
Information Processing Letters 67 (1998) 21-28

A data-parallel algorithm for minimum-width tree layout *

wuu Yang l
Deparmtent of Computer and Information Science, National Chiao-Tung University, Hsing Chu, Taiwan

Received 6 May 1997; received in revised form 17 April 1998
Communicated by D. Cries

Abstract

The tree-layout problem is to compute the coordinates of nodes of a tree so that the tree, when drawn on a piece of paper,
appeals to human understanding. The tree-layout problem, which seems inherently sequential at the first glance, can be solved
with a data-parallel algorithm. It takes O(height x logwidth) time on widtk processors when proper communication links
between processors are available, where height and widrk are the height and width of the tree, respectively. The layout calculated
by the algorithm has the minimum width. 0 1998 Elsevier Science B.V. All rights reserved.

Keywords: Algorithms; Data-parallel algorithms; EREW, PRAh4; Tree layout

1. Introduction

Traditional parallel algorithms are mostly applied in
numerical computation, in which arrays are the most
common data structure. Many new parallel algorithms
have been discovered that are applicable to more
flexible data structures. Furthermore, many problems
that seem inherently sequential at the first glance are
found to be solvable with parallel algorithms. We
report in this paper that the tree-layout problem can
also be solved with a data-parallel algorithm. The
layout algorithm is applied to a tree structure, rather
than the common rectangular arrays.

Parallel computers with tens of thousands of proces-
sors are typically programmed in a data-parallel fash-
ion [3]. Data parallelism is similar to the SIMD (single
instruction stream, multiple data stream) model of par-
allel machine architectures, in which the same opera-

* This work was supported in part by National Science Council,
Taiwan, R.O.C. under grant NSC 84-2213-E-009-043.

1 Email: wuuyang@cis.nctu.edu.tw.

0020-0190/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved.
PII:SOO20-0190(98)00081-7

tions are applied to multiple pieces of data simultane-

ously. It employs fine-grained and massive parallelism
that exists in some kinds of applications. The applica-
tions include line drawing in computer graphics, VLSI

design and circuit simulation, finite difference, multi-
media image processing, and computer vision [4].

Trees are a common data structure widely used in
computer science. For instance, the single-inheritance

class hierarchy of an object-oriented programming
system and directories of file systems are usually
organized into tree structures. Sometimes, the tree

structures are more comprehensible when they are
drawn on a piece of paper or on the computer screen.
The tree-layout problem is to compute the coordinates
of nodes of a tree when the tree is drawn on a piece
of paper. The layout is constrained to meet certain

aesthetic standards [l] so that the tree, when drawn
on a piece of paper, appeals to human understanding.
Different aesthetic standards may be employed. In
this paper, the standard is that (1) nodes on the sa-
me level (the level of a node will be defined in the

22 W Yang /fnfortnation Processing Letters 67 (1998) 21-28

next section) should be drawn on the same horizontal
line; (2) nodes on the same level should be separated
from one another by a distance of at least one unit;
and (3) the horizontal coordinate of a node must be
equal to the mean of the horizontal coordinates of its
leftmost and rightmost children. Applications of the
layout algorithm include class browsers, graphic user

interfaces of file managers, and software analysis [2].
The remainder of this paper is organized as follows:

The next section presents the data-parallel layout
algorithm. The third section outlines the proof that
the layout algorithm satisfies the aesthetic standard.
It is also shown that the layout calculated by the
algorithm has the minimum width. Section 4 presents
an improvement to the layout algorithm of Section 2.
The improvement attempts to distribute additional
horizontal spaces between nodes equally. The layout
computed by the improved algorithm still satisfies the

aesthetic standard; however, the layout may no longer
have the minimum width. The last section concludes
this paper and discusses related work.

2. A data-parallel tree-layout algorithm

We assume that a tree is represented by a linked-list
data structure. Each node contains pointers to its par-
ent and its leftmost and rightmost children. The level
of a node is the level of its parent plus one; the root
is on level one. (The notion of levels differs from the
traditional notion of tree heights in that levels are con-

cerned with nodes in the trees, whereas heights are
concerned with edges or distance from the root. Since
we want to calculate the coordinates of nodes, we
adopt the notion of levels.) Nodes on the same level are
called cousins of one another. Cousins are a general-
ized notion of siblings_ Each node is assigned a proces-
sor, which is responsible for calculating the node’s po-
sition. We also assume that there are sufficient proces-

sors and hardware links between the processors. The
algorithm needs to determine the placement of the
nodes.

The placement of nodes is determined by the
vertical and horizontal coordinates. The tree is drawn
upside down, that is, the root is at the top and
descendants are drawn below ancestors. We ignore the
sizes of the nodes in the algorithm; however, we will
show a way to accommodate node sizes later. Since

the distance between adjacent levels is a constant, the
vertical coordinate of a node is simply the level of
the node times the constant. Therefore, it suffices to
compute the horizontal coordinates of nodes.

Before presenting the algorithm, we define a new

operation:

S(a,b)=b ifb#l;

S(a,b)=a ifb=_L,

where I is a special value different from any integer. It
can be verified that 15 is an associative operation. That
is,

6(&r, b), c) = &(a, a@, c)).

Then we define that

1 gj =gO
j=O

and

j/iogj =8(~~~gj~gi) for i > 1

(that is, A:=ogj = 6(6(.-.6(S(go, gl), a),. . .>, w)).
A)=u gj is the rightmost non-l value in the sequence

go,gt,..*, gi , or is _L if all these g values are 1.
The tree-layout algorithm consists of two phases,

as shown in Fig. 1. Both phases proceed level by
level: The first phase proceeds upwards from the
bottom level to the root; the second downwards from
the root to the bottom level. Consider a level s. Let
nr , n2, n3, . . . , n, be the nodes on level s, from left to
right, where (Y is the number of nodes on level s. Each

node ni contains twelve variables ci, di, ei , fi , gi, hi,
ki, Zi, rni, pi, qi, and ri. During the first phase, for
each level s, each of the nine steps are performed by
all nodes ni on level s in parallel.

The c values of nodes are the tentative horizontal
positions of the nodes if all their descendants are
ignored. We adopt the convention that if node rti does

not have children, then di = ei = 0. The f values of
the nodes are their horizontal positions determined by
their respective children. The g values are the numbers
of units by which nodes are forced to shift to the right
by their children. By convention, go = 0. Note that if
a node is forced to shift to the right by g units, its
right cousins are also forced to shift to the right by
at least g units. The h values result from propagating
the g values to the right across nodes without children.

W Yang /Information Processing Letters 67 (1998) 21-28

Algorithm: Tree-Layout
level := the height of tree
I* phase 1 */
for s := level down to 1 do

Let n I, n2, ng, . _ . , n, be the nodes on level s (from left to right).
step 1: parallel for alI nodes ni on level s do ci := i od
step 2: parallel for all nodes ni on level s do di := the m value of the leftmost child of node q od
step 3: parallel for all nodes ni on level s do ei := the m value of the rightmost child of node Q od
step 4: parallel for all nodes ni on level s do fi := (di + ei) 12 od
step 5: parallel for all nodes ni on level s do gi := if ni has children then fi - Ci else 1 od

step 6: parallel for all nodes & on level s do hf := j& od (Assume go = 0.)

step 7: parallel for all nodes no on level s do ki := ~nuun (IQ-~ - hi, 0) od (Assume ~IJ = 0.)

step 8: parallel for all nodes n, on level s do li := zkj od
j=l

step 9: parallel for all nodes ni on level s do mi := C~ + hi + lj od
od
I* phase 2 *I
the q value of the root := 0
the r value of the root := the m value of the root
for s := 2 to level do

Letnbn2,n3,..., nor be the nodes on level s (from left to right).
step 10: parallel for all nodes nj on level s do pi := the q value of node q’s parent od
step 11: parallel for all nodes nf on level s do qf := Ii + pi od
step 12: parallel for all nodes 4 on level s do ri := mi +pi od

od

Fig. 1. The data-parallel tree-layout algorithm.

23

By convention, ho = 0. The k value of a node ni is

the number of units by which ni ‘s descendants are

forced to shift to the right by the descendants of ni ‘s
nearest left cousin that has children. The 1 value of

a node ni is the cumulative amount of right-shift for

ni ‘s descendants forced by the descendants of q ‘s left

cousins. The m value of a node ni is the horizontal

coordinate of ni if all nodes above the current level

are ignored.

Suppose that node N is on level s and that tl , t2,
. . . , ts_l are N’s ancestors. N’s horizontal coordinate

is

s-1

mn l l-~~j,
j=l

where m, is the m value of node N and lj is the 1 value
of node tj . The second phase calculates the horizontal

coordinates of all nodes level by level. The p and

q values of the nodes are used to compute ~~~~ lj.

The r values are the final horizontal coordinates of the
nodes.

Example. Consider the tree in Fig. 2(a). There are
three levels in the tree. The first phase of the layout
algorithm is applied to the tree from level 3 to level 1.
It is easy to verify that the m values of nodes on the
third level are 1,2, . . . , 18. Consider the nodes on the
second level. For convenience, the nodes on the second
level are named nl, n2. . . . , and nls. The c, f, g, h, k,
I, m, p, q, and r values for these nodes are listed in
the table in Fig. 2(b). The m value of the root is 13.
Therefore, the horizontal coordinate of the root is 13;
the horizontal coordinate of the rightmost node on the
second level is 24; the horizontal coordinate of the

rightmost node on the third level is 25. The tree that
is drawn by the layout algorithm is shown in Fig. 2(a).

Note that g2 = 3, which means that node n2 is
forced to shift to the right by three units by its
descendants. Hence, all the right cousins of n2 are

24 W Yang /Information Processing Letters 67 (1998) 21-28

(a) An example tree.

(b) Computing the horizontal locations of nodes on the second level.

Fig. 2. An example demonstrating the data-parallel layout algorithm.

forced to shift to the right by at least three units.

Since g7 = 1 < g2 (hence k7 = 2), n7’s descendants

are forced to shift to the right by two units by n2’s

descendants. Consequently, the descendants of n7’s

right cousins are all forced to shift to the right by at

least two units. (That is, Zi 2 2 for i 2 7.) Similar

arguments apply to node n 17.
To analyze the time complexity, we assume a

PRAM EREW model [6]. Consider the time spent on

each level first. As explained in [3], the parallel prefix-

sum operation at step 8 takes O(logw) time, where

w is the number of nodes on that level. The parallel

prefix-A operation at step 6, which finds the g value

of the nearest non-l left cousin, is similar to the par-

allel prefix-sum operation. It also takes O(log w) time.
To determine whether a node is the leftmost child of

its parent, we assume that every node knows the iden-

tity of its parent. Each node compares the identity of
the parent of its left cousin against the identity of its

own parent. If the two differ, the node is the leftmost

child of its parent. This operation takes constant time.
Similar arguments apply to the rightmost children. We

assume that a node can broadcast an integer to all its

children in one time unit at step 10. All other opera-

tions take constant time. Therefore, O(logzu) time is

spent on a level. The total time needed is O(height x

log width), where height is the number of levels and

width is the maximum number of nodes on any level.

Since the algorithm works level by level, the proces-

sors may be shared by nodes on different levels. There-

fore, the total number of processors needed is width.

Up to now, we have assumed that nodes are repre-

sented by points on a piece of paper. In practice, nodes

may be represented by rectangles. It is easy to incor-

porate the widths of nodes. Node widths may be added

to ci ‘s and proper adjustment may be made before cal-

culating di’s. To accommodate the heights of nodes,

an easy method is to make all nodes on a level as tall

as the tallest nodes on that level. The vertical distance

between adjacent levels is adjusted accordingly. This

method may not be satisfactory in cases where node

heights vary dramatically; however, it does align nodes

on the same level on the same horizontal line.

U! Yang /Information Processing Letters 67 (1998) 21-28 25

3. Correctness and the minimum-width property

In this section, we show that the layout algorithm
satisfies the aesthetic standard proposed in the first

section and that the layout calculated by the algorithm

has the minimum width. It is obvious that nodes on the
same level are drawn on the same horizontal line (the

first criterion). We need to show that nodes on the same

level are separated from one another by a distance of

at least one unit and that the horizontal coordinate of a

node is equal to the mean of the horizontal coordinates

of its leftmost and rightmost children. For the sake of
brevity, the detailed proofs are omitted.

Lemma 1. On any level, 0 < li 6 lj for i < j.

Lemma 2. On any level, hi + li < hj + lj for i < j.

Theorem 3. On any level, ri < ri+l + 1 for all i.

Theorem 4. The horizontal coordinate of a node is

equal to the mean of the horizontal coordinates of its

leftmost and rightmost children.

Finally, we wish to show that the layout computed

by the data-parallel algorithm is of high quality.

Specifically, we show that the computed layout has

the narrowest width among all layouts that satisfy

the aesthetic standard. We need a new terminology

in proving the assertion. A forest is an (ordered)
sequence of trees. We may imagine that the trees in the

forest are the subtrees of a fictitious root. The fictitious

root together with the trees in the forest may be laid

out as any other trees. A forest layout is a layout of the
sequence of the trees in the forest.

Definition. The width of a forest layout is the hori-

zontal distance between the leftmost and the rightmost

nodes in the layout.

Note that the width of a layout of a forest is not nec-
essarily the sum of the widths of the layouts of indi-
vidual trees. A layout of a tree automatically induces
a layout for every subtree of the tree. The following

lemma is a direct consequence of the aesthetic stan-

dard.

Lemma 5. Zf L is a layout for a tree T that satisfies

the aesthetic standard, then the layout for any subtree

of T induced by L also satis-es the aesthetic standard.

In what follows, the word layout always implicitly

implies that the layout satisfies the aesthetic standard
mentioned in the first section. For a tree, there might

be more than one minimum-width layout. Therefore,
we choose one among them as a thin layout.

Definition. A layout L for a tree is a thin layout if it
has the minimum width and the layout for any subtree

of the tree induced by L also has the minimum width.

Note that there might be more than one thin layout
for a tree. For instance, in Fig. 2(a), the eighth node

(from left) on the second level can be moved to the
right one unit and is still a thin layout.

Theorem 6. The layout for any tree computed by the
algorithm is a thin layout,

Proof (Sketch). Consider the algorithm in Fig. 1. At
the end of each iteration during the first phase, we
obtain a forest and a layout for the forest. Let P’i and Li

denote the forest and the forest layout obtained at the
end of the ith iteration, respectively. Without a detailed

proof, we claim that the width of the forest layout
obtained in one iteration must be no less than the

width of the forest layout obtained during the previous
iteration. 0

Specifically, we proved the following assertion by
an inductive argument:

Assertion. For all i, at the end of the i th iteration,

(1) the layout Li has the minimum width among all

the possible layouts for the forest Fi ; and

(2) the layout for every tree in Fi induced by Li is a

thin layout.

Corollary. For any tree, the layout computed by the

algorithm has the minimum width.

26 W Yang/fnfozmation Processing Letters 67 (1998) 21-28

4. An improvement

Note that in Fig. 2(a), the eighth node (from left to
right) on the second level, that is, node ng in Fig. 2(b),
is placed one unit to the right of node n7 and two
units to the left of node ng. Though this arrangement
satisfies our aesthetic standard, it would be preferable

to place node ns in the middle of n7 and ng. In
this section, we present an improvement of the layout
algorithm of Section 2. In the improved algorithm,
shown in Fig. 3(a), nodes are placed equally spaced
if the arrangement does not violate the aesthetic
standard. Five steps are added to the first phase in the
improved algorithm. We first define two operations X
ando.

Define h(a, b) = if b 6 0 then b else if a < 0

then a - b else a + b. It can be verified that A. is

an associative operation. In step 10 in Fig. 3(a), we
assume uo = 0 and define

i Uj=UO

j=O

and

A Uj = A ‘l\l Uj, Ui (> for i > 1.
j=O j=O

Definet?(a,b)=ifa<Othenaelseifb=Othen

-a else b. It can be verified that 8 is also an associative
operation. Let 01 be the number of nodes in the current

level. In step 12, we assume wcu+l = 0 and define

Cr+t
0 Wj=Wa+l

j=cr+l

and

a+1
0 Wj =O (Wi, U&’ Wj) for 1 < i < 01.

j=i j=i+l

In step 9, the sequence u 1, ~2, , . . is a sequence of
O’s and l’s depending on whether the nodes n 1, n2, . . .
have children. This sequence is divided into one or
more segments by the O’s in the sequence. Each seg-
ment contains zero or more l’s and is delimited by
O’s on both ends. In step 10, the operation A),uj
computes the negation of the position of node ni
in its segment. For instance, given the sequence of
ui’s 1, l,O, 1, 1, l,O, 1, l,thecorrespondingvi’scom-
puted in step 10 are -1, -2,O, -1, -2,-3,0, -1,
-2. The use of negation is for separating independent
segments. Step 11 calculates the amount of right-shift

for the nodes that have no children. Note that wi com-
puted in step 11 is actually one greater than the actual

amount of right-shift. It can be proved that wi > 0, for
all i. Step 12 propagates the amount of right-shift from
right to left within the same segment. Note that step 12
performs a parallel suffix-8 operation. The resulting xi
is either 0 or is a negative number. The addition of 1 to

wi (in step 11) and the negation used in xi (in step 12)
are for separating independent segments. Step 13 re-
adjusts the amount of right-shift for each node. Finally,
step 14 adjusts mi ‘s with yi ‘s.

Example. Fig. 3(b) shows the computation performed
by the improved algorithm. Note that rs is 11.5, which

means that ng is placed in the middle of n7 and ng.

5. Related works and conclusion

We have presented a data-parallel tree-layout algo-
rithm. The algorithm meets the aesthetic standard. The
layout calculated by the algorithm has the minimum
width. The algorithm takes

O(height x log width)

time on width processors when proper communication
links between processors are available, where height

and width are the height and width of the tree, respec-

tively. An improvement to the layout algorithm is also
presented, which attempts to distribute additional hor-
izontal spaces among nodes on the same levels.

There are many published sequential tree-layout

algorithms. The algorithm in [5] employs “wraps”
around subtrees and attempts to combine these sub-
tree wraps as close, but not overlapping, to each other
as possible. The algorithm can handle the case that
nodes may have different sizes. The algorithm in [9J
employs a different aesthetic standard. It also draws a
layout with the minimum width under the adopted aes-
thetic standard. Reingold and Tilford use a threaded

technique to represent the boundary of a subtree [7].
The algorithm in [l] can handle the case that nodes
may have different sizes. The algorithm in [8] con-
sists of three phases that calculate the horizontal and
vertical positions, respectively. All of the above men-
tioned algorithms are sequential. By contrast, this pa-
per shows that the layout problem can be solved with
a data-parallel algorithm.

U? Yang /Information Processing Letters 67 (1998) 21-28 27

(a) the improved layout algorithm

Algorithm: Improved-Tree-Layout
level := the height of tree
P phase 1 *I
for s := level down to 1 do

Letn1,nz,n3,..., n, be the nodes on level s (from left to right).
step 1: parallel for all nodes ni on level s do cj := i od
step 2: parallel for all nodes rzi on level s do di := the m value of the leftmost child of node R+ od
step 3: parallel for all nodes ni on level s do ei := the m value of the rightmost child of node ni od
step 4: parallel for all nodes ni on level s do fi := (4 + ei) / 2 od
step 5: parallel for all nodes ni on level s do gt := i{ ni has children then fi - ci else 1 od

step 6: parallel for all nodes q on level s do hi := ,$gj od (Assume go = 0.)

step 7: parallel for all nodes ni on level s do ki := ymum (hi_, - h, 0) od (Assume ho = 0.)

step 8: parallel for all nodes ni on level s do Ii := zkj od
j=l

step 9: parallel for all nodes ni on level s do ui := i{ gi = 1 then 1 else 0 od

step 10: parallel for all nodes ni on level s do vi := huj od (Assume ~0 = 0.)
j=O

step 11: parallel for all nodes Iii on level s do w 1 := if gi = I and hi C hi+, then 1 + (hi - hi+ly(Vi - 1)
~9 if gi = I then 1 else 0 od

step 12: parallel for all nodes ni on level s do xi := 0 Wj od (Assume W,I = 0.)
j=i

step 13: parallel for all nodes ni on level s do y, := if xi c 0 and -4 - 1 else 0 ud
step 14: paraUe1 for all nodes nl on level s do m, := Ci + hi + t, + yi od

od
I* phase 2 *I
the q value of the root := 0
the r value of the root := the m value of the root
for s := 2 to level do

Letn,,nz.n,,..., n, be the nodes on level s (Erom left to right).
step 15: parallel for all nodes ni on level s do pi := the q value of node nl’s parent od
step 16: parallel for all nodes n1 on level s do q1 := li + pt od
step 17: parallel for all nodes ni on level s do r, := mi +pi od

od

(b) Computing the horizontal locations of node-s on the second level by the improved algorithm.

r, 1 2 1 5 1 6 1 7 1 8 1 9 1 10 1 11.5 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 24

Fig. 3. The improved data-parallel tree-layout algorithm

28 U? Yang/Information Processing Letters 67 (1998) 21-28

The data-parallel tree-layout algorithm presented in
this paper is motivated by the sequential tree-layout
algorithm in [9]. The result obtained from the parallel
algorithm is similar, but not identical, to that obtained
by Wetherell and Shannon’s algorithm. It would be
interesting to study the mechanical transformation of
sequential algorithms into (data-)pamllel algorithms.

References

[l] A. Bloesch, Aesthetic layout of generalized trees, Software-

Practice and Experience 23 (8) (1993) 8 17-827.
[2] E.R. Gansner, SC. North, K.P Vo, Graph visualization in

software analysis, in: Proc. 1992 Symposium on Assessment of

Quality Software Development Tools, 1992.

[3] W.D. Hillis, G.L. Steele Jr, Data parallel algorithms, Comm.

ACM 29 (12) (1986) 1170-1183.

[4] T.G. Lewis, H. El-Rewini, Introduction to Parallel Computing,

Prentice-Hall, Englewood Cliffs, NJ, 1992.

[5] S. Moen, Drawing dynamic trees, IEEE Software 7 (4) (1990)
21-28.

[6] M.J. Quinn, Parallel Computing: Theory and Practice, McGraw-

Hill, New York, 1994.

[7] E.M. Reingold, J.S. Tilford, Tidier drawings of trees, IEEE

Trans. Software Engineering 5 (5) (1981) 514-520.

[8] J.G. Vaucher, Pretty-printing of trees, Software-Practice and

Experience 10 (1980) 553-561.

[9] C. Wetherell, A. Shannon, Tidy drawings of trees, IEEE Trans.

Software Engineering 5 (5) (1979) 514-520.

