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Abstract 

The tree-layout problem is to compute the coordinates of nodes of a tree so that the tree, when drawn on a piece of paper, 
appeals to human understanding. The tree-layout problem, which seems inherently sequential at the first glance, can be solved 
with a data-parallel algorithm. It takes O(height x logwidth) time on widtk processors when proper communication links 
between processors are available, where height and widrk are the height and width of the tree, respectively. The layout calculated 
by the algorithm has the minimum width. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Traditional parallel algorithms are mostly applied in 
numerical computation, in which arrays are the most 
common data structure. Many new parallel algorithms 
have been discovered that are applicable to more 
flexible data structures. Furthermore, many problems 
that seem inherently sequential at the first glance are 
found to be solvable with parallel algorithms. We 
report in this paper that the tree-layout problem can 
also be solved with a data-parallel algorithm. The 
layout algorithm is applied to a tree structure, rather 
than the common rectangular arrays. 

Parallel computers with tens of thousands of proces- 
sors are typically programmed in a data-parallel fash- 
ion [3]. Data parallelism is similar to the SIMD (single 
instruction stream, multiple data stream) model of par- 
allel machine architectures, in which the same opera- 
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tions are applied to multiple pieces of data simultane- 

ously. It employs fine-grained and massive parallelism 
that exists in some kinds of applications. The applica- 
tions include line drawing in computer graphics, VLSI 

design and circuit simulation, finite difference, multi- 
media image processing, and computer vision [4]. 

Trees are a common data structure widely used in 
computer science. For instance, the single-inheritance 

class hierarchy of an object-oriented programming 
system and directories of file systems are usually 
organized into tree structures. Sometimes, the tree 

structures are more comprehensible when they are 
drawn on a piece of paper or on the computer screen. 
The tree-layout problem is to compute the coordinates 
of nodes of a tree when the tree is drawn on a piece 
of paper. The layout is constrained to meet certain 

aesthetic standards [l] so that the tree, when drawn 
on a piece of paper, appeals to human understanding. 
Different aesthetic standards may be employed. In 
this paper, the standard is that (1) nodes on the sa- 
me level (the level of a node will be defined in the 
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next section) should be drawn on the same horizontal 
line; (2) nodes on the same level should be separated 
from one another by a distance of at least one unit; 
and (3) the horizontal coordinate of a node must be 
equal to the mean of the horizontal coordinates of its 
leftmost and rightmost children. Applications of the 
layout algorithm include class browsers, graphic user 

interfaces of file managers, and software analysis [2]. 
The remainder of this paper is organized as follows: 

The next section presents the data-parallel layout 
algorithm. The third section outlines the proof that 
the layout algorithm satisfies the aesthetic standard. 
It is also shown that the layout calculated by the 
algorithm has the minimum width. Section 4 presents 
an improvement to the layout algorithm of Section 2. 
The improvement attempts to distribute additional 
horizontal spaces between nodes equally. The layout 
computed by the improved algorithm still satisfies the 

aesthetic standard; however, the layout may no longer 
have the minimum width. The last section concludes 
this paper and discusses related work. 

2. A data-parallel tree-layout algorithm 

We assume that a tree is represented by a linked-list 
data structure. Each node contains pointers to its par- 
ent and its leftmost and rightmost children. The level 
of a node is the level of its parent plus one; the root 
is on level one. (The notion of levels differs from the 
traditional notion of tree heights in that levels are con- 

cerned with nodes in the trees, whereas heights are 
concerned with edges or distance from the root. Since 
we want to calculate the coordinates of nodes, we 
adopt the notion of levels.) Nodes on the same level are 
called cousins of one another. Cousins are a general- 
ized notion of siblings_ Each node is assigned a proces- 
sor, which is responsible for calculating the node’s po- 
sition. We also assume that there are sufficient proces- 

sors and hardware links between the processors. The 
algorithm needs to determine the placement of the 
nodes. 

The placement of nodes is determined by the 
vertical and horizontal coordinates. The tree is drawn 
upside down, that is, the root is at the top and 
descendants are drawn below ancestors. We ignore the 
sizes of the nodes in the algorithm; however, we will 
show a way to accommodate node sizes later. Since 

the distance between adjacent levels is a constant, the 
vertical coordinate of a node is simply the level of 
the node times the constant. Therefore, it suffices to 
compute the horizontal coordinates of nodes. 

Before presenting the algorithm, we define a new 

operation: 

S(a,b)=b ifb#l; 

S(a,b)=a ifb=_L, 

where I is a special value different from any integer. It 
can be verified that 15 is an associative operation. That 
is, 

6(&r, b), c) = &(a, a@, c)). 

Then we define that 

1 gj =gO 
j=O 

and 

j/iogj =8(~~~gj~gi) for i > 1 

(that is, A:=ogj = 6(6(.-.6(S(go, gl), a),. . .>, w)). 
A)=u gj is the rightmost non-l value in the sequence 

go,gt,..*, gi , or is _L if all these g values are 1. 
The tree-layout algorithm consists of two phases, 

as shown in Fig. 1. Both phases proceed level by 
level: The first phase proceeds upwards from the 
bottom level to the root; the second downwards from 
the root to the bottom level. Consider a level s. Let 
nr , n2, n3, . . . , n, be the nodes on level s, from left to 
right, where (Y is the number of nodes on level s. Each 

node ni contains twelve variables ci, di, ei , fi , gi, hi, 
ki, Zi, rni, pi, qi, and ri. During the first phase, for 
each level s, each of the nine steps are performed by 
all nodes ni on level s in parallel. 

The c values of nodes are the tentative horizontal 
positions of the nodes if all their descendants are 
ignored. We adopt the convention that if node rti does 

not have children, then di = ei = 0. The f values of 
the nodes are their horizontal positions determined by 
their respective children. The g values are the numbers 
of units by which nodes are forced to shift to the right 
by their children. By convention, go = 0. Note that if 
a node is forced to shift to the right by g units, its 
right cousins are also forced to shift to the right by 
at least g units. The h values result from propagating 
the g values to the right across nodes without children. 
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Algorithm: Tree-Layout 
level := the height of tree 
I* phase 1 */ 
for s := level down to 1 do 

Let n I, n2, ng, . _ . , n, be the nodes on level s (from left to right). 
step 1: parallel for alI nodes ni on level s do ci := i od 
step 2: parallel for all nodes ni on level s do di := the m value of the leftmost child of node q od 
step 3: parallel for all nodes ni on level s do ei := the m value of the rightmost child of node Q od 
step 4: parallel for all nodes ni on level s do fi := (di + ei ) 12 od 
step 5: parallel for all nodes ni on level s do gi := if ni has children then fi - Ci else 1 od 

step 6: parallel for all nodes & on level s do hf := j& od (Assume go = 0.) 

step 7: parallel for all nodes no on level s do ki := ~nuun (IQ-~ - hi, 0) od (Assume ~IJ = 0.) 

step 8: parallel for all nodes n, on level s do li := zkj od 
j=l 

step 9: parallel for all nodes ni on level s do mi := C~ + hi + lj od 
od 
I* phase 2 *I 
the q value of the root := 0 
the r value of the root := the m value of the root 
for s := 2 to level do 

Letnbn2,n3,..., nor be the nodes on level s (from left to right). 
step 10: parallel for all nodes nj on level s do pi := the q value of node q’s parent od 
step 11: parallel for all nodes nf on level s do qf := Ii + pi od 
step 12: parallel for all nodes 4 on level s do ri := mi +pi od 

od 

Fig. 1. The data-parallel tree-layout algorithm. 

23 

By convention, ho = 0. The k value of a node ni is 

the number of units by which ni ‘s descendants are 

forced to shift to the right by the descendants of ni ‘s 
nearest left cousin that has children. The 1 value of 

a node ni is the cumulative amount of right-shift for 

ni ‘s descendants forced by the descendants of q ‘s left 

cousins. The m value of a node ni is the horizontal 

coordinate of ni if all nodes above the current level 

are ignored. 

Suppose that node N is on level s and that tl , t2, 
. . . , ts_l are N’s ancestors. N’s horizontal coordinate 

is 

s-1 

mn l l-~~j, 
j=l 

where m, is the m value of node N and lj is the 1 value 
of node tj . The second phase calculates the horizontal 

coordinates of all nodes level by level. The p and 

q values of the nodes are used to compute ~~~~ lj. 

The r values are the final horizontal coordinates of the 
nodes. 

Example. Consider the tree in Fig. 2(a). There are 
three levels in the tree. The first phase of the layout 
algorithm is applied to the tree from level 3 to level 1. 
It is easy to verify that the m values of nodes on the 
third level are 1,2, . . . , 18. Consider the nodes on the 
second level. For convenience, the nodes on the second 
level are named nl, n2. . . . , and nls. The c, f, g, h, k, 
I, m, p, q, and r values for these nodes are listed in 
the table in Fig. 2(b). The m value of the root is 13. 
Therefore, the horizontal coordinate of the root is 13; 
the horizontal coordinate of the rightmost node on the 
second level is 24; the horizontal coordinate of the 

rightmost node on the third level is 25. The tree that 
is drawn by the layout algorithm is shown in Fig. 2(a). 

Note that g2 = 3, which means that node n2 is 
forced to shift to the right by three units by its 
descendants. Hence, all the right cousins of n2 are 
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(a) An example tree. 

(b) Computing the horizontal locations of nodes on the second level. 

Fig. 2. An example demonstrating the data-parallel layout algorithm. 

forced to shift to the right by at least three units. 

Since g7 = 1 < g2 (hence k7 = 2), n7’s descendants 

are forced to shift to the right by two units by n2’s 

descendants. Consequently, the descendants of n7’s 

right cousins are all forced to shift to the right by at 

least two units. (That is, Zi 2 2 for i 2 7.) Similar 

arguments apply to node n 17. 
To analyze the time complexity, we assume a 

PRAM EREW model [6]. Consider the time spent on 

each level first. As explained in [3], the parallel prefix- 

sum operation at step 8 takes O(logw) time, where 

w is the number of nodes on that level. The parallel 

prefix-A operation at step 6, which finds the g value 

of the nearest non-l left cousin, is similar to the par- 

allel prefix-sum operation. It also takes O(log w) time. 
To determine whether a node is the leftmost child of 

its parent, we assume that every node knows the iden- 

tity of its parent. Each node compares the identity of 
the parent of its left cousin against the identity of its 

own parent. If the two differ, the node is the leftmost 

child of its parent. This operation takes constant time. 
Similar arguments apply to the rightmost children. We 

assume that a node can broadcast an integer to all its 

children in one time unit at step 10. All other opera- 

tions take constant time. Therefore, O(logzu) time is 

spent on a level. The total time needed is O(height x 

log width), where height is the number of levels and 

width is the maximum number of nodes on any level. 

Since the algorithm works level by level, the proces- 

sors may be shared by nodes on different levels. There- 

fore, the total number of processors needed is width. 

Up to now, we have assumed that nodes are repre- 

sented by points on a piece of paper. In practice, nodes 

may be represented by rectangles. It is easy to incor- 

porate the widths of nodes. Node widths may be added 

to ci ‘s and proper adjustment may be made before cal- 

culating di’s. To accommodate the heights of nodes, 

an easy method is to make all nodes on a level as tall 

as the tallest nodes on that level. The vertical distance 

between adjacent levels is adjusted accordingly. This 

method may not be satisfactory in cases where node 

heights vary dramatically; however, it does align nodes 

on the same level on the same horizontal line. 
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3. Correctness and the minimum-width property 

In this section, we show that the layout algorithm 
satisfies the aesthetic standard proposed in the first 

section and that the layout calculated by the algorithm 

has the minimum width. It is obvious that nodes on the 
same level are drawn on the same horizontal line (the 

first criterion). We need to show that nodes on the same 

level are separated from one another by a distance of 

at least one unit and that the horizontal coordinate of a 

node is equal to the mean of the horizontal coordinates 

of its leftmost and rightmost children. For the sake of 
brevity, the detailed proofs are omitted. 

Lemma 1. On any level, 0 < li 6 lj for i < j. 

Lemma 2. On any level, hi + li < hj + lj for i < j. 

Theorem 3. On any level, ri < ri+l + 1 for all i. 

Theorem 4. The horizontal coordinate of a node is 

equal to the mean of the horizontal coordinates of its 

leftmost and rightmost children. 

Finally, we wish to show that the layout computed 

by the data-parallel algorithm is of high quality. 

Specifically, we show that the computed layout has 

the narrowest width among all layouts that satisfy 

the aesthetic standard. We need a new terminology 

in proving the assertion. A forest is an (ordered) 
sequence of trees. We may imagine that the trees in the 

forest are the subtrees of a fictitious root. The fictitious 

root together with the trees in the forest may be laid 

out as any other trees. A forest layout is a layout of the 
sequence of the trees in the forest. 

Definition. The width of a forest layout is the hori- 

zontal distance between the leftmost and the rightmost 

nodes in the layout. 

Note that the width of a layout of a forest is not nec- 
essarily the sum of the widths of the layouts of indi- 
vidual trees. A layout of a tree automatically induces 
a layout for every subtree of the tree. The following 

lemma is a direct consequence of the aesthetic stan- 

dard. 

Lemma 5. Zf L is a layout for a tree T that satisfies 

the aesthetic standard, then the layout for any subtree 

of T induced by L also satis-es the aesthetic standard. 

In what follows, the word layout always implicitly 

implies that the layout satisfies the aesthetic standard 
mentioned in the first section. For a tree, there might 

be more than one minimum-width layout. Therefore, 
we choose one among them as a thin layout. 

Definition. A layout L for a tree is a thin layout if it 
has the minimum width and the layout for any subtree 

of the tree induced by L also has the minimum width. 

Note that there might be more than one thin layout 
for a tree. For instance, in Fig. 2(a), the eighth node 

(from left) on the second level can be moved to the 
right one unit and is still a thin layout. 

Theorem 6. The layout for any tree computed by the 
algorithm is a thin layout, 

Proof (Sketch). Consider the algorithm in Fig. 1. At 
the end of each iteration during the first phase, we 
obtain a forest and a layout for the forest. Let P’i and Li 

denote the forest and the forest layout obtained at the 
end of the ith iteration, respectively. Without a detailed 

proof, we claim that the width of the forest layout 
obtained in one iteration must be no less than the 

width of the forest layout obtained during the previous 
iteration. 0 

Specifically, we proved the following assertion by 
an inductive argument: 

Assertion. For all i, at the end of the i th iteration, 

(1) the layout Li has the minimum width among all 

the possible layouts for the forest Fi ; and 

(2) the layout for every tree in Fi induced by Li is a 

thin layout. 

Corollary. For any tree, the layout computed by the 

algorithm has the minimum width. 
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4. An improvement 

Note that in Fig. 2(a), the eighth node (from left to 
right) on the second level, that is, node ng in Fig. 2(b), 
is placed one unit to the right of node n7 and two 
units to the left of node ng. Though this arrangement 
satisfies our aesthetic standard, it would be preferable 

to place node ns in the middle of n7 and ng. In 
this section, we present an improvement of the layout 
algorithm of Section 2. In the improved algorithm, 
shown in Fig. 3(a), nodes are placed equally spaced 
if the arrangement does not violate the aesthetic 
standard. Five steps are added to the first phase in the 
improved algorithm. We first define two operations X 
ando. 

Define h(a, b) = if b 6 0 then b else if a < 0 

then a - b else a + b. It can be verified that A. is 

an associative operation. In step 10 in Fig. 3(a), we 
assume uo = 0 and define 

i Uj=UO 

j=O 

and 

A Uj = A ‘l\l Uj, Ui ( > for i > 1. 
j=O j=O 

Definet?(a,b)=ifa<Othenaelseifb=Othen 

-a else b. It can be verified that 8 is also an associative 
operation. Let 01 be the number of nodes in the current 

level. In step 12, we assume wcu+l = 0 and define 

Cr+t 
0 Wj=Wa+l 

j=cr+l 

and 

a+1 
0 Wj =O ( Wi, U&’ Wj) for 1 < i < 01. 

j=i j=i+l 

In step 9, the sequence u 1, ~2, , . . is a sequence of 
O’s and l’s depending on whether the nodes n 1, n2, . . . 
have children. This sequence is divided into one or 
more segments by the O’s in the sequence. Each seg- 
ment contains zero or more l’s and is delimited by 
O’s on both ends. In step 10, the operation A),uj 
computes the negation of the position of node ni 
in its segment. For instance, given the sequence of 
ui’s 1, l,O, 1, 1, l,O, 1, l,thecorrespondingvi’scom- 
puted in step 10 are -1, -2,O, -1, -2,-3,0, -1, 
-2. The use of negation is for separating independent 
segments. Step 11 calculates the amount of right-shift 

for the nodes that have no children. Note that wi com- 
puted in step 11 is actually one greater than the actual 

amount of right-shift. It can be proved that wi > 0, for 
all i. Step 12 propagates the amount of right-shift from 
right to left within the same segment. Note that step 12 
performs a parallel suffix-8 operation. The resulting xi 
is either 0 or is a negative number. The addition of 1 to 

wi (in step 11) and the negation used in xi (in step 12) 
are for separating independent segments. Step 13 re- 
adjusts the amount of right-shift for each node. Finally, 
step 14 adjusts mi ‘s with yi ‘s. 

Example. Fig. 3(b) shows the computation performed 
by the improved algorithm. Note that rs is 11.5, which 

means that ng is placed in the middle of n7 and ng. 

5. Related works and conclusion 

We have presented a data-parallel tree-layout algo- 
rithm. The algorithm meets the aesthetic standard. The 
layout calculated by the algorithm has the minimum 
width. The algorithm takes 

O(height x log width) 

time on width processors when proper communication 
links between processors are available, where height 

and width are the height and width of the tree, respec- 

tively. An improvement to the layout algorithm is also 
presented, which attempts to distribute additional hor- 
izontal spaces among nodes on the same levels. 

There are many published sequential tree-layout 

algorithms. The algorithm in [5] employs “wraps” 
around subtrees and attempts to combine these sub- 
tree wraps as close, but not overlapping, to each other 
as possible. The algorithm can handle the case that 
nodes may have different sizes. The algorithm in [9J 
employs a different aesthetic standard. It also draws a 
layout with the minimum width under the adopted aes- 
thetic standard. Reingold and Tilford use a threaded 

technique to represent the boundary of a subtree [7]. 
The algorithm in [l] can handle the case that nodes 
may have different sizes. The algorithm in [8] con- 
sists of three phases that calculate the horizontal and 
vertical positions, respectively. All of the above men- 
tioned algorithms are sequential. By contrast, this pa- 
per shows that the layout problem can be solved with 
a data-parallel algorithm. 
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(a) the improved layout algorithm 

Algorithm: Improved-Tree-Layout 
level := the height of tree 
P phase 1 *I 
for s := level down to 1 do 

Letn1,nz,n3,..., n, be the nodes on level s (from left to right). 
step 1: parallel for all nodes ni on level s do cj := i od 
step 2: parallel for all nodes rzi on level s do di := the m value of the leftmost child of node R+ od 
step 3: parallel for all nodes ni on level s do ei := the m value of the rightmost child of node ni od 
step 4: parallel for all nodes ni on level s do fi := (4 + ei ) / 2 od 
step 5: parallel for all nodes ni on level s do gt := i{ ni has children then fi - ci else 1 od 

step 6: parallel for all nodes q on level s do hi := ,$gj od (Assume go = 0.) 

step 7: parallel for all nodes ni on level s do ki := ymum (hi_, - h, 0) od (Assume ho = 0.) 

step 8: parallel for all nodes ni on level s do Ii := zkj od 
j=l 

step 9: parallel for all nodes ni on level s do ui := i{ gi = 1 then 1 else 0 od 

step 10: parallel for all nodes ni on level s do vi := huj od (Assume ~0 = 0.) 
j=O 

step 11: parallel for all nodes Iii on level s do w 1 := if gi = I and hi C hi+, then 1 + (hi - hi+ly(Vi - 1) 
~9 if gi = I then 1 else 0 od 

step 12: parallel for all nodes ni on level s do xi := 0 Wj od (Assume W,I = 0.) 
j=i 

step 13: parallel for all nodes ni on level s do y, := if xi c 0 and -4 - 1 else 0 ud 
step 14: paraUe1 for all nodes nl on level s do m, := Ci + hi + t, + yi od 

od 
I* phase 2 *I 
the q value of the root := 0 
the r value of the root := the m value of the root 
for s := 2 to level do 

Letn,,nz.n,,..., n, be the nodes on level s (Erom left to right). 
step 15: parallel for all nodes ni on level s do pi := the q value of node nl’s parent od 
step 16: parallel for all nodes n1 on level s do q1 := li + pt od 
step 17: parallel for all nodes ni on level s do r, := mi +pi od 

od 

(b) Computing the horizontal locations of node-s on the second level by the improved algorithm. 

r, 1 2 1 5 1 6 1 7 1 8 1 9 1 10 1 11.5 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 24 

Fig. 3. The improved data-parallel tree-layout algorithm 
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The data-parallel tree-layout algorithm presented in 
this paper is motivated by the sequential tree-layout 
algorithm in [9]. The result obtained from the parallel 
algorithm is similar, but not identical, to that obtained 
by Wetherell and Shannon’s algorithm. It would be 
interesting to study the mechanical transformation of 
sequential algorithms into (data-)pamllel algorithms. 
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