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Abstract. We study the gauge transformations between the supersymmetric AKNS (SAKNS)
and supersymmetric two-boson (sTB) hierarchies. The Hamiltonian nature of these gauge
transformations is investigated, which turns out to be canonical. We also obtain the
Darboux—Backlund transformations for the SAKNS hierarchy from these gauge transformations.

1. Introduction

During the past ten years, the theory of the soliton [1-3] has played an important role
in theoretical and mathematical physics, especially in the explorations of the relationship
between integrable models and string theories [4]. On the one hand, several kinds of
correlation functions in string theory are governed by the integrable hierarchy equations
(e.g. Korteweg—de Vries (KdV), Kadomtsev—Petviashvili (KP) etc) [4]. On the other hand,
the idea of the supersymmetric extensions of the integrable systems [5-7] has motivated
people to use them to study the theory of superstrings [8].

Recently, several supersymmetric integrable systems have been proposed and studied
(see, e.g., [9-17] and references therein). In this paper, we discuss only two of
them; the supersymmetric Ablowitz—Kaup—Newell-Segur (SAKNS) hierarchy [13] and the
supersymmetric two-boson (sTB) hierarchy [11]. The former was introduced from the study
of the reduction scheme in the constrained KP hierarchy [18], and the latter was constructed
from the supersymmetric extension of the dispersive long water wave equation [19, 20].
Both of them have supersymmetric Lax representations, being bi-Hamiltonian, and have
infinite conserved quantities etc. Besides these properties, these two hierarchies can be
related to each other via a gauge transformation [13]. Sometimes, such transformation from
one hierarchy to the other is called Miura transformation. However, from our viewpoint,
the connection between these two hierarchies has not been totally explored. The purpose
of this work is to provide a deeper understanding about the gauge transformations between
the SAKNS and the sTB hierarchies.

Our paper is organized as follows: in section 2, we recall the Lax formulation of
the sAKNS hierarchy. We then discuss the gauge transformations between the sAKNS
and the sTB hierarchies. Section 3 is devoted to the investigation of the canonical
property of these gauge transformations from the bi-Hamiltonian viewpoint. Our approach
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follows very closely that of [21,22] for other systems. We then show, in section 4,
that the Darboux—Bcklund transformations (DBTs) for the sAKNS hierarchy itself can

be constructed from these gauge transformations. Concluding remarks are presented in
section 5.

2. SAKNS and sTB hierarchies

The sAKNS hierarchy [13] has the Lax operator of the form

L=9+ oD v (2.2)
which satisfies the hierarchy equations
aL
=[L",L 2.2
o [ ] (2.2)

where D = 9y + 69 is the supercovariant derivative defined on #l)1superspace [23]
with coordinates X,6). D! = 6 + 9,9~ is the formal inverse ofD, which satisfies
D™D = D7D = 1. The multiplication rule forD acting on an arbitrary superfield is

DU = (DU) + (-1)!YUD. Here, we refer to the parity of a superfidltl to be even if

|U| = 0 and odd ifilU| = 1. The coefficients function® and ¥ are superfields with proper
parity such thatL is a bosonic operator. It can be proved that (2.2) is consistent with the
following equations

aq) n \IJ ny*

o, (LL®) o, ((LMLW) (2.3)
where the conjugate operation’ ‘is defined by (AB)* = (—1)I4lIBIB*A* for the super-
pseudo-differential operators, B and f* = f for the arbitrary superfield. Therefore,
® and W are the eigenfunction and adjoint eigenfunction of the hierarchy, respectively. It
can be shown [13] that the hierarchy equations (2.2) are invariant under the supersymmetric
transformations: 8. ® = (D'®) and 5. = e(D'W) wheree is an odd constant and
Dt =3y — 04.

Since the Lax operator (2.1) is assumed to be homogeneous uhegading, the
gradings of the (adjoint) eigenfunction should satigh} + || = 1. There are two cases
to be discussed:

(@) |®|=0and|¥| =1,

(b) |®| =1 and|¥| = 0.

In the following, the sSAKNS Lax operators for the case (a) and case (b) will be denoted
by La= 0 + ®,D W, and L, = 3 + ®pD 1, respectively, and thugb,| = |¥p| = 0
and|¥,| = |®p| = 1. For both cases, (2.2) contains the ordinary AKNS hierarchy equations
in the bosonic limit.

Given a sAKNS hierarchy we can construct a non-standard Lax hierarchy via a gauge
transformation. For case (a), let us perform the following transformation

Ma:La— K = ®; La®a= 0 — (DJo) + D714 (2.4)

where bothJy and J; are odd superfields which can be expressed in ternds,&nd ¥, as
follows

Jo=—(DIndy) J1 = O, (2.5)
The hierarchy equations then become

K

= = [K%y, K] (2.6)

at,
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which is the so-called sTB hierarchy [11]. It can be shown [11] that the hierarchy
equations (2.6) are invariant under the supersymmetric transformaipis= e(D'Jp),
8 J1 = e(DV ).

For case (b), we need another gauge transformation to do the job|gigice: 1 in this
case. Let us consider the following transformation

My: Ly — K = DY, LpW,'D =9 — (DJo) + D71y (2.7)
which implies that
Jo = (DInWp) Ji = OpWp + (D3In W) (2.8)

and the Lax operatoK still satisfies the hierarchy equations (2.6).

In fact, both gauge transformationg, and M, have their inverse transformationg,
and Ny, respectively. In other words, for a given sTB Lax operagrone can perform the
following transformation to gauge away the constant term and to obtain the Lax operator
L, [13]

Na: K — La=e '@ g el ®h =51 . D1y, (2.9)
where
D, =€ [P0 W, = Jyel @0, (2.10)

It can be proved thal , satisfies (2.2) ifK satisfies (2.6).
Similarly, for case (b), we have

Np:K > Ly=e/ PPpgplel P =y 4 oDty (2.11)
where
Oy = (J1 — Joy) &/ (PI0 Wy, = e/ @) (2.12)

We would like to mention that the parity of the gauge operator associated with the gauge
transformationM, is even, whereas foM, is odd. SinceNy(Ny) is the inverse ofM,

(Mp) and vice versa thus we obtain the correspondences between the sAKNS and sTB
hierarchies.

3. Canonical property and Hamiltonian structures

The discussions presented in the previous section establish the gauge equivalences between
the sAKNS and the sTB hierarchies at Lax formulation level. In this section, we would
like to discuss the Hamiltonian nature of these gauge transformations. Let us start from the
STB hierarchy.

The Lax equation (2.6) of the sTB hierarchy has a bi-Hamiltonian description as follows

Jo\ _ 8Hyi1/8J0\ _ 8H,/8Jo
% <J1> =6 (8Hn+1/611> =0 <8Hn/8J1> (1)
where the first structur®; and the second structuf, are given by [11]
0 -D
or-(9 ) @2

-1 -1_ p-1 -1 _n3 -1
®2=<2D+2D JiD D YJo.D D3+ D(DJy)— D JlD) (3.3)

D3+ (DJo)D + DJ1D7* J1D? + D?J;
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which have been investigated [11] and found to be compatible by using the prolongation
method [24]. The Hamiltonian#&, are defined by

-1 -1
H, = —strK" = —/ dx do srekx” (3.4)
n n

where the super-residue (sres) picks up the coefficient obtheterm of a super-pseudo-
differential operator.

Since the bi-Hamiltonian structure is one of the most important properties of an
integrable system, it is quite natural to ask whether the gauge transformations discussed
here are canonical or not. To see this, from the gauge transforméjome can obtain the
linearized mapV, and its transposed md}z);f as follows

, _(—®D7' 0 i (Dldy —D1,
Na_ ( \Ijanl q)l) Na - ( 0 CD;]' (35)

a

where &, and W, are related toJo and J; via equation (2.5) (or equation (2.10)). A
straightforward calculation shows that

N.O1N = (_01 é) =P, (3.6)
—®,D29,D — DP,D 2D, D? + D®D2W,+ &,D2(DW,)
NON! = —20,D 20, VD 2d, +2P,D 2PV, D2V,
area D2+ W,D2d,D + (DY) D 2®, —W,D (DY, — (DV,)D 2V,
+2¥, D2, V,D 20, —2¥,D 20 W, D 2W,
= 0, 3.7)

where P, and Q, are just the first and the second Hamiltonian structures obtained in [14].
Moreover, it has been shown [14] th& and Q, are compatible through the method of
prolongation and describe the hierarchy equations (2.2) as follows

) 8Hyy1/8®a\ SH, /54
% (w) =7 a(aHHl/wa) = Qa<aHn/8wa (38)
where the Hamiltoniangd, are defined byH, = —(1/n)strL}. Hence, the gauge
transformationV, (or M,) is a canonical map.

Next, let us turn to the gauge transformatitg. From (2.11), the linearized map,
and its transposed meiw)t’)T can be constructed as follows

, (= dpD -ty ot 4 (Vg + Do, —D7hy
N = ( WD 1 0 No = vt 0 (3.9)
where ®, and Wy, are related to/y and J; via (2.8) (or (2.12)). Using (3.9), we can obtain
two Poisson structures of the SAKNS hierarchy for the case (b). After some algebras, we
have

NN = 0 1 —_p, (3.10)

—2dp, D2 PV, D 2Py, +20, D20 Wy D2,
D? 4+ DWyD2®p, + WD 2(Ddy) —W, D~y D — DY, D2,
+2W, D 2P W, D 2Dy, —2Wp, D 2dp W, D20y,

—<I>bD 2(DPp) — (DP)D 20, D2+ ®pD2W,D + (DPp) D2y,
= — 0 (3.11)
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which imply that the hierarchy equations (2.2) for case (b) can be written as
by dH,4+1/8%y dH, /5Py

% <wb) =P (aHn+1/wb> =0 (aHn/wb) ' (312)
Note that the parity of the gauge operator of the gauge transformatide odd. Hence,
from (3.4), (2.11) and the identity stB = (—1)/4!I8lstrBA, the Hamiltonians in (3.12)
can be expressed in terms 6f, as (1/n)strL} which are just the Hamiltonians of the
SAKNS hierarchy defined earlier with a minus sign. Therefore, the minus sign appearing
in the front of P, and Oy in (3.10) and (3.11) is used to compensate the sign from the
Hamiltonians. We follow the same line in [14] to investigate the Jacobi identityPfor
and Qy by using the prolongation method. It turns out ttRtand O, are compatible and
indeed define a bi-Hamiltonian structure of the associated hierarchy. Hence, just)ike
the gauge transformatioN, is canonical as well.

To sum up, the canonical property of the gauge transformations between the sAKNS
and sTB hierarchies can be summarized as follows

N/ON/" = (=)l p, N/@,N/" = (=Nl g, i=ab. (3.13)

4. Darboux—Backlund transformations

Having constructed the canonical gauge transformations between the sAKNS and sTB
hierarchies, now we would like to use these gauge transformations to derive the
Darboux—Backlund transformations (DBTSs) for the SAKNS hierarchy itself. Given a SAKNS
Lax operator, say.,, we can perform the gauge transformatidgp followed by Ny, to obtain

the Lax operatoly, as follows

L2 kg, (4.1)

That is, using (2.4) and (2.11), we can define the gauge opefatby) = ®,Dd,* such
that

La— Ly=TL T 1=09+ &pD 1, (4.2)
where the (adjoint) eigenfunctions are related by

Oy = Da(DaWa + (D3In D)) (4.3)

v, = @ (4.4)

Notice that although the gauge transformation (4.2) preserves the form of the Lax operator
and the Lax formulations, the parity of the transformed (adjoint) eigenfunction has been
changed due to the fact that the parity of the gauge oper@at® odd. Thus, strictly
speaking, the gauge transformation (4.2) is not a DBT but a ‘quasi-DBT’. On the other
hand, we can construct another quasi-DBT frémto L, as follows

Ly, (4.5)
which is triggered by the gauge opera,) = \pb—lpflqu such that

Lp — La= SLpS ™ =9 4+ ®,D 1w, (4.6)
Here

by =yt 4.7

W, = Op(pWh + (D3In Wy)). (4.8)
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Note that both quasi-DBTs (4.2) and (4.6) are canonical since they are constructed out
from the canonical transformatiodd; and N;. We also remark that the form of the gauge
operatorT was first considered in [25] for studying the DBT for the Manin—Radul super KdV
equation [5]. Motivated by the above discussions, we may have true DBTs by considering
the hierarchy equations (2.2) associated with the Lax operator

L=09+® D + o071y, (4.9)
with parity |®1] = |W2| = 0 and|¥;| = |®,| = 1. Let us consider the DBT triggered by
the eigenfunctionb, as follows

L—L=TLT™" T(®y) = &1 Dbt

=0+ é1D71\£’1 + &32D71®2 (4.10)

where the transformed (adjoint) eigenfunctions are given by
Py = P1(DP; Dy) = (T(P1)P2)
Uy = 011D W) = (S(P1)W2)
Dy = Oy(P1W1 — PoWz + (DPIN ®1) + (DD Do) (D D1Wy)) = (T (1) LP)
¥, = o7t (4.11)
with parity |®1] = |W,| = 0 and|¥;| = |®,| = 1. On the other hand, we can consider the
DBT triggered by the adjoint eigenfunctiob, as follows
L—>L=SLS"? S(Wp) =W, D7, =9 + &1D N 4 DN, (4.12)
where
b = vt
Uy = (0¥ — P11 + (DI Wp) + (D W ®1) (DWW, )Wy = —(T (W2) L* W)
Dy = Wy (D MW, ®y) = (S(W2)®y)
Wy = W (DY, W) = (T(W2)Wy) (4.13)
with parity |®1] = |¥,| = 0 and|¥4| = |®,| = 1. Finally, we would like to mention that

the above scheme can be generalized to a class of supersymmetric hierarchies which have
Lax operators of the form

n
L=0+) (P 1D "Wy 1 + &y D "Wy) (n>1 (4.14)
i=1
with parity |®5;_1| = |W5 | = 0 and|®y| = |W,_1| = 1. The gauge operators of the DBTs
then can be constructed from the even (adjoint) eigenfunctiorig as <I>2i_1D<I>gil_l or
S, = \Dz‘ilD*1\LIZi which not only preserve the Lax formulations but also the parity content
of the (adjoint) eigenfunctions in the Lax operator.

5. Concluding remarks

We have established the gauge equivalences between the sAKNS and sTB hierarchies.
We have also shown that the gauge transformations connecting these two hierarchies
are canonical, in the sense that the bi-Hamiltonian structure of the sAKNS hierarchy is
mapped to the bi-Hamiltonian structure of the sTB hierarchy according to equation (3.13).
Using these gauge transformations, the (quasi) DBTs for the SAKNS hierarchy and its
generalizations can be constructed, which turns out to be canonical as well. Some other
topics such as iterated DBTs, soliton solutions and non-local conserved charges of these
hierarchies are worth further investigation [26]. We leave this work to a future publication.
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