
Information and Software Technology 40 (1998) 31 l-325

Enacting object-oriented methods by a process environment

Jen-Yen Jason Chena**, Shih-Chien Choub

“Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan
bDepartment of Information Management, Ming Hsin Institute of Technology, Hsinfong, Taiwan

Received 22 July 1997; received in revised form 16 March 1998; accepted 18 March 1998

Abstract

This paper describes modeling and enactment of two object-oriented methods, namely the OMT method and the Booth method, using the
concurrent software process language (CSPL). CSPL is a process-centered environment using Ada95like syntax to model a method as a
process program which is then compiled to C-shell executing in UNIX. A method can thus be enacted (executed) using this approach.
Experiences of the approach are depicted. It is demonstrated that CSPL is feasible and appropriate for modeling and enacting methods,
including object-oriented methods. Additionally, partial CSPL program modeling the Booth method is included in the Appendix. 0 1998
Elsevier Science B.V.

Keywords: Software process; Process-centered environment; Process modeling

1. Introduction

Large software development needs collaboration of dis-
tributed developers working concurrently. A software
process environment is thus needed in assisting developers
who are distributed geographically. The concurrent soft-
ware process language (CSPL) [l]-[3] and its associated
process-centered environment are developed attempting to
satisfy this need. CSPL assists communication between
developers and managers in a structured and controlled
way. In addition, it manages software objects (documents),
and it binds tools.

Fig. 1 gives a sketch of the CSPL environment that adopts
a client-server architecture. The CSPL server is the kernel
of the environment. According to the execution of a CSPL
program (to be described), the CSPL server assigns work
to the right developer at the right time. In this environ-
ment, each developer uses a CSPL client. Through CSPL
clients, developers receive work assignments, perform
work, access objects (documents), send the work result
back to the server, and so on. Also, objects are stored
and managed by the CSPL object management system
(CSPL/OMS).

Two popular object-oriented methods are modeled in
this paper, namely the Booth method [4] and OMT (object
modeling technique) [5], using CSPL. Fig. 2 sketches the

* Corresponding author. Tel.: +886 35 713928; fax: +886 35 724176; e-

mail: jychen@csie.nctu.edu.tw

OQ50-5849/98/$19.00 6 1998 Elsevier Science B.V. All rights reserved

PII SO950-5849(98)00052-4

CSPL modeling and enactment approach. The modeling
produces CSPL process programs, which are then com-
piled to C-shell scripts by the CSPL compiler. Next, the
C-shell scripts are enacted (executed) on the UNIX system
by the CSPL server.

Two motivations are noted for this research.

To evaluate the object-oriented method

There are quite a few object-oriented methods avail-
able. Practically speaking, what are their performances
in terms of improving software quality and develop-
ment productivity? As previously mentioned, a method
is modeled as a CSPL process program. The process
program can then be enacted to develop software. Dur-
ing the enactment software metrics are collected by
which performance of the method can be evaluated to
a certain extent.

To evaluate procedural process language

CSPL is an Ada95-like procedural process language.
Experiences of using CSPL in modeling object-oriented
methods allow us to evaluate this procedural process
language approach. Meanwhile, other approaches such
as Weaver [6], Hakoniwa [71, EPOS [8], and so on, are
discussed.

This paper is organized as follows. Section 2 gives an
overview of CSPL. Section 3 describes the modeling and
enactment of two object-oriented methods using CSPL.

312 .I.-Y.J. Chen, S.-C. Choullnformation and Sojiware Technology 40 (1998) 311-325

Fig. 1. CSPL environment architecture.

Section 4 depicts experiences gained. Section 5 briefly
discusses some related work. Finally, Section 6 gives the
conclusions and future work.

2. CSPL overview

A CSPL program looks similar to an Ada95 program. It
contains procedures, functions, tasks, packages, generic
units, exception handlers, and so on. To meet the special
needs of a software process, new CSPL constructs are
designed, such as tools, roles, metrics, and so on. The
CSPL program structure is given next, followed by the
description of some constructs.

2. I. CSPL program structure

The general structure of CSPL programs is illustrated
in Fig. 3. Examples below are extracted from the CSPL
program in the Appendix that models the Booth
method.

At the beginning of a CSPL program, tools and roles are
defined (see Example 1). The correct tool can be
automatically invoked when used by a developer in an
activity. For instance, in Example 1, “vi” is used as the
editor. Also, a developer can locally define his or her
preferred tool from a CSPL client. Note that in CSPL a
developer can play multiple roles, and multiple developers

objwtorknted Methods

L
I CSPL Progrms I

s

,.I %
0

CShdSCIiptS

Fig. 2. CSPL process modeling and enactment. Fig. 3. CSPL program structure.

can assume a role. For instance, in Example 1, ‘ ‘ymchen”

plays three roles, namely “requireAnalyst’ ’ ,
‘ ‘RAreviewer’ ‘, and “DomainAnalyst”.

CSPL packages encapsulate program units such as pro-
cedures and functions. A package consists of two parts:
package specification and package body. The package spe-
cification in Example 2 defines names and parameters of
program units and object types accessed. The contents of
a program unit are described in its body rather than in its
specification.

It is worth noting that CSPL is strong in object modeling
in areas such as object type, inheritance, and so on. In
Example 2, object type “DomainAnalysisDocument” is
derived from object type “Document”. To meet the
needs of the software process, CSPL currently provides
built-in object types such as “DocType”, “TextType”,
and “NonTextType”.

In the package body in Example 3, the work assignment
statement:

1 DomainAnalyst edit domainAnalysisDocument refer-
ring to

requireDocument using CASETool;assigns the work
of editing ‘ ‘domainAnalysisDocument” to the role
“DomainAnalyst” (which consists of one or more
developers; see Example 1). The developer can refer

CSPL prqlam

Tads & Roles Dafinitbns

Packagasp

P&a$E!BOdb

TaakDeacripbjons

- Toot Definition -

tool Booth tools is
Edf := +;
WordProcessor := “interteaf’;
CASETool := “ROSE”;
ReviewTool := “reviewTool”;
MetricTool := “OOmetric”;
end;

J.-Y.J. Chen, S.-C. ChodInjbmation and So&are Technology 40 (1998) 311-325 313

package “Bcoch_Method” contains the packages
“Problem_Statement”, ‘ ‘RequirementAnalysisPhase”,
“DomainAnalysisPhase”, “Design_Phase”, “Evolution-
Phase”, and “MaintenancePhase”. This construct encourages
developing modular, thus understandable and maintainable,
programs.

- Rote Definition -

role requireAnalyst is
requireAnalyst := “ymchen”;
end;

rote RAreviewer is
RAreviewer := ‘jychen”;
RArevieweR := “hsubj”;
RAreviewer := “ymchen”;
end;

Like other program units, a CSPL task consists of a
specification and a body. A task consists of procedural
calls, task entry calls, and so on to model the flow of
activities. In Example 5, task “DomainAnalysis” includes
a procedural call (DomainAnalysisPhase.DomainAnalysis),
a function call (DomainAnalysisPhase.ReviewDA), an
exception handler (timeout), and some entry calls (such as
Design.start and RequirementAnalysis.start). Also, multiple
CSPL tasks run concurrently in a software process.

2.2. Synchronous and asynchronous task communications

role DomainAnalyst is
DomainAnalyst :=“ymchen”;
DomainAnalystZ:=“hsubj”;
end;

Example 1. Tools and roles definitions.

to “requireDocument’ ’ and use the CASE tool.
Although work can be directly assigned to a developer
(such as “DomainAnalystl”), it is suggested that
work is assigned to a role instead. In this case CSPL
can take into account the workload at enactment time,
and accordingly assigns work to a developer of that
role.

CSPL supports two task communication modes--entry
c&Z and event inform (see Fig. 4). “Entry call” synchronizes
tasks. The semantics of Ada rendezvous is preserved in CSPL.
In Fig. 4, task A issues an entry call “B.start” to task B. On the
other hand, “event inform” relates to asynchronous commu-
nications. In Fig. 4, after task C informs task D to set event OK,
task C proceeds execution without waiting for task D. While
the “waitfor OK” statement in task D waits until the event is
set.

2.3. Relation between objects

A CSPL relation unit defines the relationship between two
object types. Operations such as “insert” and “delete” am
used to manipulate entries of relation units. Assume that an
entry of a relation unit defines that document B depends on
document A. When document A is updated, the relationship

Example 4 depicts nested packages where a package
contains multiple smaller packages. In Example 4, the

- Package SpecifTcation for Domain Analysis Phase

aackage DomainAnalysisPhase is

type DomainAnalysisDocument is new Document with record
classDiagram : NonTextType;
0bjectScenarioDiagram : NonTextType;
dataDictiiry : TextType;
classSpecifiition : TextType;

workpartiiion : TextType;
end record;

procedure DomainAnalysis(
domainAnalysisDocument: in out DomainAnalysisDocument;
requireDocument: in RequireDocument);

function ReviewDA(
domainAnalysiiDocument: in DomainAnalysisDocument;

requireDocument: in RequireDocument)
return integer;

!nd DomainAnalysisPhase;

Example 2. Package specification.

314 J.-Y.J. Chen, S.-C. Chodlnfomation and So&are Technology 40 (1998) 31 l-325

-- Package Rody for Domain Analysis Phase --

package body DomainAnalysisPhase is

procedure DomainAnalysis(
domainAnaiy&Document: in out DomainAnalysisDocument;
requireDocument: in RequireDocument)

is
begin

1 DomainAnalyst edii domainAnatysisDocument referring to
requireDocument using CASETool;

end;

function ReviewDA(
domainAnalysisDocument: in DomainAnalysisDocument;

requireDocument: in RequireDocument)
return integer

is
current-time : time;
DomainAnalysisDeadLine : time;
timeout : exception;

workresult : integer;
begin

current-time := GetCurTime;
if current time > DomainAnalysisDeadLine

then &e timeout;
end if;

all DAreviewer review domainAnafyslsDocument referring to
requireDocument using ReviewTool resulted in workresult;

return workresult;
end;

end DomainAnalysiiPhase;

Example 3. Package body.

unit will trigger procedures to update document B. For exam-
ple, object code is dependent on source code. Thus, if a
source code is changed, a procedure should be triggered to
compile the new source code and generate a new object code.

2.4. Exception handling

Exception handling is important in software process mod-
eling because of abundant unexpected and irregular

conditions in processes such as requirement change, sche-
dule delay, and so on. In order to manage software processes,
a process language needs to model those conditions as
exceptions and specify their handling procedures.

In handling an exception a project manager sometimes
needs to set (or reset) events. A menu listing all the excep-
tions and events of a CSPL program is provided by the
CSPL user interface system for the manager to set the
events.

(a) Entry call (b) Event inform

Fig. 4. Synchronous and asynchronous communications.

J.-Y.J. C&n, S.-C. Chodnformation and Sojtware Technology 40 (1998) 31 I-325 315

peckage Booch_hbthod is
pa&age Problem_statement is

.
end Probh Statement;
p&age Req&mentAnaiysisPhase is

.
end RequiremenfAnalysisPhase~

pac& DomainAnalysisPhase is
.

end DomainAnaiysisPhase;

package Design-Phase is
. . .

end Design-Phase;

packags EvolutionPhase is
. .

end EvolutionPhase;

package MaintenancePhase is
. . . , . . .

end MaintenancePhase;
end BoochJlethod;

Example 4. Nested packages.

2.5. Review

The CSPL review statement originally allows only a
“yes” or “no” decision from a reviewer. However, in
modeling software processes, it is found that this leaves
too little choice for the reviewer, which results in over-sim-
plistic models that fail to meet practical needs. For instance,
after a reviewer reviews a document in phase B, he/she may
need to have the following choices: (1) the document quality
is OK, proceed to phase C; (2) the quality is not OK. Rework
of phase B is needed; (3) the quality is not OK, which results
from poor quality in phase A. Rework of phase A is thus
needed. Go to phase A.

The review statement is revised accordingly. In the state-
ment shown below, all system reviewers review the system
design document referring to “q.doc” document:

all system-reviewer review system_designLdoc refer-
ring to q.doc options

analysis_review_option using review_tools resulted in
review-result;

- Task specifbtkm of Domain Analysis
task DomeinAnelysis is

entry start;
end;

- Task body of Domain Analysis

task body DomsinAnaiysis is

begin
loop
accept start;
kJoP

DomeinAnsiysisPhase.DomainAnalysis(
domeinAnelysisDocumenf,require~ument);

DA_revisw_result := DomainAnatysisPhass.ReviewDA(
domainAna~Docu,r~u~e~u~nt);

exit when DA_review_result > 0;
end loop;

if DA_revisw_resull = 1 then
ouw

*.t*t~.~.*t.*.......*~~.*.~......~...**~.*~*..**..*........***....~*“.

zt$

* l *. Rm De&,s to Advance fo Des@, phase 1;’
......t.*~*......*...**~.*.*..~...*..*.....~..*.~.*,...,..~.*..*~.,,.

Designstart;
end if;

if DA_revisw_resul = 2 thsn

owJf
~~......*....**~...*.....*......**.*.**..**..~.....~,*.*~.*,...,*.,,..

output “==** Reviews Decide to Beck to Requiremsnt Analysis l **01;’

output
I~.***.C....~..*..t~...~..*****.*..~*..*....~...**~.,~..***.*....~.,..

RequireAnslysis.startt;
end if;

end loop;

- Exception Handling for Time Out -
sxwptiin

when timeout =>
output “Time out! Starting Design Phase”;
Dssignstsrt;

end;

Example 5. Task specification and body.

316 J.-Y.J. Chen, S.-C. Choubnfomation and Software Technology 40 (1998) 311-325

c-3 StattOMT

3_) entry call

- - - + event inform

Fig. 5. OMT process model.

Variable “analysis_review_option” following keyword
“options” contains all the choices for a reviewer. For
instance:

ananlysis_review_option: =

“ %l.OK,Go to Phase C %2.Redo Phase B %3. Go to
Phase A “;

A window shows all the review options for each reviewer.
After on-line discussions, reviewers hopefully will reach a
decision (a consensus or majority vote) which is saved in
variable ‘ ‘return-result’ ’ . That variable apparently will
determine the flow of the software process.

2.6. Metrics

Metrics are constantly used in evaluating analysis and
design results to assure software quality. Code metrics
such as lines of code have been available for a long time.
When a process enacts an object-oriented method, object-
oriented design metrics [9] are needed. In a CSPL program,
when an object is reviewed, its metrics value will be passed
to reviewers. Quality decisions can be made by referring to
the metrics. This is expected to reduce implementation dif-
ficulties and development risks [lo].

The following statement is used for that purpose:
measure Design-Document using DD_Metric_tool;
’ ‘Design_Document” above is the object being ‘mea-

sured. “DD_Metric_tooE” is the metrics tool for the object.
The measurement result is stored in the attribute metric-
Result of “Design_Document”.

Let us emphasize that metrics statements can be very effec-
tive in evaluating a method, including an object-oriented
method-provided they are properly modeled and enacted.

3. Modeling and enactment

Section 3.1 depicts the modeling steps. The steps are
applied to the OMT method and the Booth method in Sec-
tion 3.2, Section 3.3, respectively. As a result, CSPL
programs are developed. The CSPL programs are then
enacted (executed) using the CSPL environment, as
depicted in Section 3.4.

3.1. Modeling steps

The object-oriented methods are modeled in the follow-
ing steps.

3.1.1. Step 1. Find activities and object types

The activities and object types in a software process can
usually be found in the definition of the object-oriented
method. They can be found for OMT [5] and for the
Booth method [4], respectively.

3.1.2. Step 2. Merge cohesive activities

If all the activities found in step 1 are modeled as separate
subprograms, the model is likely to be unnecessarily com-
plex. To reduce this complexity, activities that frequently
interact with each other are merged into one coarse-grained

activity (see the discussion in Section 4.1).
Although the merging can reduce complexity, it may

reduce the scope for multiple developers to work concur-
rently. Therefore, when modeling a process, one should take
into consideration the trade-off of merging or not merging.
Generally, the following activities are candidates for merging:
activities assigned to the same developer, activities that are
not concurrent, activities that take short time, and so on.

3.1.3. Step 3. Identify concurrent tasks

Related coarse-grained activities in step 2 are grouped
into one module, which is then modeled as a task. Activities
in different tasks are expected to be executed concurrently.
Thus, if two activities are supposed to run concurrently, they
must be allocated in different modules.

3.1.4. Step 4. Build connections between tasks
As just mentioned, step 3 constructs tasks. To coordinate

and synchronize the tasks, connections between tasks must
be built using the entry call and event inform constructs.
Normally an entry call is used to synchronize or start
tasks; while an event inform is used to set an event.

3.1 S. Step 5. Find exceptions
Exceptions and their handling procedures are used to

J.-Y.J. Chen, S.-C. Chodlnfomation and Sojiware Technology 40 (1998) 311-325 317

model unexpected conditions. Exceptions are method
independent, but their handlers are not. That is, exceptions
for different methods appear similar. For example, excep-
tion “requirement change” may happen in the OMT or
Booth method. However, different handling procedures
are used in different methods. For instance, when exception
“requirement change” occurs, the Booth method dictates a
software process to backtrack to phase “requirement ana-
lysis”, while OMT requires the process to backtrack to
phase “system analysis”.

3.2. Object modeling technique (OMT) method

OMT (object modeling technique) is a popular object-
oriented method. It contains three phases: (1) system analysis;
(2) system design; and (3) object design. Steps in Section 3.1
are applied to model OMT as described in the following.

3.2.1. Step 1. Find activities and objects

The activities and object types used in OMT are defined
in Ref. [5] such as Identifying classes, Identifying opera-

tions, Identifying relations, identifying concurrency, object

model, dynamic model, functional model, and so on.
First, object type “Document” is defined which contains

attributes such as reviewoption, reviewResult, reviewcom-

ment, authorcomment and metricResult. Then, the object
types [5] such as AnalysisObjectModel, AnalysisDynamic-

Table 1

Activities and object types for OMT

Activities Object types

System analysis phase

System design phase

Object design phase

BuildObjectModel AnalysisObjectModel

ReviewObjectModel

Build DynamicModel AnalysisDynamicModel

ReviewDynamicModel

BuildFunctionalModel AnalysisFunctional

Model

ReviewFunctionalModel

DivideSubsystem SystemDesignDocument

IdentifyConcurrency

AllocateSubsystem

ChooseDBMS

ManageGlobalResource

ManageSoftwareControI

HandleBoundaryCondi-

tion

HandleTradeOffs

ReviewSystemDesign

FindOperation DesigningObjectModel

DesignOpAlgorithm

OptimizeAccessPath

ImplementSoftwareCon-

kol

ModifyClassStructure

DesignAssociation

ClassRepresentation

ClassModulation

ReviewObjectDesign

Model, AnalysisFunctionalModel, and so on are derived
from “Document”.

3.2.2. Step 2. Merge cohesive activities
After the merge, activities and object types are listed as in

Table 1.

3.2.3. Step 3. Identify concurrent tasks

The related activities are grouped into tasks. After group-
ing, six concurrent tasks are constructed: (1) SystemAnaZy-

sis; (2) SystemDesign; (3) ObjectDesign; (4) Partition; (5)

DBMS; and (6) Trade-off. Among them, the task System-

Analysis and ObjectDesign are for the system analysis and
object design phases, respectively. They are composed of the
activities belonging to the phases. The tasks SystemDesign,

Partition, DBMS, and Trade-off are for the system design
phase. The task SystemDesign is composed of these activities:
IdentifyConcurrency, AllocateSubsystem, ManageGlobalRe-

source, ManageSojiwareControl, HandleBoundaryCondition,

and ReviewSystemDesign. The task Partition is composed of
the activity DivideSubsystem. The task DBMS is composed of
the activity ChooseDBMS. The task Trade-off is composed
of the activity HandleTradeOffs.

3.2.4. Step 4. Build task connection

Fig. 5 shows entry calls and event informs among the
OMT tasks. As mentioned earlier, entry calls are used to
start other tasks, and event informs are used to inform other
tasks about the occurrence of some events.

3.2.5. Step 5. Find exceptions

Three exceptions, namely (1) schedule delay, (2) require-
ment change, and (3) project cancel are found in OMT.
Exceptions can be raised either by the CSPL program or
by the manager. For instance, exception “schedule delay”
can be raised by a raise statement in the program. Excep-
tions “requirement change” and “project cancel” can be
raised interactively by the manager during enactment.

Exception handler for “Requirementchange” is shown
below:

exception

when RequirementChange = >

output “Requirement Change!!“;
output “ REDO software.“;
SystemAnalysis.start;

If this exception is raised, the handling procedure shows
messages “Requirement Change!!” and “REDO soft-
ware.” at the CSPL server, and then issues an entry call
to task “SystemAnalysis” to start redoing the software.

3.3. Booth method

The Booth method [4] is another popular object-oriented

318 J.-Y.J. Chen, S.-C. Chodlnformation and Sofiware Technology 40 (1998) 311-325

Table 2

Activities and object types used in the Booth method

Activities Object types

Requirement analysis RequirementAnalysis

phase

ReviewRA

Domain analysis phase DomainAnalysis

Design phase

Evolution phase

ReviewDA

Design

ReviewDesign

Evolve

ReviewEvolution

Maintenance phase Maintain

ReviewMaintenance

RequireDocument

DomainAnalysisDocu-

ment

DesignDocument

RequireDocument

DomainAnalysisDocu-

ment

DesignDocument

Program

ObjectCode

RequireDocument

DomainAnalysisDocu-

ment

DesignDocument

Program

ObjectCode

method. It has five phases: (1) requirement analysis; (2)
domain analysis; (3) design; (4) evolution; and (5) mainte-
nance. The process for the Booth method is modeled as
described in the following steps.

3.3.1. Step 1. Find activities and objects
The activities and object types used in the Booth method

are defined in Ref. [4]. The activities include those in the
micro development process (i.e. the activities identify

classes and objects, identify class and object semantics,
identify class and object relationships, and specify class
and object interface and implementation) and other
activities, such as architecture design, class diagram,
object diagram, and so on. Object type Document defined
in OMT in Section 4.2 is reused here.

3.3.2. Step 2. Merge cohesive activities
After the merge, activities and object types are listed as in

Table 2.

3.3.3. Step 3. Identify concurrent tasks
After grouping the activities, five concurrent tasks are

constructed: (1) RequireAnalysis; (2) DomainAnalysis; (3)
Design; (4) Evolve; and (5) Maintain. Each is for a phase
and is composed of the activities in the phase. For example,
the task DomainAnalysis is for the domain analysis phase
and is composed of the following activities, namely Domai-
nAnalysis and ReviewDA.

3.3.4. Step 4. Build task connection
The communication among tasks is shown in Fig. 6. Note

that the tasks EvoEve and Maintain are, respectively,
initiated by the events evolution requirement and mainte-
nance requirement, which are set by the manager. As men-
tioned earlier, entry calls are used to start other tasks, and
event informs are used to inform other tasks about the occur-
rence of some events.

3.3.5. Step 5. Find exceptions
Exception handling of the Booth method is similar to that

of the OMT method discussed in Section 3.2.

__) entry call

- - - -) eventinform
I.

Start
: I .

Fig. 6. Booth process model.

J.-Y.J. Chen, S.-C. Chou/Informtion and Sojware Technology 40 (1998) 31 l-325 319

3.4. Enactment

After the object-oriented methods are modeled as
described above, the resulting CSPL programs are enacted
in the CSPL environment.

Tools used during enactment should be defined in the tool
unit of the CSPL program. For example, to use a tool for the
Booth method, the tool ROSE developed by Rational [111,
[121 or OOCASE developed by the Institute for Information
Industry [131 can be defined in that unit. On the other hand,
to use a tool for OMT, the tool OOAid developed by SYS-
COM [14] can be defined.

An ATM (automatic teller machine) project developed by
the Booth method is modeled using CSPL. A partial CSPL
program for this project is shown in the Appendix A.

4. Experiences

Experiences gathered from the modeling and enactment,
such as activity granularity and metrics are depicted in this
section.

4.1. Activity granularity

The reader might feel that the processes of OMT and the
Booth method shown in Figs 5 and 6 look rather simple. Let
us give our experiences on this.

At first, the two object-oriented methods are modeled in
some details. That is, detailed activities such as “find
classes’ ’ , “find operations” are separately modeled. How-
ever, it was later found that the interaction between those
activities is so complex that the process program becomes
unnecessarily complex. For example, in the domain analysis
phase of the Booth method, constructing a class diagram
requires activities such as “find class”, “find attribute”,
‘ ‘find operation’ ’ , and “find relationship”. During enact-
ment, a developer looks for classes for a couple of minutes,
then looks for operations for a while, and then back to look
for classes. The interaction between these activities is very
complex. The process program therefore becomes rather
complicated. This may cause inconvenience for developers.

One approach to solve this problem would be grouping

fine-grained activities to form coarse-grained activities. As
shown in Fig. 7, the four activities are grouped to one
coarse-grained activity as procedure DomainAnalysis.

Our experiences show that activity granularity is an
important consideration in software process modeling.
Coarse granularity reduces the degree of software process
automation. On the other hand, fine-grained granularity
restricts developers’ creativity and productivity. Process
programmers therefore need to strike the balance for proper
granularity.

4.2. Metrics

A task “Design” of the Booth method is shown in Exam-
ple 6. After its first procedure call:

1 Designer edit designDocument referring to

domainAnalysisDocument using CASETool;the design
document “designDocument” is built.

task body D&in is
bsgin
loop
accept start;

1 Designer edii desiinDocumant refarring to
domainAnalysisDocument using CASETool;

measure design Document using MetricTool;

Design_raview_resuit : =
Design_Phase.ReviewDesign(designDocument,

domainAnalysisDocument);
. . . .

end loop;

end;

--------____-_-_---~-----~
‘

finegrained acth4ties (cohesive) ‘,

In Example 6, the metrics statement following the proce-
dure call is:

measure designDocument using MetricTool;

The metrics tool above automatically generates the objec-
tive metrics of the design document. Note that subjective
metrics, however, are manually generated based on guide-
lines [9]. The objective metrics are provided to reviewers for
their reference. Our experiences show that metrics from one

-_----_
!%J__

cwrtiegrsii activities

J‘, Domain
-1 ,’
I/

Analysis

Fig. 7. Activity granularity.

320 J.-Y.J. Chen, S.-C. Chodlnfonnation and Software Technology 40 (1998) 311-325

project cannot convincingly determine the software quality.
It is figured that only after a large quantity of metrics values
is gathered from numerous projects can a “quality criteria”
be established, such as “attribute complexity of a class
should be lower than lo”, and only with the criteria can
metrics values be related to certain software quality.

5. Related work

This section reviews the expression form and task com-
munication of some software process languages. Advan-
tages and disadvantages of the procedural language
approach used by CSPL are also discussed.

5.1. Expression form

Expression form largely determines the modeling power
of a process language. CSPL uses the procedural language
approach. In addition to this we have identified several other
approaches: (1) Petri Net; (2) regular expression; (3) func-
tional language; (4) rule-based language; (5) goal-directed
or planning language; and (6) triggered language. These
approaches are briefly described below.

The procedural language approach is used in CSPL and
several other languages, such as APPL/A [15] and MDL
[16]. It appears to be the paradigm that developers are
most familiar with. Developers often use this kind of lan-
guage such as C + + to develop a product. Therefore it is
natural for the developers to use a procedural language.
However, the abstraction level of this paradigm is relatively
low.

The Petri Net approach is used in many process environ-
ments such as Process Weaver [6], Kemel/2r [17], and
SPADE [181. Petri Net provides a good expression form
for high-level modeling, therefore it is easy to understand.
Moreover, it is very suitable to model concurrent tasks,
because it has a high degree of parallelism. However,
Petri Net is weak in modeling low-level details. To remedy
that, other constructs should be provided. For example, Pro-
cess Weaver provides a co-shell to access UNIX tools and
services. Moreover, Petri Net seems weak in object model-
ing. For example, how can the input or output of a transition
be modeled in a Petri Net?

The regular expression approach is used in Hakoniwa [71.
Regular expression is easy to express rework and backtrack-
ing that are often found in software processes. It is also
suitable for static analysis such as dead-lock detection.
However, complex processes are difficult to specify using
regular expression. Moreover, processes represented in reg-
ular expression are not very easy to read and understand.

The functional language approach is used in HFSP [191. It
applies top-down functional decomposition to obtain an
activity hierarchy. The rule-based language approach used
in Merlin [20] and Marvel [21] achieve a higher abstraction
level than that of the procedural language approach. The

latter specifies exact control flow of the processing. The
former, on the other hand, specifies the form of results
without revealing the lower level procedural control flow
knowledge.

In a rule-based language, some rules about a process can
be constructed to serve as constraints or goals for the pro-
cess. This idea brings about the goal-based or planning lan-
guage approach. This approach is used in Intermediate [22],
[23] and Grapple [24], where mixed paradigms can be
observed. In the triggered language approach used in
Adele-2 [25] and EPOS [8], a database transaction may
signal an event which triggers an activity. For instance, in
Adele-2 and EPOS, an event can be set by a transaction to
trigger an action (activity). That action may set another
event which in turn triggers another action, and so on.

5.2. Task communication

A software process environment should assist developers
who are working concurrently. In order to coordinate con-
current tasks, task communication is needed. From this
viewpoint, a good software process language should provide
constructs to support task communication. Let us see how
this is done in various environments.

CSPL provides both synchronous and asynchronous com-
munication primitives for tasks: entry call and event inform,
respectively. Entry call is for synchronous communication,
while event inform is for asynchronous. Synchronous commu-
nication here implies that two tasks must both reach the
synchronous communication point before they can execute
their activities following that point. Entry calls thus play an
important role in synchronizing two tasks in a software process.
In asynchronous communication, when task A sends an event
to task B. Task A will not wait for task B to receive the event.
Both tasks can proceed to execute their own activities.

Communication in Hakoniwa can be divided into two
categories, namely data transfer and task control.
Primitives for data transfer provide the mechanism to send
and receive data between tasks. Primitives for task control
can initiate (start) or terminate a task. All these communica-
tion primitives, however, are asynchronous.

Process Weaver provides two functions, SendEvent and
WaitForEvent, to assist task communication. It, however,
does not seem to provide synchronous communication
primitives.

5.3. Procedural language approach

CSPL is an Ada95like procedural process language mod-
eling the components used in a software process, including
tools, roles, objects, procedures, tasks, and so on. Since it is
Ada95-like, it possesses powerful Ada95 modeling features,
such as strong typing, encapsulation, inheritance, generic
definition, and exception handling. These features appear
useful in modeling a software process. Another important
advantage of using a programming language is that the

J.-Y. J. Chen, S.-C. Choukfonnation and Software Technology 40 (I 998) 31 I-325 321

programs can be easily compiled and thus enacted. More-
over, this approach dramatically reduces the complexity of
implementing an environment. Transferring the technology
to the industry is thus greatly facilitated.

Compared with other approaches, the procedural language
approach used by CSPL has advantages and disadvantages.
This approach is qualitatively evaluated as follows.

1. Most developers are used to using procedural languages
to model things. CSPL statements seem close to natural
language, and therefore seem easy to use. Contrary to
this, regular expression used by Hakoniwa is rather dif-
ficult to understand.

2.

3.

4.

Procedural. languages such as CSPL model a software
process in a structured and object-oriented manner utiliz-
ing multiple levels of abstraction. This is rather clear
compared with other approaches.
CSPL inherits powerful features from Ada95, such as
object-type inheritance for object modeling and excep-
tion handling for dealing with unexpected situations.
CSPL is easy to extend. If an enhancement is needed, just
add new statements such as the metrics statement men-
tioned earlier.

Its disadvantages are:

1.

2.

CSPL process programs are sometimes cumbersome.
There are repetitive descriptions scattered around a
CSPL program, such as the names in package specifica-
tions and those in package bodies.
CSPL lacks high-level readability due to its textual form.
Graphical languages, such as Process Weaver that uses
Petri Net, seem to outperform CSPL in this regard.

6. Conclusions and future work

Its advantages are:

6.1. Conclusions

In this paper we discussed the modeling and enactment of
the Booth method and OMT method using the process lan-
guage CSPL developed in our laboratory. The following
conclusions were obtained:

CSPL possesses powerful modeling features. Compo-
nents used in software processes such as tools, roles,
activities, objects, concurrent tasks, exceptions, and so
on, can be easily modeled.
CSPL provides rich and useful language constructs for
modeling and enacting complex software processes. In
our experiences the following can be easily modeled and
enacted: tool binding, role management, task communi-
cation (both synchronous and asynchronous communica-
tion), and exception handling.
When modeling a software process, fine-grained activ-
ities can be grouped to form coarse-grained activities.

4.

This can prevent the process program from being too
complicated. However, coarse-grained granularity
reduces the degree of software process automation.
Therefore, process programmers need to strike the bal-
ance for proper granularity.
Metrics can be gathered during process enactment. How-
ever, our experiences show that metrics from one project
cannot convincingly determine the software quality. It is
figured that only after a large amount of metrics values
are gathered from numerous projects can a “quality cri-
teria” be established.

6.2. Future work

Although CSPL is powerful in modeling software pro-
cesses, it does have disadvantages. In our experiences,
CSPL is good at low-level modeling. However, CSPL
provides few supports for high-level modeling and under-
standing. This may result in a large process program and
long development time. In addition, processes modeled by
CSPL may not be as easy to understand as those modeled
by Petri Net. These disadvantages may frustrate CSPL
users. To remedy that, a user interface is being designed
for the CSPL environment. This interface is expected to
facilitate developing and understanding of CSPL process
programs. It will be composed of the following
components:

A development support component that will
facilitate developing process programs. It will be
designed as a window-based system that provides icons
to guide the development. In addition, it will
provide reusable process programs. To support that, a
repository for storing reusable process programs will
be designed.
A browsing support component that will facilitate brows-
ing and understanding process programs. It will provide
multiple windows, in which each shows a part of a pro-
cess program. In addition, it will provide functions to
abstract process programs. That is, a user can browse
either abstract information (e.g. package specification)
or detailed information (e.g. package body). With this,
one can browse a process program from abstract to
detailed levels and display different contents on different
windows. This is expected to facilitate the understanding
of process programs.

Acknowledgements

The authors wish to thank the referees for their comments
and Y. L. Liu for his dedicated work. This research is spon-
sored by the National Science Council, Taiwan, under Grant
No. NSC86-2213-E-009-025.

322 J.-Y.J. Chen, S.-C. Chodlnformation and Software Technology 40 (1998) 311-325

Appendix A Partial CSPL Process Program for ATM end Problem_Statement;
Project Using the Booth Method, NCTU Software - Package Specification for Requirement Analysis
Engineering Environment Lab, Programmed by Phase
Y. L. Liu package RequirementAnalysisPhase is

. . .

- Tool Definition -
tool Booch_tools is
Editor: = “vi”;
WordProcessor: = “interleaf’ ’ ;
CASETool: = “ROSE”;
ReviewTool: = “reviewTool”;
MetricTool: = “OOmetric”;
end;
- Role Definition -
role requireAnalyst is
requireAnalyst1: = ‘ ‘ymchen”;
end;
role RAreviewer is
RAreviewerl: = “jychen”;
RAreviewed: = “hsubj”;
RAreviewer3: = ‘ ‘ymchen”;
end;
role DomainAnalyst is
DomainAnalystl: = ‘ ‘ymchen”;
DomainAnalyst2: = “hsubj”;
end;
role DAreviewer is
DAreviewerl: = ‘ ‘jychen”;
DAreviewer2: = “hsubj”;
DAreviewer3: = ‘ ‘ymchen”;

end;
role Designer is
Designer 1: = “ ymchen’ ’ ;
Designed: = “hsubj”;
end;
role DesignReviewer is
DesignReviewerl: = “jychen”;
DesignRevieweR: = “hsubj”;
DesignRevieweD: = ‘ ‘ymchen”;
end;
- Package Specification -
package Booch_Method is

end RequirementAnalysisPhase;
- Package Specification for Domain Analysis Phase
package DomainAnalysisPhase is

type DomainAnalysisDocument is new Document with
record

classDiagram: NonTextType;
objectScenarioDiagram: NonTextType;
dataDictionary: TextType;
classSpecification: TextType;
workpartition: TextType;

end record;
procedure DomainAnalysis(

domainAnalysisDocument: in out DomainAnalysisDo-
cument;
requireDocument: in RequireDocument);

function ReviewDA(

domainAnalysisDocument: in DomainAnalysisDocu-
ment;
requireDocument: in RequireDocument)
return integer;

end DomainAnalysisPhase;
- Package Specification for Design Phase -
package Design-Phase is

type DesignDocument is new Document with record

architectureDoc: TextType;
executableReleaseDoc: TextType;
classCategoryDiagram: NonTextType;
designClassDiagram: NonTextType;
designObjectDiagram: NonTextType;

end record;

type Document is new DocType with record

reviewoption: string;
reviewResult: integer;
reviewcomment: string;
authorComment: string;
metricResult: string;

end record;

function ReviewDesign(

designDocument: in DesignDocument;
domainAnalysisDocument:in DomainAnalysisDocu-
ment)
return integer:

end Design-Phase;
- Package Specification for Evolution Phase -
package EvolutionPhase
.

- Package Specification for Problem Statement
package Problem-Statement is

end EvolutionPhase;
- Package Specification for Maintenance Phase -
package MaintenancePhase

.

J.-Y.J. Chen, S.-C. ChouHnjtimation and Sofhvare Technology 40 (1998) 311-325 323

end MaintenancePhase;
end Booch_Method;
- Package Body -
package body Booch_Method is
- Package Body for Problem Statement -
package body Problem-Statement is

. . .

end Problem_Statement;
- Package Body for Requirement Analysis Phase -
package body RequirementAnalysisPhase is

. . .

end RequirementAnalysisPhase;
- Package Body for Domain Analysis Phase -
package body DomainAnalysisPhase is

procedure DomainAnalysis(

domainAnalysisDocument: in out DomainAnalysisDo-
cument;
requireDocument: in RequireDocument)

is

begin

1 DomainAnalyst edit domainAnalysisDocument refer-
ring to

requireDocument using CASETool;

end;

function ReviewDA(

domainAnalysisDocument: in DomainAnalysisDocu-
ment;
requireDocument: in RequireDocument)
return integer

is

current_time: time;
DomainAnalysisDeadLine: time;
timeout: exception;
workresult: integer;
begin

current-time: = GetCurTime;
if current-time > DomainAnalysisDeadLine

then raise timeout;

end if;
all DAreviewer review domainAnalysisDocument
referring to

requireDocument using ReviewTool resulted in work-
result;

return workresult;

end;

end DomainAnalysisPhase;
- Package Body for Object Design Phase -
package body Design-Phase is

function ReviewDesign(

designDocument: in DesignDocument;
domainAnalysisDocument: in DomainAnalysisDocu-
ment)
return integer

is

workresult: integer;
begin

all DesignReviewer review designDocument referring
to
domainAnalysisDocument using ReviewTool resulted
in workresult;
return workresult;

end;

end Design-Phase;
- Package Body for Evolution Phase -
package body EvolutionPhase is

. . .

end EvolutionPhase;
- Package Body for Maintenance Phase -
package body MaintenancePhase is

. . .

end MaintenencePhase;
end Booch_Method;
with Booch_Method;
procedure StartBoochMethod is
- Variable initialization -
- Set Time Point
DomainAnalysisDeadLine: time;
- Task Specification -
task RequireAnalysis is

entry start;

end;
task DomainAnalysis is

entry start;

end;
task Design is

entry start;

end;
task Evolve is

entry start;

end;
task Maintain is

324 J.-Y.J. Chen. S.-C. ChouHnformation and Software Technology 40 (1998) 31 l-325

entry start;

end;
- Task Body -
task body RequireAnalysis is

begin

. . .

end;

task body DomainAnalysis is

begin

loop
accept start;
loop

DomainAnalysisPhase.DomainAnalysis(

domainAnalysisDocument,requireDocument);

DA-review-result: = DomainAnalysisPhase.Re-
viewDA(

domainAnalysisDocument,requireDocument);

exit when DA_review_result > 0;
end loop;
if DA-review-result = 1 then

output
Lb**_
*****************“. ,
output “******** Reviewers Decide to Advance to
Design Phase *****“;
output
“**_
*****************“. t
Design.start;

end if;
if DA-review-result = 2 then

output
“*Y**_
***************“.

output ‘ ‘** ** Reviewers Decide to Back to Require-
ment Analysis ***“;
output
ss**_
***************“.

RequireAnal ysis.s&t;

end if;

end loop;

- Exception Handling for Time Out -

exception

when timeout = >

output “Time out! Starting Design Phase”;
Design.start;

end;
task body Design is

begin

loop

accept start;
1 Designer edit designDocument referring to

domainAnalysisDocument using CASETool;

measure designDocument using MetricTool;
Design_review_result: =
Design_Phase.ReviewDesign(designDocument,

domainAnalysisDocument);

if Design_review_result = 0 then

output
“**_
**********“.

output c’**;*********** Redo Design Phase
*****************“. 9
output
“**_
**********“. f
Design.start;
exit;

end if,
if Design-review-result = 1 then

output
“Y***_
**********“.

output “****: Booth Method Software Process is fin-
ished ****“;

output
“**_
**********19.

projectFinished: = True;
exit;

end if;
if Design_review_result = 2 then

output
“**_
*****************“.

output “***** Reviewers decide to Modify Require-
ment Analysis *****“;
output
<c**_
*****************“.

RequireAnalysis.start; ’

end if;
if Design_review_result = 3 then

J.-Y. J. Chen, S.-C. Chodlnfomarion and Software Technology 40 (1998) 31 I-325 325

output
L’*****x********************************~~~~_
***************“.

output “******* Reviewers decide to Modify Domain
Analysis ******“.

output
“**********X***************************~~~~_
******Y********“.

DomainAnalysis.s&t;

end if;

end loop;

end;
task body Evolve is

begin

. . .

end;

task body Maintain is

begin

. . .

end;

- Begin of the Booth Method Software Process -
begin
- Document description setting
-Review option setting
DomainAnalysisDeadLine: = SetTime(19,7,4,96);
- Start Booth Method Software Model -
RequireAnalysis.startrt;
end;

References

[l] J.-Y. Chen, C.-M. Tu, An Ada-like software process language, Journal
of System and Software 27 (1) (1994) 17-25.

[2] J.-Y. Chen, C.-M. Tu, CSPL: a process-centered environment,
Information and Software Technology 36 (1) (1994) 3-10.

[3] J.-Y.J. Chen, CSPL: an Ada95like, Unix-based process
environment, IEEE Transactions on Software Engineering 23 (3)
(1997) 171-184.

[4] G. Booth, Object-oriented Analysis and Design with Applications,
2nd ed., Benjamin/Cummings, New York, 1994.

[5] J. Rumba&, Object-oriented Modeling and Design, Prentice-Hall,
Englewood Cliffs, NJ, 1991.

[6] C. Femstrom, Process Weaver: adding process support to Unix, in:
Proceedings of the Second International Conference on the Software
Process, IEEE Computer Society, 1993, pp. 12-26.

[7] H. Iida, K.-i. Mimura, K. Inoue, K. Torii, Hakoniwa: monitor and
navigation system for cooperative development based on activity
sequence model, in: Proceedings of the Second International
Conference on the Software Process, IEEE Computer Society, 1993,
pp. 64-74.

[S] R. Conradi et al., Design, use and implementation of SPELL, a
language for software process modeling and evolution, in:
Proceedings of the Second European Workshop on Software Process
Technology, 1992, pp. 167-177.

[9] J.-Y. Chen, J.F. Lu, A new metric for object-oriented design,
Information and Software Technology 35 (4) (1993) 232-240.

[lo] R.S. Pressman, Software Engineering-A Practitioner’s Approach,
3rd ed., Chap. 2, McGraw-Hill, New York, 1992.

[1 l] Rational, Formal Semantics of the Booth Notation for Object-oriented
Analysis and Design, Rational, USA, 1994.

[12] Rational, Rose User Manual, Rational, USA, 1994.
[131 Institute of Information Industry, OOCASE User Manual, Institute of

Information Indusy, Taiwan, 1994.
[14] OOAid User Manual, SYSCOM Computer Engineering Co., Taiwan,

1994.
[151 S.M.Sutton Jr., , D. Heimbigner, L.J. Osterweil, APPUA: a language

for software process programming, ACM Transactions on Software
Engineering and Methodology 4 (3) (1995) 22 l-286.

[16] J.-Y. Chen, P. Hsia, MDL (methodology definition language): a
language for defining and automating software development process,
Journal of Computer Languages 17 (3) (1992) 199-211.

[17] B. Holtkamp, H. Weber, Kernel/2222A software infrastructure for
building distributed applications, in: Proceedings of the Fourth
International Conference on Future Trends in Distributed Computing
Systems, Lisbon, 1993.

[18] SC. Bandinelli, A. Fuggetta, C. Ghezzi, Software process model
evolution in the SPADE environment, IEEE Transactions on Software
Engineering 19 (12) (1993) 1128-1144.

[19] T. Katayama, A hierarchical and functional approach to software
process description, in: Proceedings of the Fourth International
Software Process Workshop, New York, 1989, pp. 87-92.

[20] B. Peuschel, W. Schafer, Concepts and implementation of rule-based
process engine, in: Proceedings of the Fourteenth Intemationl
Conference on Software Engineering, 1992, pp. 262-279.

[21] GE. Kaiser, N.S. Barghouti, Database support for knowledge-based
engineering environments, IEEE Expert 3 (2) (1988) 18-32.

[22] D.E. Perry, Policy-directed coordination and cooperation, in:
Proceedings of the Seventh Software Process Workshop, Yountville,
CA, 1991,~~. 111-113.

[23] D.E. Perry, Enactment control in Interact/Intemrediate, in: B.C.
Warboys (Ed.), Proceedings of the ‘llrird European Workshop on
Software Process, EWSPT 94, Villard de Lam, France (Lecture Notes
in Computer Science, 772, Springer, Berlin, 1994, pp. 107-l 13).

[24] K.E. Huff, Probing limits to automation: towards deeper process
models, in: Proceedings of the Fourth International Software Process
Workshop, New York, 1988, pp. 79-81.

[25] N. Belkhatir, W.L. Melo, Supporting software development process in
Adele 2, The Computer Journal 37 (2) (1994) 621-628.

