 2 and some 2, 0 . We therefore define a s 0P P 1

w xto mean no trail cover in T , a s 1 for an odd number of 2, 2 , andA 1 P
w xa s 2 for an even number of 2, 2 . Similarly, we let a s 0 mean no trail1 P 2

w xcover in T , a s 1 an odd number of 2, 2 , and a s 2 an even numberA 2 P 2
w xof 2, 2 for the second connected component. When subnetworks withP

trail covers in T are represented by only one connected component inA
w xG M , we define a s 0.2
By Lemma 3.4, a network can have at most two child subnetworks with

trail covers in T . We write c s 0 for no trail cover in T , c s 1 for oneC 1 C 1
in T , and c s 2 for two.C 1

By Lemma 3.4, we define d s 0 for no trail cover in T , d s 1 for one1 D 1
in T .D

As in the case of trail covers in T , each of e and e corresponds to aA 1 2
connected component. For the first component, we use e s 0 to indicate1
no trail cover in T and e s 1 to indicate at least one in T . We define eE 1 E 2
similarly.

According to Lemma 3.3, a network contains at most two child subnet-
works with trail covers in T . Therefore, we use f and f to represent theF 1 2
trail cover classes in T , excluding p, since it cannot be concatenated withF
any other trail cover class. Each of f and f takes one of 11 possible1 2
values: 0 for no trail cover in T , and 1, 2, . . . , 10 for the 10 trail coverF

Ž .classes in T see Table 1 .F
We consider all of the combinations of trail cover composition in array

A. For each combination, take all permutations to obtain a series connec-
tion of these trail cover classes with different orders of concatenation,
since each permutation corresponds to a fixed order of concatenation of
corresponding graph representations. Since there are only eight elements
and each takes of a small number of different values, there are a finite
number of permutations. Using Table 1, we find all possible trail cover
classes for each permutation and store the results. Finally, we sort these
results to obtain the composition of each trail cover class.

We summarize the above discussion in the following procedure:

Step 1. Set up values for A as discussed above. For each combination
of these eight arrays, get all permutations and find the resulting trail cover
classes according to Table 1.

Step 2. Sort these results to obtain the composition for each trail
cover class.
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ŽIt can be easily verified that there are at most 8!r
Ž ..Ž 2 .Ž 1.Ž 1.Ž 2 .Ž 2 .2!2!2! 3 3 2 2 11 permutations in the above procedure. There-
fore, this procedure can be carried out in constant time. Since some
permutations cannot yield a trail cover in classes a to p, the number of
rules can be greatly reduced. In Table 2 we list a total of 156 rules
generated from this procedure. The trail cover classes listed in each rule
are arranged in order from top to bottom in the graph representation, so it
is convenient to check Table 2 to determine the appropriate representa-

w xtion for each trail cover class. In Table 2, by z y, y we mean seriesP
w xconnection of z y, y ’s, where z is a nonnegative integer.P

We note from Table 2 that series connectin of some specific trail cover
classes results in trail covers in more than one class, one in group
T j T j T j T , and the others in T . For example, suppose that NA C D E F 1
and N have trail covers in class a. According to Table 1, trail covers for2
N s N can be in classes b, k, l where b g T and k, l g T . We want to1 2 A F
find trail covers of N s N s N for an arbitrary network N . We distin-1 2 3 3

� 4guish two cases for trail covers of N s N . In the first case, let k, l be the1 2
resulting trail covers in N s N . By Table 1, N must be a network with a1 2 3
trail cover in T , say a, otherwise N s N s N cannot have any trail coverA 1 2 3

� 4in TC. Furthermore, N s N s N has trail covers in k, l . Consider the1 2 3
second case, where b is the resulting trail cover in N s N . Let N be a1 2 3
network with a trail cover in class a as in the first case. It follows from

� 4Table 1 that N s N s N has trail covers in a, k, l . Comparing the1 2 3
� 4resulting trail covers of N s N s N in both cases, we find that k, l in the1 2 3

� 4first case is contained in a, k, l of the second case. Therefore, we can
� 4write as a s b instead of as a s b, k, l when considering the composi-

tion of DET or DEC networks. This fact can also be observed from
Example 2.1.

On the other hand, we will show that the trail covers in b resulting from
� 4as a can be obtained from the trail covers in k, l and vice versa. Let M

Ž X. Ž X.be a DET network that realizes a DET L, L in G, G , and let N s
w xN s N be a partial subnetwork of M, where L N as in a for i s 1, 2.1 2 G i

w xSuppose that L N is in k. Let L denote the trail in N induced by L.G i i
We assume without loss of generality that L is the beginning section of1
L, L is the ending section of L, and L can be written as L s L QL .2 1 2

w xObviously, L begins at the vertex that serially connects G N withM 1
w x XG N and terminates at the same vertex. Furthermore, L begins at oneM 2

w X x w X xX Xof the distinguished vertices, which connects G N and G N inM 1 M 2
Ž X.parallel and terminates at the same vertex. It follows that G, G has

U U w xanother DET trail, namely, L s QL L . Moreover, L N s L L is in2 1 G 2 1
w xb. We can provide a similar proof for the case where L N is in l. NowG

w xsuppose that L N is in b. By reversing the above operation, we canG
� 4derive the trail covers in k, l from the trail cover in b that results from

as a.
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TABLE 2
Rules for trail cover class composition and refinement
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TABLE 2}Continued
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TABLE 2}Continued

Using similar arguments for as b, bs b, cs c, cs e, ds e, and es e, we
have the following lemma.

LEMMA 4.1. Let N and N be two networks. If N s N results in trail1 2 1 2
co¨ers in more than one class, one in group T j T j T j T , and theA C D E
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others in T , then the trail co¨er in T j T j T j T is preferred o¨er theF A C D E
trail co¨ers in T .F

The rules corresponding to the latter case can be considered redundant.
Those corresponding to the former case are called dominating rules. This
idea can also be extended to the trail cover classes in T . By the discussionF
after Lemma 3.3, a trail cover in T with fewer nondistinguished trails isF
preferred over ones having more nondistinguished trails. For example, we

� 4know from Table 1 that as f s f , k, l . Since f contains only one nondis-
tinguished trail, whereas k and l contain two nondistinguished trails, f is

� 4preferred over k, l . To be specific, trail cover classes in T excluding pF
� 4 � 4can be distinguished as two sets S s f , g, h, i and S s j, k, l, m, n, o ,1 2

based on the number of nondistinguished trails in each trail cover class.
For any two networks N and N , if N s N results in trail covers all in T ,1 2 1 2 F
one in S , and the others in S , then the resulting trail covers in S are1 2 2
considered to be redundant.

In Table 2, each redundant rule is marked by a ) if its graph topology is
the same as that of the dominating rule, and by a U otherwise.

5. RECOGNITION OF DEC AND DET NETWORKS

In this section we study the recognition of DEC and DET networks.
First, we partition networks into six groups, A, C, D, E, F, and Z. A
network N is in A, C, D, and E if there exists a graph representation
Ž w x w X x.G N , G N that has a trail cover in group T , T , T , and T , respec-A C D E
tively. A network N is in F if it is not in A, C, D, or E, and there exists a

Ž w x w X x.graph representation G N , G N that has a trail cover in T . All of theF
remaining networks are said to be in Z. Since trail cover classes a, b, c, d,
and e are mutually disjoint, as stated in Lemma 3.2, a network N cannot

� 4realize trail covers in class a and in class b for a , b g a, b, c, d, e and
a / b. Therefore, network N cannot be in more than one of the groups
A, C, D, E, F, and Z. For example, if N is in A, N cannot be in C, D, E,
F, or Z.

Let M be a DET network with child subnetworks N , N , . . . , N that1 2 k
w xrealizes a DET L in G M . We assume that M is of type S. To attain

results for M of type P, we need only take the duals of the results for M of
type S.

Ž X.A DEC network is a DET network that has a DET L, L such that
both L and LX are Euler circuits. It is easy to check that the smallest DEC

Ž X .network is the network with a graph representation G , G in Example3 3
w x2.2. Since there is no trail cover in class 0, 0 , the only DEC trail cover

w xmust be in y, y . Let M be a DEC network. M does not contain a child
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subnetwork in F, since otherwise L cannot begin and end at the same
w xvertex. Examining the rules listed in Table 2 for y, y , we note that theS

w xonly rule for y, y without containing any internal trail is the first ruleS
w x w x � w x 4 w xfor p, i.e., y, y ¤ 0, 2 s m f, u s 0, 2 , where m G 0. Since thisS P P P

w xrule is the only rule for y, y to be a DEC, it is a necessary and sufficientS
condition for DEC networks and we conclude in the following theorem.

THEOREM 5.1. Let M be a network with type S, and let N , N , . . . , N be1 2 k
the child subnetworks of M. Then M is a DEC network if and only if exactly
two N are in T and the others are in T .i C E

It follows from Lemmas 3.3, 3.4, and Remark 3.1 that at most two N ’si
w x w xhave L N g T , at most two N ’s have L N g T , and all of theG i F i G i C

w xother N ’s have L N g T j T . Therefore, we have the followingi G i A E
lemma in terms of network groups.

LEMMA 5.1. Assume a network M is a DET network with child subnet-
works N , N , . . . , N . Then the following hold:1 2 k

Ž .i At most two N are in F.i

Ž .ii At most two N are in C.i

Ž .iii All of the remaining N are in A j E.i

Now we point out some interesting facts about the arrangement of child
w xsubnetworks of M in all graph representations G M that realize a DET

Ž .see Fig. 11 for an illustration :

Ž .i Child subnetworks in C must be placed at the top and bottom
w xparts of G M . This follows from the fact that the child subnetwork in C

has only one distinguished vertex to concatenate with a trail cover in
another child subnetwork.

Ž .ii The subgraph representing child subnetworks in E must be
connected to the graph representation of a child subnetwork in C. There-
fore, the number of connected components representing child subnetworks
in E is no greater than the number of child subnetworks in C.

Ž .iii Suppose that M contains two child subnetworks N and N inp q
F. Child subnetworks in E cannot be placed between the subgraphs
representing N and N in G, since otherwise no DET can begin and endp q

with an edge in N and an edge in N . Furthermore, if M contains childp q
subnetworks in A, those child subnetworks must be placed between Np
and N .q

LEMMA 5.2. Let M be a type S network consisting of two child subnet-
works N , N in F, two child subnetworks in C, and some child subnetworksp q

wŽ . Ž .xin A j E. Then M possesses a DET if and only if x, x q 2, 2 orP
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FIG. 11. General arrangement of the child subnetworks of a DET network M in all graph
Ž w x w X x.representations G M , G M that realize a DET.
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wŽ . Ž .xx, x q 2, 0 is the trail co¨er of N and N . Furthermore, the resultingP p q
w xDET trail of M is in class y, y .

Proof. We can prove the lemma by checking the rules in Table 2.

With this lemma, we know that the converse of Lemma 5.1 is not true.
Instead of giving a necessary and sufficient condition for DET networks,
we present a linear time algorithm to recognize such networks. To justify
the algorithm, we need the following discussion.

� < Ž . � 4 < 4 �Let X s N g Q ¬ Class N l a, b, c, d, e G 1 and Y s N g Q ¬
< Ž . � 4 < 4Class N l f , g, h, i G 1 . We have the following lemma.

LEMMA 5.3. There is no network in X l Y.

Ž w x w X x.Proof. By Lemma 3.1, for any G N , G N of a network N, the
following facts can be proved by induction on the height of the tree
structure for N:

Ž . Ž .1 If a is in Class N , then there are exactly two vertices of odd
w x w X xdegree in G N and G N , respectively, namely, their two distinguished

vertices.
Ž . Ž .2 If b is in Class N , then there are exactly two vertices of odd

w xdegree in G N , namely, its two distinguished vertices, and there is no
w X xvertex of odd degree in G N .

Ž . Ž .3 If c is in Class N , then there is no vertex of odd degree in
w x w X xG N , and there are exactly two vertices of odd degree in G N , namely,

its two distinguished vertices.
Ž . Ž .4 If d or e is in Class N , then there is no vertex of odd degree in

w x w X xeither G N or G N .

It can be observed from the rules in Table 2 that generate f , g, h, and i
Žthat for any network N in Y there is a subnetwork not necessarily a child

. Xsubnetwork of N or N that is a series connection of at least one network
�w x w x 4containing a trail cover class in 2, 2 , 2, 0 and at least one networkP P
�w x w x w x 4containing a trail cover class in 0, 2 , u , f , f, u . As a result, ifP P P

Ž w x w X x.G N , G N is any graph representation for some network N in Y, then
w xthere exists a nondistinguished vertex which is of odd degree in G N or

Xw xG N . The lemma is proved.

Using the rules in Table 2, we can develop a linear time algorithm to
recognize DET networks. The algorithm works as follows:

Algorithm: RECOG DET
Input: A network N in tree representation.
Output: ‘‘Yes’’ and resulting trail cover classes if N possesses a DET, and

‘‘No’’ otherwise.
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Ž .Method: For each nonleaf node x, use N x to denote the subnetwork that
Ž .X Ž . Ž .it represents and N x to denote the dual of N x . Define M x to

Ž . Ž .Xbe one of the networks N x and N x that is of type S. Moreover,
Ž .X Ž . Ž .M x denotes the dual of M x . To be precise, we define M x s
Ž . Ž . Ž . Ž .XN x if N x is a type S network, and M x s N x otherwise. From

Ž Ž ..leaves to the root, level by level, calculate Class M x : TC, which
Ž .denotes the set of trail cover classes realized on M x , by the

following steps.

Ž Ž .X. �w x 41. If x is a leaf node, Class M x s 2, 2 .P

Ž Ž ..2. If x is a nonleaf node, compute Class M x using the rules in
Table 2.

3. If none of the rules can be applied, then output ‘‘No’’ and STOP.
w x w x w x w x w x4. If x is the root and one of 2, 2 , 2, 0 , 0, 2 , x, x , or y, yS S S S S

Ž Ž ..is in Class M x , then output ‘‘Yes’’ and STOP. If x is the root and none
Ž Ž ..of the above five classes is in Class M x , then output ‘‘No’’ and STOP.

Ž Ž .X.5. If x is a nonleaf node, calculate Class M x by setting
Ž Ž .X. Ž Ž ..Class M x s dual of Class M x , and proceed to next node.

The correctness of RECOG DET follows from our rules. We observe
that the time spent on Step 2 is crucial in determining the time complexity
of our algorithm. To discuss the time spent on Step 2, we describe the
method used to implement this step.

Ž . XŽ . XŽ . XŽ .Assume that M x has w child subnetworks M x , M x , . . . , M x .1 2 w
Ž Ž ..Let K be any trail cover in Possible M x . Observe that any trail cover in

� 4f , g, h, i contains exactly one distinguished trail, whereas any trail cover
� 4in j, k, l, m, n, o contains exactly two nondistinguished trails. Moreover, a

nondistinguished trail can be concatenated with at most one other trail.
XŽ .Hence all of the trail covers for M x induced by K satisfy one of thei

Ž . XŽ .following three cases: Case 1 in all M x , every induced trail cover is ini
� 4 Ž . XŽ .a, b, c, d, e ; Case 2 in all M x , at most two induced trail covers are ini
� 4 � 4 Ž . XŽ .f , g, h, i , and the remaining in a, b, c, d, e ; Case 3 in all M x , onlyi

� 4one induced trail cover is in j, k, l, m, n, o , and those remaining are in
� 4a,b, c, d, e .

Ž Ž .. <� Ž XŽ ..4 < Ž Ž ..Let a M x s i ¬ a g Class M x . Similarly, we define b M x ,i
Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž ..c M x , d M x , and e M x . We can compute a M x , b M x ,
Ž Ž .. Ž Ž .. Ž Ž .. Ž .c M x , d M x , and e M x in O w time. We first discuss the trail

Ž Ž .. Ž .cover classes in Class M x for trail covers in Case 1 . Since
< Ž XŽ .. � 4 <Class M x l a, b, c, d, e / 0 for every i, it follows from Lemma 3.2i

� 4that each child subnetwork N has a unique trail cover class in a, b, c, d, e .i
Ž . Ž .To find all of the trail cover classes for the trail cover of M x in Case 1 ,

Ž Ž ..we scan all of the rules in Table 2 that are a series connection of a M x
Ž Ž .. Ž Ž ..trail covers in class a, b M x trail covers in class b, c M x trail covers
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Ž Ž .. Ž Ž ..in class c, d M x trail covers in class d, and e M x trail covers in class
e. Although Table 2 has many rules, the number of rules is still bounded by

Ž .a constant. Thus we use additional O 1 time to find all of the trail cover
Ž . Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž ..classes in Case 1 once we have a M x , b M x , c M x , d M x ,

Ž Ž ..and e M x .
Ž .Consider Case 2 . It follows from Lemma 5.3 that there is no network

in X l Y. We can easily find all child subnetworks with an induced trail
� 4cover in f , g, h, i . Moreover, there are at most two such child subnet-

works. We assume without loss of generality that the induced trail covers
XŽ . XŽ . � 4of M x and M x are in f , g, h, i and the remaining child subnet-1 2

works are in X. Since there are at most four possible trail cover classes in
� 4f , g, h, i , we scan the rules 16 times at most to find all trail cover classes

Ž . Ž .in Case 2 . Additional O 1 time will be used to find all of the trail cover
Ž .classes for M x .

Ž . XŽ .Finally, in Case 3 , assume that M x has an induced trail cover K in1 1
� 4j, k, l, m, n, o . It follows that exactly one of the following three state-

Ž . < Ž XŽ .. � 4 < Ž . < Ž XŽ ..ments holds: i Class M x l a, b, c, d, e s 1; ii Class M x l1 1
� 4 < Ž . Ž XŽ .. � 4f , g, h, i G 1; or iii Class M x ; j, k, l, m, n, o . When statement1
Ž . Ž XŽ ..i holds, we assume that a g Class M x and K is in class j. Then any1 1

Ž .trail cover K for M x that includes K as an induced trail cover must1
� 4induce some trail covers in a, b, c, d, e for other child subnetworks. That

is, all of the other child subnetworks must be in X. Thus K is a series
Ž Ž ..connection of a trail cover in class j, a M x y 1 trail covers in class a,

Ž Ž .. Ž Ž .. Ž Ž ..b M x trail covers in class b, c M x trail covers in class c, d M x
Ž Ž ..trail covers in class d, and e M x trail covers in class e. We can find the
Ž .trail cover class for K in O 1 time. Since there are only six trail cover

� 4 Ž .classes in j, k, l, m, n, o , we may use O 1 time to find all of the trail
� 4cover classes that are a series connection of a trail cover in j, k, l, m, n, o

XŽ . � 4 XŽ .for M x and some other trail covers in a, b, c, d, e for M x with1 i
Ž XŽ ..i / 1. Moreover, if a f Class M x , exactly one of b, c, d, and e can be1

Ž XŽ ..in Class M x . The discussion for these situations is analogous, so1
Ž . Ž .statements ii and iii can be treated similarly. Since the possible induced

� 4 XŽ .trail covers in j, k, l, m, n, o may be in M x for 1 F i F w, we can findi
Ž .all such trail cover classes in O w time.

From leaves to the root and level by level, the time spent on Step 2 for
Ž .each node x is bounded by O d , where d is the number of children forx x

x. Therefore, we have the following theorem.

THEOREM 5.2. Algorithm RECOG DET recognizes DET networks in
linear time.

From the above discussion, it is clear that the time complexity of our
Ž .algorithm is T n s a n, where a is a large constant. a can be viewed as

the number of rules in Table 2.
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6. AN EXAMPLE

To illustrate the above algorithm, we use the network given by the
ŽŽŽŽŽŽ . . Ž .. Ž .. . Ž ..Boolean function a n b k c n f k g k e n d n h k k n l

Ž . Ž .n i k j n m k n , which has two pairs of graph representations, shown
in Figure 12. The trail covers realized in a parallel type subnetwork are
obtained by taking the duals of the trail covers derived from the rules for
series connection. To obtain the trail covers realized in a series type
subnetwork, we need to take the duals of the trail covers in its child
subnetworks and then apply the rules in Table 2. Figure 13 also illustrates
this procedure. The network has two nonequivalent DET’s dehijklmnabfgc
and abcdefghijklmn, which satisfy the fourth and the ninth rules for
w xy, y . From this final result, we can determine the trail covers realized inS

FIG. 12. Two nonisomorphic graph pairs of a DET network realizing different DETs.
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FIG. 13. Illustration of the RECOG DET algorithm.
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each subnetwork, from the root to leaves, that result in DETs. The ones
w xthat lead to the DET satisfying the fourth rule for y, y are marked by aS

v, and those leading to the ninth rule are marked by a ).

7. CONCLUSION

In this paper we study the DET problem that arises from VLSI layout.
Ž .We build a multivalued function Table 1 to discuss the concatenation of

these trail cover classes. It is observed that Table 1 is closed under series
connection, parallel connection, and taking the dual. There are exactly 16
trail cover classes. To discuss the possible concatenation of all permuta-
tions of trail cover classes, we study the basic structures of the trail cover
classes of DET networks. Then we use a program to generate rules for
trail cover class composition. Using these rules, we can build a linear time
algorithm to recognize those networks that possesses DET trails. The
approach that uses a program to generate rules is very interesting. We
believe that such an approach can be used in algorithm designs for other
problems, especially those complicated problems using dynamic program-

Ž .ming. We also believe that the original problem that computes DCT N
for any network N might be a candidate problem using this approach.

Ž .Actually, we have tried this approach on DCT N . However, we need to
reclassify those trail cover classes so that it is closed under series connec-
tion, parallel connection, and taking the dual. We believe that at least 540
trail cover classes should be considered as we analyze the behavior of

Ž .DCT N . Because the problem is so complicated, we still cannot solve the
DCT problem.

We also want to point out that RECOG DET can be translated into a
w xparallel algorithm. Tree contraction 1 is a general technique for designing

parallel algorithms for certain problems defined on a tree. The DET
problem is also a problem defined on a tree. It is easy, but not trivial, to
modify the technique of tree contraction to solve the DET problem in
Ž . Ž . w xO log n time with O nrlog n processors under EREW PRAM 18 .
In VLSI layouts, circuit designers may wish to keep the DETs to pursue

height or floor plan optimization. We have seen in Figure 12 that a DET
network may realize various DETs in different pairs of graph representa-
tions. Figure 14 shows the corresponding geometric layouts. The layout
designers may prefer the layout with the smaller height or the layout that
fits his floor plan. For this reason, it is usful to design a data structure that

w xkeeps the DETs in all graph representations for any network 14 .
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FIG. 14. Two different geometric layouts for the DET network in Figure 13.
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