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Abstract. We study the gauge transformations between the supersymmetric AKNS (sAKNS)
and supersymmetric two-boson (sTB) hierarchies. The Hamiltonian nature of these gauge
transformations is investigated, which turns out to be canonical. We also obtain the
Darboux–B̈acklund transformations for the sAKNS hierarchy from these gauge transformations.

1. Introduction

During the past ten years, the theory of the soliton [1–3] has played an important role
in theoretical and mathematical physics, especially in the explorations of the relationship
between integrable models and string theories [4]. On the one hand, several kinds of
correlation functions in string theory are governed by the integrable hierarchy equations
(e.g. Korteweg–de Vries (KdV), Kadomtsev–Petviashvili (KP) etc) [4]. On the other hand,
the idea of the supersymmetric extensions of the integrable systems [5–7] has motivated
people to use them to study the theory of superstrings [8].

Recently, several supersymmetric integrable systems have been proposed and studied
(see, e.g., [9–17] and references therein). In this paper, we discuss only two of
them; the supersymmetric Ablowitz–Kaup–Newell–Segur (sAKNS) hierarchy [13] and the
supersymmetric two-boson (sTB) hierarchy [11]. The former was introduced from the study
of the reduction scheme in the constrained KP hierarchy [18], and the latter was constructed
from the supersymmetric extension of the dispersive long water wave equation [19, 20].
Both of them have supersymmetric Lax representations, being bi-Hamiltonian, and have
infinite conserved quantities etc. Besides these properties, these two hierarchies can be
related to each other via a gauge transformation [13]. Sometimes, such transformation from
one hierarchy to the other is called Miura transformation. However, from our viewpoint,
the connection between these two hierarchies has not been totally explored. The purpose
of this work is to provide a deeper understanding about the gauge transformations between
the sAKNS and the sTB hierarchies.

Our paper is organized as follows: in section 2, we recall the Lax formulation of
the sAKNS hierarchy. We then discuss the gauge transformations between the sAKNS
and the sTB hierarchies. Section 3 is devoted to the investigation of the canonical
property of these gauge transformations from the bi-Hamiltonian viewpoint. Our approach
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follows very closely that of [21, 22] for other systems. We then show, in section 4,
that the Darboux–B̈acklund transformations (DBTs) for the sAKNS hierarchy itself can
be constructed from these gauge transformations. Concluding remarks are presented in
section 5.

2. sAKNS and sTB hierarchies

The sAKNS hierarchy [13] has the Lax operator of the form

L = ∂ +8D−19 (2.1)

which satisfies the hierarchy equations

∂L

∂tn
= [Ln+, L] (2.2)

whereD = ∂θ + θ∂ is the supercovariant derivative defined on a (1|1) superspace [23]
with coordinates (x, θ ). D−1 = θ + ∂θ∂−1 is the formal inverse ofD, which satisfies
D−1D = D−1D = 1. The multiplication rule forD acting on an arbitrary superfieldU is
DU = (DU) + (−1)|U |UD. Here, we refer to the parity of a superfieldU to be even if
|U | = 0 and odd if|U | = 1. The coefficients functions8 and9 are superfields with proper
parity such thatL is a bosonic operator. It can be proved that (2.2) is consistent with the
following equations

∂8

∂tn
= (Ln+8)

∂9

∂tn
= −((Ln)∗+9) (2.3)

where the conjugate operation ‘∗’ is defined by(AB)∗ = (−1)|A||B|B∗A∗ for the super-
pseudo-differential operatorsA, B andf ∗ = f for the arbitrary superfieldf . Therefore,
8 and9 are the eigenfunction and adjoint eigenfunction of the hierarchy, respectively. It
can be shown [13] that the hierarchy equations (2.2) are invariant under the supersymmetric
transformations:δε8 = ε(D†8) and δε9 = ε(D†9) where ε is an odd constant and
D† ≡ ∂θ − θ∂.

Since the Lax operator (2.1) is assumed to be homogeneous underZ2-grading, the
gradings of the (adjoint) eigenfunction should satisfy|8| + |9| = 1. There are two cases
to be discussed:

(a) |8| = 0 and|9| = 1,
(b) |8| = 1 and|9| = 0.
In the following, the sAKNS Lax operators for the case (a) and case (b) will be denoted

by La = ∂ + 8aD
−19a andLb = ∂ + 8bD

−19b, respectively, and thus|8a| = |9b| = 0
and|9a| = |8b| = 1. For both cases, (2.2) contains the ordinary AKNS hierarchy equations
in the bosonic limit.

Given a sAKNS hierarchy we can construct a non-standard Lax hierarchy via a gauge
transformation. For case (a), let us perform the following transformation

Ma : La→ K = 8−1
a La8a ≡ ∂ − (DJ0)+D−1J1 (2.4)

where bothJ0 andJ1 are odd superfields which can be expressed in terms of8a and9a as
follows

J0 = −(D ln8a) J1 = 8a9a. (2.5)

The hierarchy equations then become

∂K

∂tn
= [Kn

>1,K] (2.6)
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which is the so-called sTB hierarchy [11]. It can be shown [11] that the hierarchy
equations (2.6) are invariant under the supersymmetric transformations:δεJ0 = ε(D†J0),
δεJ1 = ε(D†J1).

For case (b), we need another gauge transformation to do the job since|8b| = 1 in this
case. Let us consider the following transformation

Mb : Lb→ K = D−19bLb9
−1
b D ≡ ∂ − (DJ0)+D−1J1 (2.7)

which implies that

J0 = (D ln9b) J1 = 8b9b+ (D3 ln9b) (2.8)

and the Lax operatorK still satisfies the hierarchy equations (2.6).
In fact, both gauge transformationsMa andMb have their inverse transformationsNa

andNb, respectively. In other words, for a given sTB Lax operatorK, one can perform the
following transformation to gauge away the constant term and to obtain the Lax operator
La [13]

Na : K → La = e−
∫ x
(DJ0)K e

∫ x
(DJ0) ≡ ∂ +8aD

−19a (2.9)

where

8a = e−
∫ x
(DJ0) 9a = J1 e

∫ x
(DJ0). (2.10)

It can be proved thatLa satisfies (2.2) ifK satisfies (2.6).
Similarly, for case (b), we have

Nb : K → Lb = e−
∫ x
(DJ0)DKD−1 e

∫ x
(DJ0) ≡ ∂ +8bD

−19b (2.11)

where

8b = (J1− J0x) e−
∫ x
(DJ0) 9b = e

∫ x
(DJ0). (2.12)

We would like to mention that the parity of the gauge operator associated with the gauge
transformationMa is even, whereas forMb is odd. SinceNa(Nb) is the inverse ofMa

(Mb) and vice versa, thus we obtain the correspondences between the sAKNS and sTB
hierarchies.

3. Canonical property and Hamiltonian structures

The discussions presented in the previous section establish the gauge equivalences between
the sAKNS and the sTB hierarchies at Lax formulation level. In this section, we would
like to discuss the Hamiltonian nature of these gauge transformations. Let us start from the
sTB hierarchy.

The Lax equation (2.6) of the sTB hierarchy has a bi-Hamiltonian description as follows

∂tn

(
J0

J1

)
= 21

(
δHn+1/δJ0

δHn+1/δJ1

)
= 22

(
δHn/δJ0

δHn/δJ1

)
(3.1)

where the first structure21 and the second structure22 are given by [11]

21 =
(

0 −D
−D 0

)
(3.2)

22 =
(

2D + 2D−1J1D
−1−D−1J0xD

−1 −D3+D(DJ0)−D−1J1D

D3+ (DJ0)D +DJ1D
−1 J1D

2+D2J1

)
(3.3)
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which have been investigated [11] and found to be compatible by using the prolongation
method [24]. The HamiltoniansHn are defined by

Hn = −1

n
strKn ≡ −1

n

∫
dx dθ sresKn (3.4)

where the super-residue (sres) picks up the coefficient of theD−1 term of a super-pseudo-
differential operator.

Since the bi-Hamiltonian structure is one of the most important properties of an
integrable system, it is quite natural to ask whether the gauge transformations discussed
here are canonical or not. To see this, from the gauge transformationNa, we can obtain the
linearized mapN ′a and its transposed mapN ′†a as follows

N ′a =
(−8aD

−1 0
9aD

−1 8−1
a

)
N ′†a =

(
D−18a −D−19a

0 8−1
a

)
(3.5)

where8a and 9a are related toJ0 and J1 via equation (2.5) (or equation (2.10)). A
straightforward calculation shows that

N ′a21N
′†
a =

(
0 1
−1 0

)
≡ Pa (3.6)

N ′a22N
′†
a =


−8aD

−28aD −D8aD
−28a D2+D8aD

−29a+8aD
−2(D9a)

−28aD
−28a9aD

−28a +28aD
−28a9aD

−29a

D2+9aD
−28aD + (D9a)D

−28a −9aD
−2(D9a)− (D9a)D

−29a

+29aD
−28a9aD

−28a −29aD
−28a9aD

−29a


≡ Qa (3.7)

wherePa andQa are just the first and the second Hamiltonian structures obtained in [14].
Moreover, it has been shown [14] thatPa andQa are compatible through the method of
prolongation and describe the hierarchy equations (2.2) as follows

∂tn

(
8a

9a

)
= Pa

(
δHn+1/δ8a

δHn+1/δ9a

)
= Qa

(
δHn/δ8a

δHn/δ9a

)
(3.8)

where the HamiltoniansHn are defined byHn = −(1/n)strLna. Hence, the gauge
transformationNa (or Ma) is a canonical map.

Next, let us turn to the gauge transformationNb. From (2.11), the linearized mapN ′b
and its transposed mapN ′†b can be constructed as follows

N ′b =
(−8bD

−1−9−1
b ∂ 9−1

b
9bD

−1 0

)
N
′†
b =

(
∂9−1

b +D−18b −D−19b

9−1
b 0

)
(3.9)

where8b and9b are related toJ0 andJ1 via (2.8) (or (2.12)). Using (3.9), we can obtain
two Poisson structures of the sAKNS hierarchy for the case (b). After some algebras, we
have

N ′b21N
′†
b =

(
0 1
−1 0

)
≡ −Pb (3.10)

N ′b22N
′†
b =


−8bD

−2(D8b)− (D8b)D
−28b D2+8bD

−29bD + (D8b)D
−29b

−28bD
−28b9bD

−28b +28bD
−28b9bD

−29b

D2+D9bD
−28b+9bD

−2(D8b) −9bD
−19bD −D9bD

−29b

+29bD
−28b9bD

−28b −29bD
−28b9bD

−29b


≡ −Qb (3.11)
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which imply that the hierarchy equations (2.2) for case (b) can be written as

∂tn

(
8b

9b

)
= Pb

(
δHn+1/δ8b

δHn+1/δ9b

)
= Qb

(
δHn/δ8b

δHn/δ9b

)
. (3.12)

Note that the parity of the gauge operator of the gauge transformationNb is odd. Hence,
from (3.4), (2.11) and the identity strAB = (−1)|A||B|strBA, the Hamiltonians in (3.12)
can be expressed in terms ofLb as (1/n)strLnb which are just the Hamiltonians of the
sAKNS hierarchy defined earlier with a minus sign. Therefore, the minus sign appearing
in the front of Pb andQb in (3.10) and (3.11) is used to compensate the sign from the
Hamiltonians. We follow the same line in [14] to investigate the Jacobi identity forPb

andQb by using the prolongation method. It turns out thatPb andQb are compatible and
indeed define a bi-Hamiltonian structure of the associated hierarchy. Hence, just likeNa,
the gauge transformationNb is canonical as well.

To sum up, the canonical property of the gauge transformations between the sAKNS
and sTB hierarchies can be summarized as follows

N ′i21N
′†
i = (−1)|Ni |Pi N ′i22N

′†
i = (−1)|Ni |Qi i = a, b. (3.13)

4. Darboux–Bäcklund transformations

Having constructed the canonical gauge transformations between the sAKNS and sTB
hierarchies, now we would like to use these gauge transformations to derive the
Darboux–B̈acklund transformations (DBTs) for the sAKNS hierarchy itself. Given a sAKNS
Lax operator, sayLa, we can perform the gauge transformationMa followed byNb to obtain
the Lax operatorLb as follows

La
Ma→ K

Nb→ Lb. (4.1)

That is, using (2.4) and (2.11), we can define the gauge operatorT (8a) = 8aD8
−1
a such

that

La→ Lb = T LaT
−1 ≡ ∂ +8bD

−19b (4.2)

where the (adjoint) eigenfunctions are related by

8b = 8a(8a9a+ (D3 ln8a)) (4.3)

9b = 8−1
a . (4.4)

Notice that although the gauge transformation (4.2) preserves the form of the Lax operator
and the Lax formulations, the parity of the transformed (adjoint) eigenfunction has been
changed due to the fact that the parity of the gauge operatorT is odd. Thus, strictly
speaking, the gauge transformation (4.2) is not a DBT but a ‘quasi-DBT’. On the other
hand, we can construct another quasi-DBT fromLb to La as follows

Lb
Mb→ K

Na→ La (4.5)

which is triggered by the gauge operatorS(9b) = 9−1
b D−19b such that

Lb→ La = SLbS
−1 ≡ ∂ +8aD

−19a. (4.6)

Here

8a = 9−1
b (4.7)

9a = 8b(8b9b+ (D3 ln9b)). (4.8)
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Note that both quasi-DBTs (4.2) and (4.6) are canonical since they are constructed out
from the canonical transformationsMi andNi . We also remark that the form of the gauge
operatorT was first considered in [25] for studying the DBT for the Manin–Radul super KdV
equation [5]. Motivated by the above discussions, we may have true DBTs by considering
the hierarchy equations (2.2) associated with the Lax operator

L = ∂ +81D
−191+82D

−192 (4.9)

with parity |81| = |92| = 0 and|91| = |82| = 1. Let us consider the DBT triggered by
the eigenfunction81 as follows

L→ L̂ = T LT −1 T (81) ≡ 81D8
−1
1

≡ ∂ + 8̂1D
−19̂1+ 8̂2D

−19̂2 (4.10)

where the transformed (adjoint) eigenfunctions are given by

8̂1 = 81(D8
−1
1 82) = (T (81)82)

9̂1 = 8−1
1 (D−18192) = (S(81)92)

8̂2 = 81(8191−8292+ (D3 ln81)+ (D8−1
1 82)(D

−18192)) = (T (81)L81)

9̂2 = 8−1
1 (4.11)

with parity |8̂1| = |9̂2| = 0 and|9̂1| = |8̂2| = 1. On the other hand, we can consider the
DBT triggered by the adjoint eigenfunction92 as follows

L→ L̂ = SLS−1 S(92) ≡ 9−1
2 D−192 ≡ ∂ + 8̂1D

−19̂1+ 8̂2D
−19̂2 (4.12)

where

8̂1 = 9−1
2

9̂1 = (8292−8191+ (D3 ln92)+ (D−19281)(D919
−1
2 ))92 = −(T (92)L

∗92)

8̂2 = 9−1
2 (D−19281) = (S(92)81)

9̂2 = 92(D9
−1
2 91) = (T (92)91) (4.13)

with parity |8̂1| = |9̂2| = 0 and|9̂1| = |8̂2| = 1. Finally, we would like to mention that
the above scheme can be generalized to a class of supersymmetric hierarchies which have
Lax operators of the form

L = ∂ +
n∑
i=1

(82i−1D
−192i−1+82iD

−192i ) (n > 1) (4.14)

with parity |82i−1| = |92i | = 0 and|82i | = |92i−1| = 1. The gauge operators of the DBTs
then can be constructed from the even (adjoint) eigenfunctions asTi = 82i−1D8

−1
2i−1 or

Si = 9−1
2i D

−192i which not only preserve the Lax formulations but also the parity content
of the (adjoint) eigenfunctions in the Lax operator.

5. Concluding remarks

We have established the gauge equivalences between the sAKNS and sTB hierarchies.
We have also shown that the gauge transformations connecting these two hierarchies
are canonical, in the sense that the bi-Hamiltonian structure of the sAKNS hierarchy is
mapped to the bi-Hamiltonian structure of the sTB hierarchy according to equation (3.13).
Using these gauge transformations, the (quasi) DBTs for the sAKNS hierarchy and its
generalizations can be constructed, which turns out to be canonical as well. Some other
topics such as iterated DBTs, soliton solutions and non-local conserved charges of these
hierarchies are worth further investigation [26]. We leave this work to a future publication.
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